FRONTIER DETECTORS FOR FRONTIER PHYSICS

 24-30 May 2009
 La Biodola, Isola d'Elba, Italy

CDF trigger final balance: offline resolution at low level selections to cope with Tevatron increasing luminosity

Silvia Amerio University of Padova & INFN

Outline

Tevatron & CDF

CDF is a multipurpose detector

Silicon Vertex Tracker Drift chamber

Electromagnetic and **hadronic** calorimeters

Muon detectors

Physics at hadron colliders

Cross sections for particle production vary by a factor $> 10^{10}$

At Tevatron, 1 Higgs over 10¹⁰ collisions

Crucial the increase in **luminosity**₄

Tevatron luminosity

Peak luminosity increasing! more data but... pile-up → high detector occupancy exponential increase in trigger rates

Need for trigger upgrades!

CDF Trigger system

Why upgrade?

Not only for rate reduction....

Main upgrade tool: the Pulsar Board

Design phylosophy:

- interface any user data with any any link format via mezzanine cards
- modular, self-testable

Custom Mezzanine

AUX card

8

Pulsar website: http://hep.uchicago.edu/~thliu/projects/Pulsar/

CDF trigger upgrades summary

Online tracking upgrades

Online tracking at CDF

Online tracking at CDF

Online tracking at CDF

XFT

XFT **AXIAL** segments Level 1

Drift chamber

8 layers (alternate **stereo** and **axial** wires)

EXtremely Fast Tracker (XFT) processor

XFT

XFT **AXIAL** segments Level 1

Drift chamber

8 layers (alternate stereo and axial wires)

EXtremely Fast Tracker (XFT) processor

XFT upgrade – L1 & L2

Use data from wires in the outer 3 **stereo** layers to CONFIRM the presence of real tracks.

XFT upgrade – L1 & L2

Use data from wires in the outer 3 **stereo** layers to CONFIRM the presence of real tracks.

Correlation between
azimuthal position of the axial track
distance to the associated stereo pixel

XFT upgrade – L1 & L2

Use data from wires in the outer 3 **stereo** layers to CONFIRM the presence of real tracks.

Correlation between
azimuthal position of the axial track
distance to the associated stereo pixel

- more processing time available
- run stereo track reconstruction algorithm
- get z position and polar angle $\,\theta$

Impact on trigger rates

Impact on trigger rates

Cross Section (nb)

700 L2 CMX6 PT15 600 + L1 stereo confirmation 500 + L2 stereo reconstruction 400 300 .2 muon trigger 200 100 150 300 50 200 250 Luminosity (xE30 cm⁻²s⁻¹) west east muon muon chamber chamber z=020

COT

3-D tracks available at L2:

tracks matched to muon chambers

the last CDF upgrade...

More details in M.Bucciantonio poster!

GigaFitter : <u>online</u> tracking processor developed as upgrade of CDF SVT track fitter to improve its performances at high luminosity

Pulsar + new mezzanine using modern FPGA (Xilinx V5)

High speed/parallelization/computation power $\rightarrow > 1$ fit/ns

GF = 1 board (12 Track Fitters + 4 merger boards)

More memory available to store track candidates \rightarrow increase track reconstruction efficiency

L1 & L2 calorimetric trigger upgrades

L2 calorimetric trigger

low Et jet \rightarrow high Et jet

multi jet event \rightarrow single jet event

... and used only 8-bit tower energy information (10-bit available) 23

L2 calorimetric trigger upgrade

UPGRADE:

- fixed cone jet clustering algorithm
- full resolution (10 bits) for Sumet/Met calculation at L2

Trigger rates and resolutions

Difference between L3 and L2 Et/Met

Cross section under control

After L2CAL upgrade, push L2 Met resolution down to L1

After the upgrade, at L1 same Met trigger capability of the L2

Increased flexibility of L1 Met based triggers

MET**35**_&_TWO_JETS trigger (used to select ZH→vvbb)

After the upgrade, at L1 same Met trigger capability of the L2

Increased flexibility of L1 Met based triggers

MET**35**_&_TWO_JETS trigger (used to select ZH→vvbb)

After the upgrade, at L1 same Met trigger capability of the L2

Increased flexibility of L1 Met based triggers

MET**35**_&_TWO_JETS trigger (used to select ZH→vvbb)

Applications

Met-dijet trigger

very simple architecture L1 Met > 28 GeVL2 Met > 28 GeV, 2 jets

A single trigger for WH and ZH channels

ZHWH $e\nu_e b\overline{b}$ $\mu \nu_{\mu} b \overline{b}$ $\nu \bar{\nu} b \bar{b}$ $\mu\mu b\overline{b}$ $\tau \nu_{\tau} bb$ High efficient L1 eff. 86.9% 91.8% 85.5% 84.5% 85.8% L2 eff. 75.8%71.2%66.9% 73.2%71.6%66.3% 68.3% 66.2% L3 eff. 65.7% 59.5%

WH acceptance

	lepton-based triggers	cumulative with MET_DIJET
e	61.2%	85.4%
μ	22.1%	74.5%
au	11.3%	62.8%

31

Excellent complement to leptonic triggers

Increased WH acceptance

The addition of the non-triggered lepton increases WH \rightarrow lv b-bbar acceptance by ~ 25% (recovers Eta and Phi gaps in muon detectors)

dijet- btag trigger

Trigger optimized for the selection of events rich of **b-jet**s ($H \rightarrow$ b-bbar)

Conclusions

CDF trigger has undergone **many upgrades** to cope with Tevatron increasing luminosity

Pulsar board: common tool, very flexible Increase trigger variables quality

- 3D tracking
- offline-like jet clustering algorithm

Up to 2010 (2011) more than **2.5 fb⁻¹ (5 fb⁻¹)** will benefit of the upgrades

Online selection with **offline-quality** variables can greatly improve the physics reach of the experiment.

BACKUP

XFT upgrade

L1 upgrade improves fake rejection by a factor 3 to 5 and is 97% efficient L2 further reduces the trigger rate by a factor of 3 and is over 99% efficient

XFT upgrade

Merging and transmission of the Stereo Data

The Pulsar board merges the Stereo segments and re-formats them into a S-LINK 32 bit word standard packet.

The S-LINK data format allows the comunication between the Pulsar and the FILAR card (Four Input Links for Atlas Readout) to the L2 PC

FILAR = high bandwidth S-LINK-to-PCI interface card

L2 decision PC: Dual Core AMD Opteron 290 2.8 Ghz (4 cores), 2 GB RAM, gentoo Linux

XFT stereo data volume = 1.5 to 3 kB per event (> 50% of the data volume transferred through the PCI bus)

XFT upgrade

Stereo reconstruction algorithm

• each axial track is extrapolated to each of the 3 outer stereo layers • at each layer, the track segments corresponding to \pm 3 cells centered near the extrapolated ϕ position of the track are unpacked

• the slopes of the extrapolated track are obtained at each stereo layer

• the stereo pixel across different stereo layers are combined into triplets and z and $\cot(\theta)$ are measured (chi2 likelihood minimization)

 $Z_0 = -4.606 \ \Delta SL7 + 1.032 \ \Delta SL5 + 6.444 \ \Delta SL3$

 $\cot(\theta) = 0.0589 \,\Delta SL7 + 0.0008 \,\Delta SL5 - 0.0581 \,\Delta SL3$

XFT fake tracks at High Lum

L > 200 10^{30} cm⁻²s⁻¹ → ~ 6 pp interactions per bunch crossing, high COT occupancy

overlapping patterns of hits incorrectly identified as high momentum tracks

XFT and SVT resolutions

XFT

- eff > 96% ($p_{_{T}}$ > 1.5 GeV)
- $\sigma_{pT}/p_{T}^{2} \sim 2\%$
- $\sigma_{\phi} \sim 2 \text{ mrad}$
- $\sigma_{cot\theta} = 0.11$
- $\sigma_z = 11 \text{ cm}$

 $\begin{array}{l} \bullet \mbox{ eff } \sim \ 90\% \ (\ p_{_{T}} > 2 \ GeV, \ d_{_{0}} < 1 \ mm) \\ \bullet \ \sigma_{_{d0}} \sim \ 35 \ \mu m \\ \bullet \ \sigma_{_{\rho T}} \sim \ 0.003 \ p_{_{T}}^{\ 2} \\ \bullet \ \sigma_{_{\phi}} \sim \ 1 \ mrad \end{array}$

lepton ID

Low mass region difficult

Search for $H \rightarrow b$ -bbar in association with $W \rightarrow I v$ or $Z \rightarrow vv$, II

fundamental **b-tagging**

Met 11

L1/L2 CAL upgrades

L1/L2 CAL upgrades

43

L1/L2 CAL upgrades

44

Different MET resolutions at L1 and L2 \rightarrow cannot lower MET threshold at L2

L1 turn-on curve slower than L2

Calorimetric trigger – some details

It triggers on electrons, photons, jets, SumEt and MEt

Calorimeters are divided in towers (EM and HAD) Information from towers id **digitized every 132 ns** Physical towers are summed into **trigger towers**, weighted to yield transverse energy

> **15°** Δφ, **0.2** Δη Calorimeters = 24 x 24 map in η–φ plane (576 trigger towers) 10-bit energy resolution (LSB = 125 MeV, full scale 128 GeV)

OLD SYSTEM

L1CAL used only 8-bit trigger tower energy (LSB = 250 GeV, full scale 64 GeV)

L2CAL, hw based system, used SumEt and Met information directly from L1CAL

Calorimetric trigger – some details

NEW SYSTEM

Fixed cone algorithm:

- finds and orders the seed trigger towers in Et
- it clusters in Et in a fixed cone arouund the largest seed (no iteration)
- it flags used towers
- it repeats until all seeds are used
- it orders the found clusters
- cluster η and ϕ are weighted by Et

Seed threshold = 3 GeVShoulder threshold = 1 GeV

Tevatron projections

if running in 2011 -> 11.8 fb⁻¹

expect at least doubled luminosity by the end on 2011

CDF status

- S/N \sim 5/6 good for physics
- S/N ~ 3 goof for high-Pt b-tagging