

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

SiMPI - An avalanche diode array with bulk integrated quench resistors for single photon detection

Jelena Ninkovic¹⁾, Ladislav Andricek¹⁾, Gerhard Liemann¹⁾, Gerhard Lutz³⁾, Hans-Guenter Moser¹⁾, Rainer Richter¹⁾ and Florian Schopper²⁾

Max Planck Institute for Physics Semiconductor Laboratory
Max Planck Institute for Extraterestrial Physics Semiconductor Laboratory

3) PNSensor GmbH

What is a Silicon Photomultiplier – SiPM ?

•An array of avalanche photodiodes

- operated in Geiger mode \rightarrow binary device
- passive quenching by integrated resistor
- read out in parallel \rightarrow signal is sum of all fired cells

Jelena Ninkovic

Polysilicon Quench Resistors

- Complex production step
- Critical resistance range influenced by: grain size, dopant segregation in grain boundaries, carrier trapping, barrier height
- Sheet resistance depends on:

Deposition conditions, implantation dose, layer thickness, annealing temperature, preconditioning (cleaning steps before deposition)

Rather unreliable process step and an obstacle for light

M. Mohammad et al. 'Dopant segragation in polycrystalline silicon', J. Appl. Physics, Nov., 1980

SiMPI(e) approach

Components of a SIPM cell

Front side p⁺ cathode and backside n⁺ region are common for the entire array Anode region becomes an internal node within silicon Bulk region beneath the anode acts as vertical resistor shielded by the anode from depletion Gap regions are depleted and isolate the individual resistors

But resistor matching does not work with a wafer of usual thickness !

SOI wafers

Matching of resistor requirements with bulk geometry

A simple resistor problem (bulk resistivity and geometry)

but ...

- carrier diffusion from top and bottom layer into the resistor bulk
- sideward depletion

→Extended device simulations performed and showed promising results cylindrical approximation of hexagons for quasi 3d simulation

Pros and Cons

Advantages:

- no need of polysilicon
- free entrance window for light, no metal necessary within the array
- coarse lithographic level
- simple technology
- inherent diffusion barrier against minorities in the bulk -> less optical cross talk
- hopefully better radiation hardness

Drawbacks:

- required depth for vertical resistors does not match wafer thickness
- wafer bonding is necessary for big pixel sizes
- significant changes of subpixel size requires change of material
- vertical 'resistor' is a JFET -> parabolic IV -> longer recovery times

1st Production run

Proof of principle production

Simple technology

SOI material – 70µm top wafer (wafers from TOPSIL, bonding at ICEMOS)

4 mask steps 2 implantations contacts metal

Hexagonal subpixels 120 different pitch – gap combinations

Free entrance window for light without obstacles

Design

- single cells
- Arrays:
 - 9 cells
 - 19cells
 - 10x10
 - 30x30

Production

Jelena Ninkovic

Bulk doping variation of the top wafers measured on 10 diodes*/wafer (CV)

(*test diodes without high energy implantation)

Jelena Ninkovic

Bulk doping variation of the top wafers measured on 10 diodes*/wafer (CV)

(*test diodes without high energy implantation)

Wafer	Mean (cm ⁻³)	Stdev (cm ⁻³)
#737	2.87e+12	3.8e+10
#749	2.87e+12	3.4e+10
#739	2.64e+12	5.7e+10
#752	2.64e+12	3.1e+10

Proof of principle – Signals \rightarrow Quenching works

• 19cells, 3V overbias, RT, pitch 130µm, gap 14µm

11th Pisa Meeting, La Biodola, Isola o Liba, 2411-3011 May 2009

1st production run - Still some problems

- High leakage current (dark rate) not sufficient annealing of the high field implant
- Edge breakdown due to a wrong tilt angle of the high field implant

Thermal emission microscope picture

2nd production run – Prototype production

Goal:

- Optimize technological parameters
- Produce fully working device

Production finished 10 days ago

2nd production run – Prototype production

New structures – matrices

2nd production run: Results

Leakage current lowered

Jelena Ninkovic

2nd production run: Results

Homogeneous break down voltage

6 arrays placed over more then 5mm distance

Jelena Ninkovic

2nd production run: Results

No edge break down

Summary

New detector concept for the silicon photomultiplier array with individual quench resistors, integrated into the silicon bulk is proposed.

- Required flexibility for quench resistor adjustment comes with wafer bonding technique (for small pixels an epitaxial layer is also suitable)
- No polysilicon resistors, contacts and metal necessary at the entrance window
- Geometrical fill factor is given by the need of cross talk suppression only
- Very simple process, relaxed lithography requirements

-> Cost reduction in mass production

Proof of principle demonstrated – quenching works

Prototype production finished – static measurements very promising Next: On chip characterization

Thanks

Jelena Ninkovic