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The present ATLAS Pixel Detector

• 1744 separate pixel modules
• 80 mio. readout channels
• 3 track points down to |h|=2.5

• 50x400 um² pixels
• spatial resolution: 

10 um in R-f, 115 um in z
• radiation hardness 

Specs 500kGy ; tested to 
>1000kGy and 2e15 neq
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The 4th Pixel Layer: Insertable B-Layer

• The present ATLAS Pixel Detector has 3 Layers, the innermost is called “B- 
Layer”
– The B-Layer will gradually loose efficiency due to radiation damage to sensors and 

chips
– It needs to be replaced in the “LHC Phase 1 upgrade” shutdown (~2013/14)

• Removing the present B-Layer was studied in detail and was found to be not 
feasible because
– Time required is significantly longer than winter shutdown 2013/14
– Risks to Layer 1 and 2, which stay in place, are significant

• Solution: Add a 4th Pixel Layer inside the present B-Layer: The Insertable B-

 
Layer
– Existing Pixel detector stays installed and a 4th layer is inserted inside the existing 

pixel detector together with new beam pipe . (Requires new, smaller radius beam 
pipe to make space)

• It serves also as a “technology step” from now to sLHC 
– This is the first project of the ATLAS Upgrade program
– The IBL project will be the first to use much of the new technologies

 

currently 
under development for sLHC

 

(FEI4 chip, new sensors, …)
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Layouts under study�
•• 14 (15) staves, each with 32 FEI4 Frontend chips 14 (15) staves, each with 32 FEI4 Frontend chips 
•• Sensor surface ~ only 0.2mSensor surface ~ only 0.2m22

•• 16 degree tilt angle16 degree tilt angle
•• ~35 mm sensor radius~35 mm sensor radius
•• ~33 Inner Radius, 41.5 Outer Radius~33 Inner Radius, 41.5 Outer Radius
•• Beam pipe ID 25mm (To be confirmed)Beam pipe ID 25mm (To be confirmed)

•• Uses newly developped FE chip: FEI4Uses newly developped FE chip: FEI4
•• Pad size 50x250Pad size 50x250μμmm
•• Chip size 20.1x19.6mmChip size 20.1x19.6mm
•• Radiation hardness >200MradRadiation hardness >200Mrad

Present B-Layer

IBL with 2 sensor
Rows per stave
(“bi-stave”)

IBL with single
Sensor row

Beam Pipe with
Insulation and
Heater pads
For backout
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IBL Performance
• IP res Z: 100μm->~60μm
• IP res RΦ

 

: 10μm -> 7μm
• B-tagging: Light Jet 

rejection factor improves 
by factor ~2

• To maintain Pixel 
Detector performance 
with inserted layer, 
material budget is critical.

Pad size in Z: 250 μm
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IBL and sLHC
• The IBL will be the B-Layer

 

for the LHC high luminosity running
– We plan to minimize the changes to the minimum necessary from the present system 

and integrate it completely into the present Pixel detector
– The IBL is also a bridge to sLHC: Its requirements (radiation hardness approximately 

3x present system) require us to develop new technologies for it
• With IBL we will make the technology step to sLHC

– Radiation hardness ~ 3 to 5 x 1015 neq /cm2 (sLHC ~ 1016 in inner layers)
– Timescale: IBL ~4-5 years from, sLHC ~10 years from now
– Frontend IC4: go to IBM 130nm process and improve readout architecture to 

minimize inefficiency at high hit rates and radiation hardness
– Sensors: investigate 3D silicon sensors, new planar sensors and CVD diamond 

sensors as possible options for radhard detectors
– Readout system & optolink: improve data through-put and redundancy. Will go to 

160MHz from present 40MHz clk for data upling of IBL
– Cooling system & Mechanics: investigate more efficient cooling of sensors+chips 

with significant reduction in X0

 

on staves. Investigate CO2 evaporative cooling in 
parallel to existing C3F8 cooling and new cooling pipe technologies (CF pipes, Ti 
pipes)

– Installation in existing ATLAS Detector: All installation will be developed with 
constraints of existing detector and work requirements for radiation zones



H. Pernegger / CERN The ATLAS Insertable B-Layer 29/5/2009

New Pixel Front-End Chip: FEI4

• Reasons for a new FE design:
– Increased radiation hardness
– New architecture to reduce 

inefficiencies (L=3xLHC)

• New FE-I4
– Pixel size = 250 x 50 µm2

– Pixels = 80 x 336
– Technology = 0.13µm
– Power = 0.5 W/cm2 (max) , 0.25 W/cm2 

(nominal)
• FE-I4 Design Status

– Contribution from 5 laboratories: Bonn, 
CPPM, INFN Genova, LBNL, Nikhef

– Main blocks MPW submitted in Spring 
2008 and under test now

– Working on Full-Size FE-I4 ready for 
submission to build IBL prototype 
modules next year
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FE-I4 Architecture: Obvious Solution to Bottleneck
• >99% of hits will not leave the chip (not triggered)

– So don’t move them around inside the chip! (this will also save digital power!)
• This requires local storage and  processing in the pixel array

– Possible with smaller feature size technology (130nm)

End of column
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Readout Links

• Try to minimize changes from present system:
– Down link (TTC) stay the same 40Mb/s 
– Uplink use 160 Mb/s data+clock (8b/10b encode) – Single FE-I4
– Need new BOC design 
– Use GRIN fibers (under rad-test for SLHC, or new Ericsson)
– Opto-board at PP1 – need test of reliable electrical signal transmission (~4- 

6m)
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Sensors: 3D silicon
• Approved ATLAS upgrade R&D
• pro’s:

– Good charge collection but more power in the 
FE for same time-walk

– Active edge 
– Lower voltage (<150 V), power 

after irradiation lower than planar
• Con’s:

– column Inefficiency at 90º
– Higher Cdet

– Need to establish yield in “scale” production
• See Poster by Andrea Zoboli/Trento on FBK 

3D-DDTC sensors and Cinzia DaVia on 3D 
detectors for LHC upgrade

IRST -

 

FBK Trento
Run n-on-p completed FE-I3 bump-bonded. 
Active edge being included in layout 
CNM
n-on-p completed and FE-I3 waiting for 
bump-bonding

Double column design

3DC

 

Fabricated at Stanford
and tested with Atlas pixel

 

and SLHC fluences
3DC SINTEF
FE-I3 n-on-n Bum-bonded. n-on-p with
FE-I4 run started. Should be ready by spring 09

ε=>99%15oTest
beam
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Sensors: New planar silicon

• Approved ATLAS upgrade R&D
• Pro’s

– n-on-n is a proven technology with minor changes 
for IBL (pad size)

– n-on-p single sided process (costs) is being studied
– Lower Cdet -> lower noise, lower in-time threshold 

for same power settings in the FE.
– Partially depleted sensors collect charge

• Con’s
– Need for slim edges -> reduce dead area in Z
– Need high bias voltage  (~1000Vbias ?)
– N-on-p need high voltage insulation on chip side

• Study n-in-n and n-in-p structures with DOFZ and 
MCz wafers

• Develop “slim” edges (reduce guard ring width)
• Submitted prototype run at CiS (Erfurt)

T=-20 to -30oCG. Casse et al., IEEE TNS, Vol. 55, No. 3, 
2008, p. 1695
Liverpool data not annealed

I. Mandić

 

et al, 
RESMDD 08

[G. Kramberger, IEEE NSS 
2008, Dresden]

expected in-time 
threshold
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Sensors: CVD diamond
• Approved ATLAS upgrade R&D
• pro’s:

– No leakage current increase with radiation
– Lower capacitance, therefore less threshold 

required for in-time efficiency
– Can operate at any temperature, no cooling 

issues
• Con’s:

– Smaller signal (with poly-crystal CVD)
– Need to establish yield in “scale” production
– Higher cost & number of vendors (?)

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Threshold
~1700e

Noise ~130e

Spatial 
resolution 
with TOT 

informatio:

8.9μm
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IBL Stave

• Function
– Support for single or multi chip 

modules
– Separate readout to each chip
– Chips connected through flex 

cable to end of stave
• Main challenges

– Minimize material (!!!)
– Low temperature gradient in stave 

to allow lower silicon temperature 
at given cooling temperature

– Minimize CTE
• 2 Types in prototyping

– Monostave 
– Bi-stave

Pre-tested stave structure with integrated bus 
and cooling, SMD and burned-in power adapters

Multi Chip Module(Planar)

Single Chip Modules (3D)

Robotically placed, fully tested 1-chip or multi-chip 
modules. Wire bond to stave after placement.

Flex Hybrid

Bistave

Monostave
Flex Hybrid
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Stave R&D

• Aim to minimize and unify material (“homogeneous stave”)
– Staves currently being prototyped by INFN Milano, CPPM, Wuppertal

• Stiffness provided by CF shell
– Fiber YS-80A;  resin  EX-1515

• Carbon foam provides heat transfer from modules to cooling pipe
– Poco Foam or Kopers KFOAM L1-250

Pocofoam

45/135 W/mK 

CF Pipe

±55deg 
layup

STYCAST

2850 FT

Laminate

[0/- 
60/+60]S2

Cynate 
Ester

• Prototypes build with 2 types of pipes:
• Carbon fibre pipe

– Less X0
– match CTE with rest of stave
– No corrosion

• Titanium pipe
– Less temperature gradient in pipe
– Smaller pipe ID achievable
– Welding possible
– Low CTE (compared to other metals)
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Cooling: CO2 or C3 F8

• IBL cooling parameters:
– 15 staves with ~100W each Ptotal =1.5kW

• Options (limited by main constraint: develop time & working experience): 
– CO2 : copy of the LHCb VELO system, similar in cooling power.
– FC: present Pixel+SCT C3 F8 system (after modifications).

• Prototyping CO2 and C3 F8 cooling system in cooperation with ATLAS CERN 
cooling groups and NIKHEF

• Pipe material plays important role in 
thermal gradient: figure of merit is between 
16.5 °C.cm2/W (CF) and 2.4 °C.cm2/W (Ti), 
Ti therefore allows for higher sensor power 
before thermal run-away

• Choice of coolant influences pipe diameter

 
(CO2: ~1.6mm, C3F8 ~3mm) and minimal 
evaporation temperature

 

(C3F8 min 
Tevap =-30°C, CO2 min Tevap = -45°C)

• Want redundancy (2 pipes) to avoid this 
significant “single point failure” in case of 
leak/blockage of one pipe 

Very preliminary material breakdown for
different options:

"Invariant Contributions" X0 [%]
Silicon sensor (250um) 0.27
FE chip 0.33
Flex circuit 0.2
Stave foam (4mm with X0=426cm) 0.09
Carbon facings (2x200um) 0.13
Total invariant 1.02
"Cooling contribution"
CO2 pipe 1.5mm ID
C3F8 pipe 3.0mm ID C02 C3F8
Coolant fluid (liquide 80/60%) 0.03 0.13
Cooling pipe CF (300um) 0.04 0.07
Cooling pipe Ti (120um) 0.12 0.22
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IBL Installation and access to present Pixel

• Beam Pipe extraction & Installation complicated by
– Activation of surrounding area
– Very little access to beam pipe and long lever arm (access is at z~3.5m)
– Minimize any risk to present Pixel Detector

Dis 
k 3

Dis 
k 2
Dis 
k 1

EndPl 
ate

BeamP 
ipe

Z = ~1m Z = ~3.5m
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Beam Pipe extraction
• Tools to dismount Beam Pipe 

support collars:
– Remote access >3 m inside
– Activated material – fast 

operation
• Beam pipe must been 

supported from inside.
– Tool has to compensate 

gravity bow (7m long pipe).

Ref: IBL Eng. Meeting 25/11/2008 –

 

Yuri Gusakov

Collar in remote position:
3m inside PP1

Extraction tool 
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Extraction sequence
• The beam pipe flange on A-side is to close to the B-layer envelope . Need to be cut on 

the aluminum section

• A structural pipe is inserted inside the Beam Pipe and supported at both sides. 

• The support collar at PP0 A-side is disassembled and extracted with wires at PP1.

• Beam pipe is extracted from the C-side and it pulls the wire at PP1

• New cable supports are inserted inside PST at PP0.

C-side A-side

• A support carbon tube is pushed inside the PST along the structural pipe.
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IBL installation scenario

• Different scenarios under study now
• The support carbon tube is fixed in 2 point of PP0 and on PP1 walls on side C and A.

• The structural pipe with a support system is moved out from the support carbon tube.

• The new beam pipe (in any configuration with OD up to 82,5 mm) is inserted from C- 
side. It has 2 supports at PP0 area and 2 floating wall at PP1 on side A and C.

C-side A-side
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Summary

• The Insertable B-Layer will be a new, 4th

 

pixel layer
 
to be added 

for the high-luminosity in the present ATLAS Pixel system
– Smaller radius and lighter to further improve pixel performance
– Compensate for gradual inefficiency of existing B-Layer

• The IBL is the “technology”
 
bridge to sLHC

– Its specification requires us to develop and use new technologies, which 
are directly relevant for sLHC

– Construct a full detector system with those technologies on the time scale 
of 4-5 years

– Development of Radiation hard sensors
– New architecture and process for Pixel Front-End

 

Chip
– Lighter Support

 

structures to minimize X0
– More efficient cooling
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Backup slides
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IBL assembly flow chart IBL assembly flow chart 

Sensors

FEI 4

Module Stave Assembly

Stave loading

CF support 
+ pipe

EOS
HDI

Stave integration to 
support and BP +
Testing of IBL
(on surface)

IBL and BP Installation in Pit + 
Installation & Connection to 
services in the pit

Preparation of off-

 
detector system in 
USA 15 & CR (DAQ, 
DCS, ROD, Opto 
board, PS, Cooling)

Test of services to 
PP1

Commissioning with Pixel system and ID 

Internal 
Services

EOS-PP1

Bump-Bond

Test & QC

Module WG” Stave WG”

Integration & 
Installation WG”

Off-detector WG”

Beam Pipe

Global Supports

deliverables

“aware”

Test & QC 
(elec, opto, thermal)
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3.5x1015n/cm2

77%

85%

65%

Irradiation and measurements performed in Prague
C. Da Viá, T. Slaviceck, V. Linhart, P. Bem, S. Parker, 
S. Pospisil, S. Watts (process J. Hasi, C. Kenney) 
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Proton Irradiation of Diamond

• From RD42 collaboration, H. Kagan
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Beam Pipe Bakeout

• Beam pipe surface is heated up to 250C 
during backout

• Cooling failure during bakeout can pose 
serious risk to IBL modules
– Investigate redundancy in stave cooling (I.e. 2 

pipes supplied independently)

Tmax Tmin

PIPE 8.2°C -30°C

FOAM 9.4°C -13.3°C

BUMP-BOUNDING 10°C 4.5°C

FE-CHIP 10.1°C 3.4°C

ADESIVE LAYER 10°C 0.4°C

SENSOR 9.9°C 4.6°C

AIR-GEL 250°C 77°C

NIDROGEN 121°C -9.9°C

Carbon pipe at -30°C
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