Frontier Detectors for Frontier Physics --11th Pisa meeting on advanced detectors, 24-30 May 2009, La Biodola, Isola d'Elba, Italy

Modeling, simulation and data fitting of the new charge-injected -diodes (CID) for SLHC tracking applications

Zheng Li

Brookhaven National Laboratory, Upton, NY, USA in Collaboration with: V. Eremin¹, J. Harkonen², P. Luukka², E. Tuominen², E.Tuovinen3, E. Verbitskaya¹ ¹Ioffe Physico-Technical Institute, St. Petersburg, Russia ²Helsinki Institute of Physics, Helsinki, Finland

Zheng Li May 29, 2009

*This research was supported by the U.S. Department of Energy: Contract No. DE-AC02 -98CH10886 and it is within the frame work of CERN RD39 Collaboration

Outline

- 1. Effect of Trapping on CCE in SLHC
- 2. The CID Concept and Principle
- 3. The Model of CID Strip/Pixel Detectors
- 4. Simulation Results and Data Fitting
- 5. Summary

For fluence less than 10^{15} n/cm², the trapping term CCE₊ is insignificant

For fluence 10^{16} n/cm², the trapping term CCE_{t} is a limiting factor of detector operation !

$$Q \cong 80 \text{ e's}/\mu\text{m} \cdot v_{dr} \cdot \tau_t \equiv 80 \cdot d_t \text{ (e's) (for SLHC fluences)}$$
$$d_t = v_{dr} \cdot \tau_t \text{ is the trapping distance}$$

Effect of Trapping on CCE in SLHC

TRAPPING

The thermal velocity $v_{th}\approx\!10^7 cm/s$

10¹⁶ cm⁻² irradiation produces $N_{t,empty} \approx 3-5*10^{16}$ cm⁻³ with $\sigma \approx 10^{-14}$ cm²

On average (e and h) it gives a $\tau_t \approx 0.2$ ns!

Even in highest E-field (Saturation velocity, 10^7 cm/s), carrier drifts only 20-30 μ m before it gets trapped regardless whether the detector is fully depleted or not !

In S-LHC conditions, about 90% of the volume of d=300 μ m detector is dead space if $N_{t,empty}$ is not reduced!

The CID Concept and Principle (CERN RD 39 Collaboration)

The key advantage:

The shape of E(x) is *not affected* by fluence, and virtual full depletion

Zheng Li May 29, 2009

V. Eremin, RD39, CERN, November 11, 2005

Pre-filling of traps by carrier injection Carrier injection can also pre-fill the traps to make them inactive

- *d* : thickness (200- 300 μm)
- *w*: depletion depth (\leq d)
- *d*_t: trapping distance

Carrier drift velocity

,

$$v_{dr}(x(t)) = \frac{dx(t)}{dt} = \frac{\mu E(x(t))}{1 + \mu E(x(t)/v_s)}$$

Carrier mobility temperature dependence

$$\mu_e = \mu_{e0} \left(\frac{T}{300}\right)^{-2.26} \qquad \mu_{e0} = 1590 cm^2 / s / V$$

$$\mu_h = \mu_{h0} \left(\frac{T}{300}\right)^{-2.21} \qquad \mu_{h0} = 507 cm^2 / s / V$$

$$\frac{1}{\tau_t} = \eta \cdot \Phi_{n_{eq}} = 5 \times 10^{-7} \, cm^2 \, / \, s \cdot \Phi_{n_{eq}}$$

Total collected charge:

$$Q = Q_{e} + Q_{h}$$

$$= q_{MIP} \int_{0}^{d} \Delta x_{0} \left[\int_{0}^{t_{edr} - t_{edr}(x_{0})} v_{edr}(t) \cdot E_{W}(x(t)) \cdot e^{-t/\tau_{t}} \Delta t + \int_{0}^{t_{hdr}(x_{0})} v_{hdr}(t) \cdot E_{W}(x(t)) \cdot e^{-t/\tau_{t}} \Delta t \right]$$

For electrons:

s:

$$x(t) = d \left[\sqrt{\frac{v_{es}^{2}}{\mu_{e}^{2} E_{m}^{2}} + \frac{v_{es}t}{d}} - \frac{v_{es}}{\mu_{e} E_{m}} \right]^{2}$$

$$v_{edr}(x(t)) = v_{es} \left[1 - \frac{v_{es}}{\mu_e E_m} \frac{1}{\sqrt{\frac{v_{es}^2}{\mu_e^2 E_m^2} + \frac{v_{es}t}{d}}} \right]$$

For holes:

 $x_0 \rightarrow 0$

,

$$x(t) = d \left[\sqrt{\frac{v_{hs}^{2}}{\mu_{h}^{2} E_{m}^{2}}} + \frac{v_{hs}(t_{hdr} - t)}{d} - \frac{v_{hs}}{\mu_{h} E_{m}} \right]^{2}$$
$$v_{hdr}(x(t)) = -v_{hs} \left[1 - \frac{v_{hs}}{\mu_{h} E_{m}} \frac{1}{\sqrt{\frac{v_{hs}^{2}}{\mu_{h}^{2} E_{m}^{2}}}} + \frac{v_{hs}(t_{hdr} - t)}{d} \right]$$

Zheng Li May 29, 2009

$$t_{edr} = \frac{d}{v_{es}} + \frac{2d}{\mu_e E_m}$$

$$n^+ \text{Injection} - \text{side}_{0} \xrightarrow{0.003 \ 0.006 \ 0.009 \ 0.012 \ 0.015 \ 0.016 \ 0.024 \ 0.027 \ 0.03} \underbrace{\mathbf{x}(\mathbf{cm}) \quad \mathbf{x}_0 \quad \mathbf{d}}_{\mathbf{x}_0 \quad \mathbf{d}}$$

 $t_{e_{dr}}(x_0) = \frac{x_0}{v_{e_s}} + \frac{2d}{\mu_e E_m} \sqrt{\frac{x_0}{d}}$

$$t_{h_{dr}} = \frac{d}{v_{h_s}} + \frac{2d}{\mu_h E_m}$$

CID pad detector IR laser test results (MIP charge) –CCE at -53 °C (220K)

 $3 \times 10^{15} \, n_{eq} / cm^2$

Larger $\tau_{t,e}$ for electrons used to fit CID data $\tau_{t,e} = 6.67$ ns as compared 0.667 ns with no injection (hole trapping stays the Same)

Much less charge trapping CID

Election injection makes η_e 10 times smaller!

Data: Zheng Li, CERN RD39 Status Report, 94th LHCC open session, 19th November 2008, CERN Zheng Li May 29, 2009

CID strip detector test beam results (MIP charge) CERN H2 muon, 225 GeV/c (-52 °C (221K))

 $3X10^{15} n_{eq}/cm^{2}$

Larger $\tau_{t,e}$ for electrons used to fit CID data $\tau_{t,e} = 6.67$ ns as compared 0.667 ns with no injection (hole trapping stays the Same)

Even much less charge trapping CID strip detectors

Election injection makes η_e 10 times smaller!

Data: Zheng Li, CERN RD39 Status Report, 94th LHCC open session, 19th November 2008, CERN Zheng Li May 29, 2009

Predictions of collected charge for CID with various configurations (-52 °C (221K), 500V, $1x10^{16} n_{eq}/cm^2 (Q_0 = 24000 \text{ e's})$

CID Type	Junction side	Injection side/of	Segment -ed side	High field side	Reduced trapping of	Q _e (# of e's)	Q _h (# of e's)	Q (# of e's)
N _{inj} - P _{strip} (p ⁺ /n/n ⁺)	n ⁺ (SCSI)	n ⁺ electrons	p +	p +	electron	11470	550	12020
N _{inj} - N _{strip} (n ⁺ /n (p)/p ⁺)	n ⁺ (SCSI)	n ⁺ electrons	n+	p+	electron	1840	2070	3910
P _{inj} - P _{strip} (p ⁺ /n/n ⁺)	p⁺ (no SCSI)	p+ holes	p+	n+	hole	1200	1500	2700
P _{inj} - N _{strip} (n ⁺ /n /p ⁺)	p ⁺ (no SCSI)	p ⁺ holes	n+	n+	hole	740	7940	8680

SCSI: space charge sign inversion

Summary

1. A mode has been developed to simulate CID with segmentation

2. Inaddition to the virtual full depeltion at any fluenece, fitting of the model to experimental data indicating a increase in carrier trapping time due to charge injection — reduction of carrier trapping — increase in CCE by > 3 times

3. For high charge collection, the segmented side of the detector should be opposite of injection side

4. The best configuration is the simple $p^+/n/n^+$ CID with n^+ side injection and segmentaed p^+ side after SCSI

Backup slides

- Trapping time: τ_t
- 1/ $\tau_t = \gamma \Phi_n$
- $\gamma_e = 7.50 \times 10^{-7} \text{ cm}^2/\text{s}$
- $\gamma_h = 3.75 \times 10^{-7} \text{ cm}^2/\text{s}$
- for 10¹⁶ n_{eq}/cm²:
 - $\tau_{te} = 0.13 \text{ ns}$
 - $\tau_{th} = 0.26 \text{ ns}$
- $\tau_t = 0.20$ ns as average for SLHC (no pre-filling)

Trapping distance (or effective charge collection distance) is:

A326 (1993) 350-356

 $d_t \le \tau_t \times V_s = 20 \ \mu m \ll d$, the detector thickness or depletion depth

H.W. Kraner et al., Nuclear Instruments and Methods in Physics Research

Current comparisons

Switch over point from standard reverse bias to CID (forward) is 2x10¹⁵ n_{eq}/cm²

Simulation of noise performance of CID detector versus normal detector operation.

The simulation has been made according to the strip detector design of CERN ATLAS experiment: pitch 80 µm, strip length 6 cm and read-out shaping time 25 ns , PIN is biased to the full depletion and the temperature is 258 K. The bias for CID is 200V. As it can be seen, at fluence 2×10^{15} may 29, 20 m² the CID noise becomes lower than in PIN detector.

Conclusions

•Increase of detector thickness leads to the increase of signal and reduction of current

•Reduction of current allows to increase the operational temperature -35 C is a reasonable operational temperature for CID of 400um thick

•Range of operational bias voltage 200 - 400V

•No breakdown effect at any bias voltage

•The operational current < 100 nA/pixel (80 x 250 um, 1 mA/cm2)

Power dissipation < 300 mW/cm2

CID strip detector test beam results –CCE at -52 °C (221K)

Zheng Li, CERN RD39 Status Report, 94th LHCC open session, 19th November 2008, CERN

Evolution of E(x) in CID with the injected current

I-V characteristic of CID

Proof of CID concept: – *observation of SCLC and DL saturation behavior*

Problem: - optimal range of V for CID operation

I-V characteristics of CID

I-V characteristics of CID

SLHC fluencec

CERN RD39 Collaboration: Cryogenic Tracking Detectors

Main advantages CID over standard PN detectors

- 1. The detectors are always fully depleted
- 2. The electric field profile does not change with fluence
- 3. Much lower bias voltage is needed
- 4. The higher the radiation fluence, the lower the operation current at given bias and temperature
- 5. The operation bias range increases with fluence
- 6. No breakdown problem due to self-adjusted electric field by space charge limited current feedback effect
- 7. Simple detector processing technology (single-sided planar technology)
- 8. Injection can also be used to deactivate trapping centers --- CCE

 $\Phi_n = 1 \times 10^{15} \text{ cm}^{-2}$, T = 180 K, MIPs (1050 nm laser)

Zheng Li May 29, 2009

Possible Si detector solutions for SLHC's most inner region

Solution	CCE improvement due to	Technology/ implementation difficulties
Replacement every 1-2 years	New detectors	Hard to access the inner region
3D Si detectors	Small <i>V_{fd}</i> Small drift distance <i>t</i>	Complicated processing technology Column spacing <i>t</i> should be < 40 µm Possible surface damage problem to ionizing radiation
Cryogenic Si detectors	Fixed electric field (small bias) Freezing traps (low trapping) Low leakage current	Difficult to implement cryogenic system
Elevated temp annealing (DRIVE) (MCZ Si only, ≥ 400 °C)	Annealing out of defect levels related to: Leakage current, space charges And trapping	Difficult to implement annealing in a full detector system

Characterization of CID strip detectors –Segmented detectors

•Test beam with 225 GeV/c muon beam at CERN H2.

- •MCz-Si strip detector irradiated $3 \times 10^{15} n_{eq}/cm^2$.
- •768 channels attached to APV25 read-out
- •CID detector placed in external cold box capable to cool down to -54°C while module is operational.
- •Data acquisition with modified XDAQ. Analysis with CMSSW.

•8 reference planes.
•Resolution ~4µm.
•About 25000 events in 20min.