

ADDITIONAL MATERIAL

INFN what NEXT?, Roma, 07-08.04.14

Precision SM | Heavy lons

2

EXTRA SLIDES FIXED TARGET

INFN what NEXT?, Roma, 07-08.04.14

Precision SM | Heavy lons

WHAT ELSE ?

New experiment at SPS?

- Precise measurement of electromagnetic radiation and charmonium over full SPS energy range 11<E_{beam}<160 GeV/nucleon and with different nuclei</p>
 - Onset of deconfinement and first order phase transition
 - Chiral symmetry restoration
- Successor of NA60 (2001-2004), similar detector concept (dimuon spectrometer with pixel tracker)
 - First simulation studies carried out (G. Usai, PRIN2009)

INFN what NEXT?, Roma, 07-08.04.14

Onset of deconfinement:

- thermal radiation $\gamma^* \rightarrow \mu^+ \mu^-$
- μμ mass distribution in intermediate region has contributions from radiation by the QGP and radiation by the hot hadronic gas
- Their relevance depends on how far the system reaches beyond phase transition line
 - Can be varied with beam energy scan
- Onset of deconfiment: QGP radiation dominant

2nd observable: slope of p_{T} spectrum in bins of dimuon $M \rightarrow$ effective temperature T_{eff} , sensitive to QGP vs. hadronic source

 E_{Beam} scan \rightarrow onset of QGP dominance

Chiral symmetry restoration: ρ spectral function

- NA60 data at top SPS energy: broadening of the ρ spectral function interpreted as manifestation of chiral symmetry restoration
- NA60+: measurements vs. beam energy
 - \rightarrow Chiral symmetry restoration as a function of μ_B
 - ρ broadening expected to be driven by μ_B → measure at lower energy, where baryon density gets maximal
- No precise measurement existing at low energy:

Onset of deconfinement: charmonium melting

- In the deconfined phase the interaction potential is expected to be screened beyond the Debye length λ_D (analogous to e.m. Debye screening):
- Quarkonium states with $r > \lambda_D$ are melted

- What happens at lower energy?
- Is there a threshold? Onset of deconfinement?
- NA60+ could make precise study vs. beam energy and measure the onset of J/ψ suppression

Beam conditions: SPS vs. SIS@FAIR

Beam energy range: [GeV]		<mark>SPS</mark> 10 – 158		SIS100/300 < 11 – 35 (45)
	beam intensity [Hz]	target thickness [λ _i]	interaction rate [Hz]	interaction rate [Hz]
NA60 (2003)	2.5×10 ⁶	20%	5×10 ⁵	
new injection scheme	10 ⁸ 10 ⁸	10% 1%	10 ⁷ 10 ⁶	10 ⁵ - 10 ⁷
LHC AA			5×10 ⁴	

Luminosity at the SPS comparable to that of SIS100/300

INFN what NEXT?, Roma, 07-08.04.14

EXTRA SLIDES QGP PHYSICS

INFN what NEXT?, Roma, 07-08.04.14

Precision SM | Heavy lons

9

Calculating the phase diagram: lattice QC

Type of the phase transition:

- First order at high μ_{b} (discontinuity in energy density)
- Cross-over at low μ_{b} (no discontinuity in energy density)
- Challenges for lattice QCD theory:
 - > Map phase line on (μ_B , T) plane
 - Predict position of critical point (from 1st order transition to cross-over)

Ultra-relativistic heavy-ion accelerators

- ◆ BNL-AGS, early '90s, Au-Au up to $\sqrt{s_{NN}} = 5 \text{ GeV}$
 - Below critical energy density
- **CERN-SPS**, from 1994, Pb-Pb up to $\sqrt{s_{NN}} = 17 \text{ GeV}$
 - > Estimated energy density ~ 1 × critical value ε_c
 - > First QGP signatures (strangeness enhanc., J/ ψ suppression)
- ◆ BNL-RHIC, from 2000, Au-Au $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - > Estimated energy density ~ 10 × critical value ε_c
 - First qualitative QGP properties: high opacity, looks like a lowviscosity liquid (rather than a gas)
- **CERN-LHC**, from 2010, Pb-Pb $\sqrt{s_{NN}} = 2.76 5.5 \text{ TeV}$
 - > Estimated energy density ~ 15-30 × critical value ε_c
 - (Ongoing) Precise characterization of the QGP, new probes available: jet quenching, energy loss properties, quarkonium suppression and regeneration

EXTRA SLIDES LHC (>2020)

NET?

HL-LHC Programme

- Heavy flavour: mass dependence of energy loss, HQ in-medium thermalization and hadronization, probe of the medium transport properties
 - > Low- p_{T} production and elliptic flow of several HF hadron species (focus of **ALICE**)
 - B and b-jets (focus of ATLAS and CMS)
- Quarkonium: quarkonium dissociation pattern and regeneration, probe of deconfinement and of the medium temperature
 - > Low- p_{T} charmonia and elliptic flow (focus of **ALICE**)
 - Multi-differential studies of Y states (focus of ATLAS and CMS)
- **Low-mass di-leptons:** thermal radiation to map temperature during system evolution; chiral symmetry restoration (modification of ρ meson spectral function)
 - > (Very) low- p_{T} and low-mass di-electrons and di-muons (**ALICE**)
- Jets: parton energy loss mechanism as a testing ground for the multi-particle aspects of QCD and as a probe of the medium density
 - > Differential studies of jets, b-jets, di-jets, γ/Z -jet at very high p_T (focus of **ATLAS** and **CMS**)
 - Flavour-dependent in-medium fragmentation functions (focus of ALICE)

Experiment upgrades most relevant to \mathbb{H}

- ALICE (LS2)
 - New inner tracker: precision and efficiency at low p_T
 - > New pixel muon tracker: precise tracking and vertexing for μ
 - New TPC readout chambers, upgraded readout for other detectors and new DAQ-HLT: x100 faster readout

ATLAS

- Additional pixel layer (LS1), then new tracker (LS3): tracking and b-tag
- Fast tracking trigger (LS2): high-multiplicity tracking
- Calorimeter and muon upgrades (LS2): electron, γ, muon triggers

CMS

- New pixel tracker (LS2), then new tracker (LS3): tracking and b-tag
- Extension of forward muon system (LS2): muon acceptance
- Upgrade of trigger and DAQ (LS2): HI-specific development to reach necessary L1 rejection at 95%, from 50 kHz to <3 kHz (HLT)</p>

LHCb (LS2)

Upgrade includes new vertexing and tracking detectors (not focused on HI)

Open questions

- QGP temperature and its evolution?
- Properties of QGP fluid: viscosity? opacity? transport properties?
- Chiral symmetry restoration at μ_B~0

Low energy heavy ion (e.g. SPS, FAIR):

- Search for the critical point
- Chiral symmetry restoration at high μ_{B}
- QGP properties at high baryon density, new phases (color superconductor?)

What is the QGP temperature?

- Measure thermal radiation (black body photons)
- First measurement at LHC from soft exponential component of photon p_T spectrum: *T* ≈ 300 MeV An effective temperature,

Temperature evolution: low-mass di-electrons

NET T?

 Measurement of low-mass di-electrons allows to map the temperature during the system evolution

ALICE upgrade: low-mass di-electrons

◆ ALICE: new inner tracker + high-rate readout upgrade → electron acceptance down to $p_{T} = 50 \text{ MeV}/c$

QGP viscosity via Heavy Flavour dynamics

Heavy quarks: large mass → produced at the initial stage of the collision
 Interact with QGP constituents during system expansion and cooling

- HF kinematics sensitive to QGP viscosity and interaction mechanism
- Example: Langevin equation gives momentum (\mathbf{p}) evolution vs. time (t):

$$d\mathbf{p} = -\Gamma(p) \mathbf{p} dt + \sqrt{2D(\mathbf{p} + d\mathbf{p}) dt} \rho$$

Loss term \rightarrow energy loss

Gain term \rightarrow "flow" (radial, elliptic) D is related to the QGP viscosity

v₂: elliptic flow coefficient, measures azimuthal modulation induced by interactions in non-central collisions

Predictions of large v_2 for charm and significant mass effect in charm vs. beauty

For illustration: J. Aichelin et al. in arXiv:1201.4192

INFN what NEXT?, Roma, 07-08.04.14

ALICE upgrade: heavy flavour flow

Present data on charm v₂

Upgrade: high precision on charm and beauty v_2 down to $p_T \sim 0$

ALICE, PRL 111 (2013) 102301

First measurement at LHC, sizeable uncertainties for charm and no direct measurement for beauty

ALICE, CERN-LHCC-2013-024

Within 10 years: high precision measurement; relation with lattice QCD calculations (e.g. for diffusion); requires also advancement of theory framework

Heavy flavour hadronization?

Baryon/meson enhancement and strange-enh. → most direct indication of light-quark hadronization in a partonic system
 Measure this in the HF sector! Does it hold for charm?
 Charm baryons (Λ_c) and charm-strange mesons (D_s)
 Λ_c/D enhancement (full detector sim.)

Low-p_T charmonium: performance

- Low- p_T J/ ψ at the LHC is less suppressed than at RHIC
 - Despite the x2-3 higher density
- ψ regeneration from uncorrelated c and c in a deconfined medium?

Braun-Muzinger and Stachel, PLB490(2000) 196 Thews et al, PRC63 (2001) 054905

High statistics \rightarrow explore this "new" probe of deconfinement

- Understand the underlying mechanism that binds deconfined heavy quark pairs
- Add information! E.g. low-p_T ψ' /ψ discriminates between models

Higher harmonics

- "Ideal" shape of nuclear overlap is elliptic
 - > no odd harmonics expected ($v_3, v_5, ...$)
- but fluctuations in initial conditions:
 - > participants plane $ψ_2 ≠$ reaction plane $Ψ_{RP}$
 - → v₃ ("triangular") harmonic appears [B Alver & G Roland, PRC81 (2010) 054905]
- and indeed, v₃ > 0 !
- v₃ has weaker centrality dependence than v₂
- when calculated wrt participants plane,
 v₃ vanishes
 - as expected, if due to fluctuations...

ALICE: PRL 107 (2011) 032301

Event-by-event shapes at the LHC

- And not only v_3 (triangular events), also v_4 , v_5 , ...
- At LHC, multiplicity large enough to "see" event-by-event shapes

Initial conditions and viscosity of the QG

- Medium viscosity: one of its fundamental properties
- η/s: shear viscosity / entropy ratio
- Large viscosity washes out the details of the initial-state
- → Final state fluctuations can give information on viscosity

Energy density profile in the transverse plane:

S Jeon et al, QM 2012, B. Schenke, et al. PRL106, 042301 (2011)

Addressing the QGP viscosity

CMS-HIN-12-011

+ comparison to many other measurements at RHIC and LHC

→ Data prefer values of η /s ~ 0.08-0.40

See e.g. Luzum QM2012

4

n

6

The lowest viscosity liquid?

 \bullet η /s has a minimum at the phase transition (T₀) for all fluids

 Current estimates for QCD matter: η/s 10 times smaller than water and >5 times smaller than Helium

Still far from a precise measurement of this fundamental property → Need to combine many observables, studied with % accuracy

NFN what NEXT?, Roma, 07-08.04.14

Lacey et. al, PRL98:092301

EXTRA SLIDES FCC

parto

no quenching

A new set of Hard Probes

 LHC heavy-ion programme shows that it is possible to reconstruct HEP-like observables in HI collisions
 Jets, b-jets, Z⁰, W, γ-jet correlations ...

◆ Large √s and *Q* of the FCC will make new probes abundantly available, for the study of the interaction mechanisms, of the medium density and its time evolution

 Larger increases for larger masses:

➢ 80x for top

- 20x for Z⁰ + 1 Jet(p_T>50 GeV)
- > 8x for bottom or Z^0

High-density QCD in the initial state:

Explore new unknown regime of QCD: when gluons are numerous enough (low-x) & extended enough (low-Q²) to overlap → Saturation, Non-linear PDF evolution Enhanced in nuclei: more gluons per unit transverse area

Saturation
scale:
$$Q_S^2 \sim \frac{Ag(x,Q_S^2)}{\pi A^{2/3}} \sim A^{1/3}g(x,Q_S^2) \sim A^{1/3}\frac{1}{x^{\lambda}} \sim A^{1/3}\left(\sqrt{s} \ e^y\right)_{(\lambda \sim 0.3)}^{\lambda}$$

[fixed Q] DENSE REGION DILUTE REGION

Saturation affects process with $Q^2 < Q_S^2$ Explore saturation region:

 \rightarrow decrease x (larger \sqrt{s} , larger y)

 \rightarrow increase A

INFN what NEXT?, Roma, 07-08.04.14

QGP studies at the FCC: global properties

Extrapolation to 39 TeV: increase wrt LHC 5.5 TeV

Quantity	Pb–Pb 2.76 TeV	Pb–Pb 5.5 TeV	Pb–Pb 39 TeV
$dN_{\rm ch}/d\eta$ at $\eta = 0$	1600	2000	3600
Total $N_{\rm ch}$	17000	23000	50000
$dE_{\rm T}/d\eta$ at $\eta = 0$	$2 { m ~TeV}$	$2.6 { m TeV}$	$5.8 { m TeV}$
BE homogeneity volume	$5000 \ {\rm fm}^3$	$6200 \ \mathrm{fm}^3$	$11000 \ {\rm fm}^3$
BE decoupling time	10 fm/c	11 fm/c	$13 \; { m fm}/c$

Top quarks in Pb-Pb at HL-LHC and FC

Estimate for observation channel in CMS (CMS PAS-FTR-2013-025)

- \rightarrow ~500 events for 10 nb⁻¹ Pb-Pb 5.5 TeV ("HL-LHC")
- ◆ FCC: with 100 nb⁻¹, x800 more wrt HL-LHC
- → FCC with CMS-like setup, ~4x10⁵ for "observation channel"
 - could be 4-5x more in the other channels (but higher background)
- \rightarrow few 10³ with p_T > 0.5 TeV
- \rightarrow few 10² with p_T > 1 TeV

High-multiplicity events in small systems

- One of the most interesting findings of the LHC HI programme: similarity of long-range correlations (ridge) in high-mult pp, pPb as in Pb-Pb collisions
- Similar mechanism? Collectivity in small high-density systems? Initial or final state collectivity?

 Increased energy and luminosity of FCC could be a unique opportunity to explore more extreme multiplicities and study QCD mechanisms that lead to thermalization/collectivity

High-multiplicity events in small systems

 Increased energy and luminosity of FCC could be a unique opportunity to explore more extreme multiplicities and study QCD mechanisms that lead to thermalization/collectivity

EXTRA SLIDES "EXOTICA"

Dark photons from the QGP?

 Example: search in dielectron mass distribution measured in Au-Au by PHENIX at RHIC

- In the invariant mass range 1.2-2.6 GeV, Davis et al. bounded product of coupling to quarks and leptons to be χ_q χ_e<10⁻³ at 95% CL
 - Davis et al. arXiv:1306.3653

 Search possible with much finer mass binning at LHC and with possible new dimuon experiment at SPS

 Possible complementarity in high mass region (~GeV) with JLab programmes (ee, eA)

Glueballs and other "exotica"

- Glueballs: basic prediction of QCD (self-interaction of gluons)
- Nucleus-nucleus collisions provide large advantage for the γγ→G production process
- γγ cross section in ultra-peripheral collisions scales with Z⁴ (10⁷ for Pb-Pb)

Glueball Candidate	$\Gamma_{\gamma\gamma}$ [eV]	RHIC [nb]	LHC $[\mu b]$
f_0 (1500)	0.77	14-9.3	0.7-1.3
f_0 (1710)	7.03	60-43	3.8-8.6
X(1835)	0.021	0.11-0.09	0.01-0.02

Machado and Da Silva, PRCC83 (2011)

Mathieu et al, arxiv:0810.4453

 Another possibly interesting channel: γγ→γγ cross section sensitive to exotica that couple with the photon (SUSY, monopoles, …)

D'Enterria and Silveria, PRL111 (2013)

