I. Potrap, B. Bittner, S. Kaiser, O. Kortner, S. Kotov, H. Kroha,
Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany

Alignment of the ATLAS Muon Spectrometer with Tracks

Muon spectrometer

1200 precision muon chambers

Air core toroid magnet to minimize multiple scattering:
barrel: \(B = 0.15 – 2.5 \) T
end-caps: \(B = 0.2 – 3.5 \) T

Alignment with straight tracks

MILLEPEDE method (V.Blobel http://www.desy.de/~blobel/mptalks.html) is used:
- Chamber positions and rotations are determined by minimizing global \(\sum R_k \) simultaneously in the alignment and track parameters.
 \(R_k \): drift radius of the \(k \)-th hit;
 \(D_k \): distance from the track to the wire of the \(k \)-th hit.
- Linearization of the Euclidian distance \(D_k \) is applied:
 \[D_k \approx d_k^1 a + \delta_k^1 \alpha \]
 \(a, \alpha \): vectors of the alignment and track parameters
 \(\rightarrow \) Analytic solution for the \(\chi^2 \) minimization.

Performance on cosmic muon data

Geometry cross-check with cosmic muons:
Track sagitta measured for straight cosmic muons collected with the toroid magnets switched off

- **optical corrections:**
 - large sectors: \(\sim 200 \) µm
 - small sectors: \(\sim 1 \) mm
- **track-based corrections:**
 - large sectors: close to final \(\sim 30 \) µm

Width of the sagitta distribution after corrections is due to the multiple scattering

Alignment strategy:
- alignment with straight tracks to provide reference geometry for the optical system
- optical alignment system will work in the relative mode when magnetic field is switched on

Performance on Monte-Carlo data

Cosmic track sagitta with the optical corrections:

- 100,000 tracks per sector needed for 30 µm precision.
- Run with pp collisions with magnetic field switched off is planned to align the muon spectrometer.
- For 30 µm: 5 days at \(L=10^{31} \) cm\(^{-2}\)s\(^{-1}\).

Cosmic track sagitta with the track-based corrections