

A CMOS Front-End for SiPM devices aimed to TOF applications with adjustable threshold and high dynamical range

Davide Badoni^(a), Francesco Gonnella^(a,b), Roberto Messi^(a,b), Dario Moricciani^(a), Flavio Archilli^(a,b), Lorenzo Iafolla^(a,b)

(a) "Roma Tor Vergata" Section I.N.F.N. - (b) Physics Department University "Tor Vergata"

Main building blocks of the produced chip

Simplified schematic of the Current amplifier "fully balanced" with current mirror.

Fully differential functionality with a feedback using two identical circuits.

General architecture of the chip: Eight channels with independent adjustable thresholds.

The chip. The technology used is AMS 0.35 µm, four metals, double polysilicon.

<u>Measurement and test</u>

Dynamical range and linearity for thresholds regulation of the chip: Simulation results vs measurements.

Dark current:

Timing results: Time distribution obtained with a fixed pulse amplitude corresponding to about 27 equivalent hit pixels.

Cosmic ray test: with 1x1mm² Hamamatsu SiPM coupled with a small BC418 plastic scintillator.

Cosmic ray test: Time spectrum obtained with a cosmic rays telescope made of two scintillators

of the same type coupled with two PM.