

Front-end Electronics for DEPFET Pixel Detectors at SuperBelle

Hans Krüger, University of Bonn for the DEPFET Collaboration

The DEPFET Collaboration

- University of Barcelona^(*)
- University Ramon Lull, Barcelona
- University of Bonn^(*)
- University of Heidelberg^(*)
- University of Giessen
- University of Göttingen
- University of Karlsruhe
- IFJ PAN, Krakow
- MPI Munich
- Charles University, Prag
- University of Santiago de Compostela
- IFIC Valencia

(*) ASIC design activity

Collaboration started with μ VTX R&D for ILC – now in good position for PXD development for Belle 2

- Upgrade of the Belle detector at KEKB Belle 2 (aka SuperBelle)
- Detector concept
- Front-end electronics
- Prototype results

Upgrade of the KEK B factory

- Asymmetric e⁺/e⁻ collider (3.5 GeV, 8 GeV)
 - 900 million B meson pairs (since 1999)
 - study CP violation via B⁰/B⁰-bar decays
 - rare decay modes à need even more statistics
- Machine upgrade: Super KEK B
 - increase luminosity $(1.7 \times 10^{34} \text{ e} \text{ up to } 8 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1})$
 - high beam current (9.4/4.1A) or
 - nano beam
 - crab crossing

Belle detector

Belle Detector Upgrade – SuperBelle

- various upgrades for all sub detectors
 - background reduction
 - vertex resolution
 - rate capability
 - particle identification
- silicon vertex detector upgrade
 4 layer DSSD à 2 layer pixels + 4 DSSD

- challenges for the detector
 - higher background (x20) à radiation damage, occupancy
 - higher event rate (x50) à higher trigger rate, DAQ, computing

DEPFET Pixel Vertex Detector – PXD

- Two layer vertex detector
 - layer 1: 10 modules at 1.8 cm radius
 - layer 2: 12 modules at 2.2 cm radius
 - optional layer 0 at 1.3 cm radius with beam pipe upgrade
 - $17^{\circ} 150^{\circ}$ acceptance ($\eta = [0.55 .. 0.3]$)

- occupancy: ~0.2 hits/µm²/sec (estimated for 1x10³⁵ cm⁻²sec⁻¹, @ 1.8cm radius)
- spatial resolution : < 10 μm (r-phi) (can be less in z)
- pixel size: 50 µm (r-phi) x ~60 µm (z-axis)
- material budget < 0.15 % X₀ per layer
- read-out time: 10 µs (20µs)
- sample (row) rate: 12 MHz
- layer1 half-module active area: 4.9 cm x 1.2 cm
- #pixels: 240 x 500 (800)
- anticipated radiation: ~1 Mrad per year of operation

"All-silicon" DEPFET Module

- active pixel area thinned to 50 µm
 - low mass design
- surrounding (non-thinned) frame
 - mechanical support
 - mounting and routing for the ASICs
- ASICs bump bonded directly to the DEPFET substrate
- Independent read-out from both sides (half modules)

see talk by Carlos Lacasta on Friday afternoon for more details on the DEPFET sensor design & performance

- p-FET (MOSFET) integrated in the sensor substrate
- fully depleted bulk (sideward depletion)
- internal gate (deep n implantation) collects signal electrons à low C_D, low noise
- charge collection during external gate being switched off à low power
- integrating device, discharge internal gate with positive pulse applied to the clear contact

J. Kemmer and G. Lutz Nucl. Instr. and Meth. A 253 (1987), p. 365

DEPFET Matrix Read-out

- 'correlated double sampling'
 - 1. one row selected at a time
 - 2. sample drain current ($I_{ped} + I_{sig}$)
 - 3. clear internal gates of selected row
 - sample drain current (I_{ped}) again and subtract from stored current à I_{sig}
 - 5. digitize I_{sig}
- clear requirements (complete clear)
 - > 10V swing
 - > 15 ns pulse width
- read-out speed
 - drain (current) read-out à low voltage swing
 - low input resistance of the r/o chip

DEPFET Matrix Layout

- 4-fold parallel column read-out
 - increase r/o speed by x4
 - reduced number of line driver channels (rows)
 - less material in the acceptance region
 - 50 µm pixel width à 12.5 µm drain line pitch (technology limit)
 - need to flip chip the read-out chip

clear[n]

gate[n]

increase read-out speed (x4)

clear[n]

gate[n]

Switcher Chip (Line Driver)

2xMonitor

Switcher Chip Block Diagram

- high voltage (10-20V) pulses for clear and gate lines
- low output resistance (speed)
- radiation hard
- low power (chip inside acceptance volume)
- Switcher chip developments (ILC, X-ray astronomy):
 - Switcher 2: 64 ch., analog I.s., dU = 25 V
 - Switcher 3: 128 ch., cap. I.s., dU = 10V
 - Switcher 4: 64 ch., analog I.s., dU > 30V
 - Switcher 5 (sBelle): tbd.

I. Peric et al, University of Heidelberg

Switcher 3 – Concept

Switcher 3 – Implementation

- Radiation tolerant layout in 0.35 µm twin-well technology
- 128 channels
- programmable sequencer

pro:

- very fast
- no DC power consumption con:
- operation limited to 11.5 V
- need separate chips for clear and gate
- SEU in SRAM level-shifters can cause shorts

37
-11
-11
-81
-8
_
B
1
-11
-11
-11
-11
-8
-11
-11
-11
-11
-8
-1
-1
-1
-1
-8
_
1
-1
-
-
_

HV channel with 3+3 Switch transistors and 4 AC coupling stages (180x180µm, M4 not shown)

I. Peric, University of Heidelberg

Switcher 3 – Measurements

up to 5.7 Mrad:

- chip running with 50 MHz clock
- increased rise/fall times after 22 Mrad:
- digital errors
- even with lower (10 MHz) clock

reminder: Belle 2 conditions

- ~1Mrad/yr
- 12 MHz clock

Switcher 4 – Concept

- new concept to achieve higher voltage swings
- 0.35 HV technology
 - rad. tolerant thin gate oxide MOS
 - lateral diffusion MOSFETs (LDMOS) for high voltage
 - rad. tolerant, enclosed design of NMOS HV transistors
- block diagram
 - drive N- and P-MOS output switches from separate rails (3V & 17V, generated on-chip)
 - 'break before make' switching

I. Peric, University of Heidelberg

Drain Current Digitizer – DCD

19

Drain Current Digitizer – DCD Chip

- receive drain current signals from the DEPFET matrix
 - need low r_{in} for fast settling time (C_{PAR} ~50 pF)
 - regulated cascode
- sample and subtract pedestal currents
 - current memory cells
- digitize signals
 - algorithmic ADC, 8 bit, 160 ns
 - two ADCs per channel à 80 ns
 - serial output
- 4:1 multiplex ADC outputs (6:1) in current test chip

Drain Current Digitizer – DCD

- DCD2: 72 ch. test chip
- 0.18 µm technology
- regulated cascode
- current memory cells
- two 8-bit algorithmic ADCs
- different test channels with parameter variations
- 6:1 multiplexed LVDS outputs
- bump bond IOs + wire bonds for testing

DACs & control

6 x 2 output

drivers

University of Heidelberg

DCD2 – Measurements

- linearity (@ 12.5 MHz sample rate)
 - max INL: 4 LSB
 - max DNL: 1 LSB

- noise (including reg. cascode)
 - 0.6 1 LSB (w/o cap. input load)
 - < 2 LSB with up to 82 pF load</p>

- input range: [0..24μA] (I_{SIG_MIP} ~12 μA @ 450 μm, 1.3 μA @ 50 μm)
- LSB: 100 nA (higher than designed à increased bias for 500 MHz operation)
- gain: 10 ± 0.1 LSB / μA
- noise: < 2 LSB @ 60 pF input capacitance
- power consumption: 6 mW/channel
- DCD fully operational @ 600 MHz clock speed (12.5 MHz sampling frequency)
- adjust input range to dynamic signal range from thin detectors
- to do: dynamic tests (settling time, bandwidth ...), radiation tests

Data Handling Processor – DHP

DHP – Signal Rates & Data Flow

• 3-4% occupancy

- receive & de-serialize ADC data from the DCD
- raw data correction
 - pedestal subtraction à correct for fixed offset per individual pixel
 - common mode correction à time dependent offset for all simultaneously sampled pixels (quad-rows)
- data reduction
 - zero-suppression
 - trigger coincidence
- module control functionality
 - PLL
 - DCD / Switcher timing
 - slow control (JTAG)
- 90 nm tech.
- 6 chips per half module

University of Bonn & University of Barcelona

DHP Data Processing

H. Krüger, 11th Pisa Meeting on Advanced Detectors, May 24-30, 2009

Conclusion

- DEPFET collaboration going to develop a pixel vertex detector for Belle 2
- Many design aspects make use of the ILC driven R&D
 - sensor development: thin sensor, 'all-silicon module'
 - chip development
- Prototypes of the Switcher chips designed and successfully tested, new development for higher output swing are under development
- DCD2 chip (test chip) close to final performance
- Design of the digital chip (DHP) just started

see talk by Carlos Lacasta on Friday afternoon for more details on the DEPFET sensor design & performance

Thank you!

backup

End of Module Layout

DCD

- 150 µm x 150 µm cells
- 6 chips, 1.5 x 4.7 mm
- Input: 16 rows, 10 columns
- Output: 4 rows, 10 columns

DHP

- 200 µm bump bond pitch
- 6 chips
- 1.7 x ??? mm
- One 1Gbit link per DHP à 6 Gbit per module
- Need to change input layout:
 - 5 rows, 8 columns

DEPFET PXD – Backend Electronic

- individual r/o for 44 half-modules
- intermediate board (data handling hybrid, DHH) between module and rack electronic (ATCA shelf with 'compute node' cards)
 - opto links

H. Krüger, 11th Pisa Meeting on Advanced Detectors, May 24-30, 2009

Switcher 4 – Implementation

- 0.35 HV technology
- radiation tolerant
- 64 channels (x2, clear & gate)

pro:

- Possible operation up to 50 V (30V tested)
- gate and clear switches on one chip

con

- not as fast as SW3
- moderate DC power consumption (0.4mW/channel)

University of Heidelberg

universität**bonn**

DCD + DHP footprints

6 chip DHP option

- Further reduced costs
- one Gbit link per chip @ 6 Gbit r/o per module
- but: even more redundant logic
- Need to change input pad layout
 - DCD: 4 x 10 @ 150µ •
 - DHP: 5 x 8 @ 200µ ٠

SuperKEKB timing

- SuperKEKB RF frequency f0 = 508 MHz (508.89 MHz precisely)
- Number of slots per cycle: 5120
- Circulation time: 10.061 µs
- System clock f0/12 = 42.3 MHz (or f0/4, f0/8, f0/16, f0/256)
- Abort gap: 200 ns (~100 bunches)
- Clock for abort gap available (frame clock)
- DEPFET read-out synchronous with beam circulation (128 rows): row clock = 508 MHz / (5120/128) = 508 MHz / 40 = 12.7 MHz
- Use f0/8 and divide by 5 (DHH?)