

The ATLAS "Insertable B-Layer"

H. Pernegger / CERN D. Giugni / INFN Milano

The present ATLAS Pixel Detector

50x400 um² pixels
spatial resolution:

um in R-f, 115 um in z
radiation hardness
Specs 500kGy ; tested to
>1000kGy and 2e15 n_{eq}

1744 separate pixel modules
80 mio. readout channels

• 3 track points down to |h|=2.5

H. Pernegger / CERN

The ATLAS Insertable B-Layer

The 4th Pixel Layer: Insertable B-Layer

- The present ATLAS Pixel Detector has 3 Layers, the innermost is called "B-Layer"
 - The B-Layer will gradually loose efficiency due to radiation damage to sensors and chips
 - It needs to be replaced in the "LHC Phase 1 upgrade" shutdown (~2013/14)
- Removing the present B-Layer was studied in detail and was found to be not feasible because
 - Time required is significantly longer than winter shutdown 2013/14
 - Risks to Layer 1 and 2, which stay in place, are significant
- Solution: Add a 4th Pixel Layer inside the present B-Layer: The Insertable B-Layer
 - Existing Pixel detector stays installed and a 4th layer is inserted inside the existing pixel detector together with new beam pipe. (Requires new, smaller radius beam pipe to make space)
- It serves also as a "**technology step**" from now to sLHC
 - This is the first project of the ATLAS Upgrade program
 - The IBL project will be the first to use much of the **new technologies** currently under development **for sLHC** (FEI4 chip, new sensors, ...)

H. Pernegger / CERN

Layouts under study

- 14 (15) staves, each with 32 FEI4 Frontend chips
- Sensor surface ~ only 0.2m²
- 16 degree tilt angle
- ~35 mm sensor radius
- ~33 Inner Radius, 41.5 Outer Radius
- Beam pipe ID 25mm (To be confirmed)

- Uses newly developped FE chip: FEI4
- Pad size 50x250μm
- Chip size 20.1x19.6mm
- Radiation hardness >200Mrad

Present B-Layer

IBL with 2 sensor Rows per stave ("bi-stave")

IBL with single Sensor row

Beam Pipe with Insulation and Heater pads // For backout

The ATLAS Insertable B

IBL Performance

- IP res Z: 100μm->~60μm
- IP res RΦ : 10µm -> 7µm
- B-tagging: Light Jet rejection factor improves by factor ~2
- To maintain Pixel Detector performance with inserted layer, material budget is critical.

Component	% X ₀
beam-pipe	0.6
New-BL @ R=3.5 cm	1.5
Old BL @ R=5 cm	2.7
L1 @ R=8 cm	2.7
L2 + Serv. @ R=12 cm	3.5
Total	11.0

H. Pernegger / CERN

The ATLAS Insertable B-Layer

IBL and sLHC

- The IBL will be the B-Layer for the LHC high luminosity running
 - We plan to minimize the changes to the minimum necessary from the present system and integrate it completely into the present Pixel detector
 - The IBL is also a bridge to sLHC: Its requirements (radiation hardness approximately 3x present system) require us to develop new technologies for it
- With IBL we will make the technology step to sLHC
 - Radiation hardness ~ 3 to 5 x $10^{15} n_{eq}/cm^2$ (sLHC ~ 10^{16} in inner layers)
 - Timescale: IBL ~4-5 years from, sLHC ~10 years from now
 - Frontend IC4: go to IBM 130nm process and improve readout architecture to minimize inefficiency at high hit rates and radiation hardness
 - Sensors: investigate 3D silicon sensors, new planar sensors and CVD diamond sensors as possible options for radhard detectors
 - Readout system & optolink: improve data through-put and redundancy. Will go to 160MHz from present 40MHz clk for data upling of IBL
 - Cooling system & Mechanics: investigate more efficient cooling of sensors+chips with significant reduction in X0 on staves. Investigate CO2 evaporative cooling in parallel to existing C3F8 cooling and new cooling pipe technologies (CF pipes, Ti pipes)
 - Installation in existing ATLAS Detector: All installation will be developed with constraints of existing detector and work requirements for radiation zones
 - H. Pernegger / CERN

The ATLAS Insertable B-Layer

New Pixel Front-End Chip: FEI4

- Reasons for a new FE design:
 - Increased radiation hardness
 - New architecture to reduce inefficiencies (*L*=3xLHC)
- New FE-I4
 - Pixel size = 250 x 50 μ m²
 - Pixels = 80 x 336
 - Technology = 0.13µm
 - Power = 0.5 W/cm² (max) , 0.25 W/cm² (nominal)
- FE-I4 Design Status
 - Contribution from 5 laboratories: Bonn, CPPM, INFN Genova, LBNL, Nikhef
 - Main blocks MPW submitted in Spring 2008 and under test now
 - Working on Full-Size FE-I4 ready for submission to build IBL prototype modules next year

FE-I4 Architecture: Obvious Solution to Bottleneck

- >99% of hits will not leave the chip (not triggered)
 - So don't move them around inside the chip! (this will also save digital power!)
- This requires local storage and processing in the pixel array

- Possible with smaller feature size technology (130nm)

Readout Links

- Try to minimize changes from present system:
 - Down link (TTC) stay the same 40Mb/s
 - Uplink use 160 Mb/s data+clock (8b/10b encode) Single FE-I4
 - Need new BOC design
 - Use GRIN fibers (under rad-test for SLHC, or new Ericsson)
 - Opto-board at PP1 need test of reliable electrical signal transmission (~4-6m)

Sensors: 3D silicon

- Approved ATLAS upgrade R&D
- pro's:
 - Good charge collection but more power in the FE for same time-walk
 - Active edge
 - Lower voltage (<150 V), power after irradiation lower than planar
- Con's:
 - column Inefficiency at 90°
 - Higher C_{det}
 - Need to establish yield in "scale" production
- See Poster by Andrea Zoboli/Trento on FBK 3D-DDTC sensors and Cinzia DaVia on 3D detectors for LHC upgrade

3DC Fabricated at Stanford

and tested with Atlas pixel and SLHC fluences **3DC SINTEF**

FE-I3 n-on-n Bum-bonded. n-on-p with FE-I4 run started. Should be ready by spring 09

IRST - FBK Trento

Run n-on-p completed FE-I3 bump-bonded. Active edge being included in layout CNM

n-on-p completed and FE-I3 waiting for bump-bonding

Double column design

Sensors: New planar silicon

- Approved ATLAS upgrade R&D
- Pro's
 - n-on-n is a proven technology with minor changes for IBL (pad size)
 - n-on-p single sided process (costs) is being studied
 - Lower C_{det} -> lower noise, lower in-time threshold for same power settings in the FE.
 - Partially depleted sensors collect charge
- Con's
 - Need for slim edges -> reduce dead area in Z
 - Need high bias voltage (~1000V_{bias}?)
 - N-on-p need high voltage insulation on chip side
- Study n-in-n and n-in-p structures with DOFZ and MCz wafers
- Develop "slim" edges (reduce guard ring width)
- Submitted prototype run at CiS (Erfurt)

Sensors: CVD diamond

- Approved ATLAS upgrade R&D
- pro's:
 - No leakage current increase with radiation
 - Lower capacitance, therefore less threshold required for in-time efficiency
 - Can operate at any temperature, no cooling issues
- Con's:
 - Smaller signal (with poly-crystal CVD)
 - Need to establish yield in "scale" production
 - Higher cost & number of vendors (?)

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

IBL Stave

Function

- Support for single or multi chip modules
- Separate readout to each chip
- Chips connected through flex cable to end of stave
- Main challenges
 - Minimize material (!!!)
 - Low temperature gradient in stave to allow lower silicon temperature at given cooling temperature

H. Pernegger / CERN

Pre-tested stave structure with integrated bus and cooling, SMD and burned-in power adapters

The ATLAS Insertable B-Layer

Stave R&D

- Aim to minimize and unify material ("homogeneous stave")
 - Staves currently being prototyped by INFN Milano, CPPM, Wuppertal
- Stiffness provided by CF shell
 - Fiber YS-80A; resin EX-1515
- Carbon foam provides heat transfer from modules to cooling pipe
 - Poco Foam or Kopers KFOAM L1-250
- Prototypes build with 2 types of pipes:
- Carbon fibre pipe
 - Less X0
 - match CTE with rest of stave
 - No corrosion
- Titanium pipe
 - Less temperature gradient in pipe
 - Smaller pipe ID achievable
 - Welding possible
 - Low CTE (compared to other metals)

H. Pernegger / CERN

The ATLAS Insertable B-Layer

Cooling: CO₂ or C₃F₈

- IBL cooling parameters:
 - 15 staves with ~100W each \leftarrow P_{total} =1.5kW
- Options (limited by main constraint: develop time & working experience):
 - $-CO_2$: copy of the LHCb VELO system, similar in cooling power.
 - FC: present Pixel+SCT C_3F_8 system (after modifications).
- Prototyping CO₂ and C₃F₈ cooling system in cooperation with ATLAS CERN cooling groups and NIKHEF
- Pipe material plays important role in thermal gradient: figure of merit is between 16.5 °C.cm²/W (CF) and 2.4 °C.cm²/W (Ti), Ti therefore allows for higher sensor power before thermal run-away
- Choice of coolant influences pipe diameter (CO2: ~1.6mm, C3F8 ~3mm) and minimal evaporation temperature (C3F8 min T_{evap}=-30°C, CO2 min T_{evap}= -45°C)
- Want redundancy (2 pipes) to avoid this significant "single point failure" in case of leak/blockage of one pipe

Very preliminary material breakdown for different options:

X0 [%]		
0.27		
0.33		
0.2		
0.09		
0.13		
1.02		
C02	C3F8	
0.03		0.13
0.04		0.07
0.12		0.22
	X0 [%] 0.27 0.33 0.2 0.09 0.13 1.02 C02 0.03 0.04 0.12	X0 [%] 0.27 0.33 0.2 0.09 0.13 1.02 C02 C3F8 0.03 0.04 0.12

H. Pernegger / CERN

IBL Installation and access to present Pixel

- Beam Pipe extraction & Installation complicated by
 - Activation of surrounding area
 - Very little access to beam pipe and long lever arm (access is at z~3.5m)
 - Minimize any risk to present Pixel Detector

Beam Pipe extraction

- Tools to dismount Beam Pipe support collars:
 - Remote access >3 m inside
 - Activated material fast operation
- Beam pipe must been supported from inside.
 - Tool has to compensate gravity bow (7m long pipe).

Extraction sequence

- The beam pipe flange on A-side is to close to the B-layer envelope . Need to be cut on the aluminum section
- A structural pipe is inserted inside the Beam Pipe and supported at both sides.
- The support collar at PP0 A-side is disassembled and extracted with wires at PP1.
- Beam pipe is extracted from the C-side and it pulls the wire at PP1
- New cable supports are inserted inside PST at PP0.
- A support carbon tube is pushed inside the PST along the structural pipe.

H. Pernegger / CERN

The ATLAS Insertable B-Layer

IBL installation scenario

- Different scenarios under study now
- The support carbon tube is fixed in 2 point of PP0 and on PP1 walls on side C and A.
- The structural pipe with a support system is moved out from the support carbon tube.
- The new beam pipe (in any configuration with OD up to 82,5 mm) is inserted from Cside. It has 2 supports at PP0 area and 2 floating wall at PP1 on side A and C.

Summary

- The Insertable B-Layer will be a new, 4th pixel layer to be added for the high-luminosity in the present ATLAS Pixel system
 - Smaller radius and lighter to further improve pixel performance
 - Compensate for gradual inefficiency of existing B-Layer
- The IBL is the "technology" bridge to sLHC
 - Its specification requires us to develop and use new technologies, which are directly relevant for sLHC
 - Construct a full detector system with those technologies on the time scale of 4-5 years
 - Development of Radiation hard sensors
 - New architecture and process for Pixel Front-End Chip
 - Lighter Support structures to minimize X0
 - More efficient cooling

Backup slides

H. Pernegger / CERN

The ATLAS Insertable B-Layer

IBL assembly flow chart

3D Radiation tolerance for the IBL

 $3.5 \times 10^{15} n/cm^2$

Proton Irradiation of Diamond

• From RD42 collaboration, H. Kagan

H. Pernegger / CERN

The ATLAS Insertable B-Layer

Beam Pipe Bakeout

- Beam pipe surface is heated up to 250C during backout
- Cooling failure during bakeout can pose serious risk to IBL modules
 - Investigate redundancy in stave cooling (I.e. 2 pipes supplied independently)

	Tmax	Tmin
PIPE	8.2°C	-30°C
FOAM	9.4°C	-13.3°C
BUMP-BOUNDING	10°C	4.5°C
FE-CHIP	10.1°C	3.4°C
ADESIVE LAYER	10°C	0.4°C
SENSOR	9.9°C	4.6°C
AIR-GEL	250°C	77°C
NIDROGEN	121°C	-9.9°C

H. Pernegger / CERN

The ATLAS Insertable B-Layer