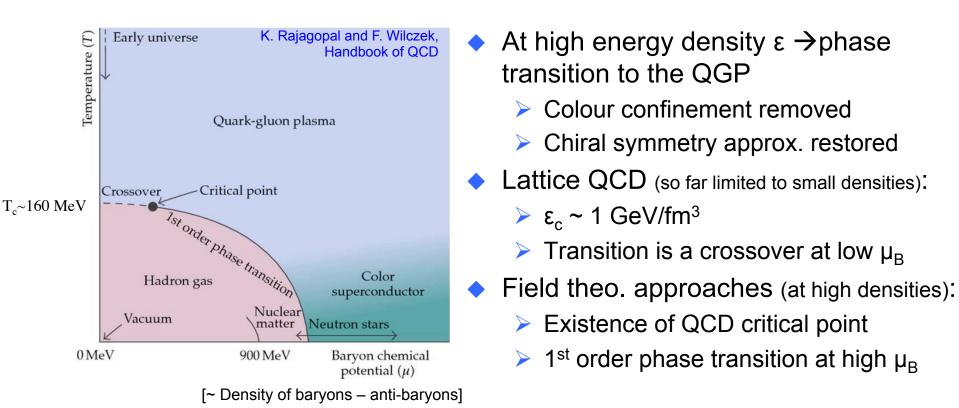


GdL "Precision SM measurements": Heavy lons

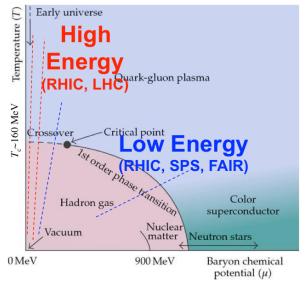

WHO & WHAT ?

- Mailing list <u>whatnextqqp@lists.infn.it</u>
 - > ALICE community + QCD/QGP theorists
- Round table discussion on March 18
- Long-term plan at LHC (ALICE upgrade)
- Theoretical developments
- Possible new fixed target experiments at CERN
- Future Circular Collider: opportunities with heavy ions
- Heavy ions and searches for dark photons

Exploring the phase diagram of strongly-interacting matter

High-energy heavy-ion collisions:

Junique opportunity to verify the basic predictions of QCD and characterize it as a many-body theory in the non-perturbative regime



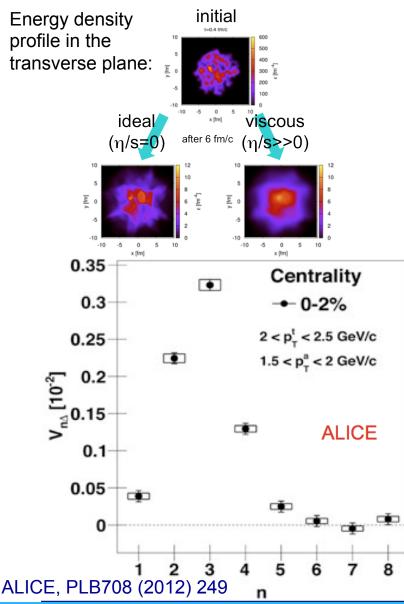
Current status:

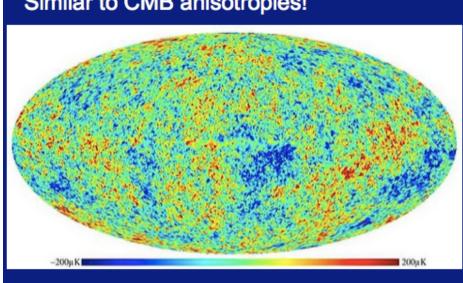
The QGP as seen at RHIC/LHC:

- Energy density > 10 GeV/fm³
- Colour charge deconfined
- Strong energy loss for hard partons

- Expands hydro-dynamically like a very-low viscosity liquid
- Hadronizes as in thermal equilibrium

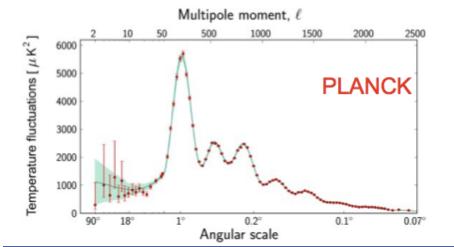
Future directions:


High Energy collisions (RHIC,LHC):

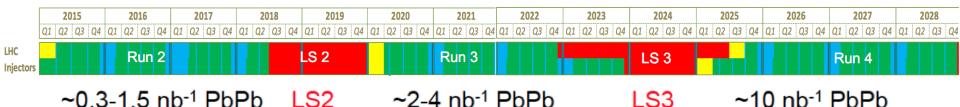

- Quantify properties of QGP fluid
- How is collectivity developed? can it be developed also in "small systems" (pA)?

Low Energy collisions (RHIC,SPS,FAIR):

- Onset of deconfinement
- Search for the critical point
- ◆ Experiment → move from observation to precision; exploit detector technology development; systematic scan of the phase diagram
- ◆ Theory → comparison of first-principle calculations (e.g. lattice QCD) with data; for example, for QGP transport parameters and viscosity


Example: QGP viscosity via final-state harmonic decomposition

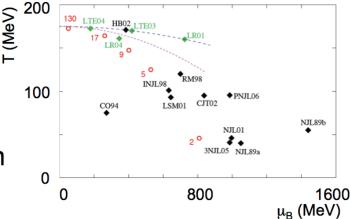
what

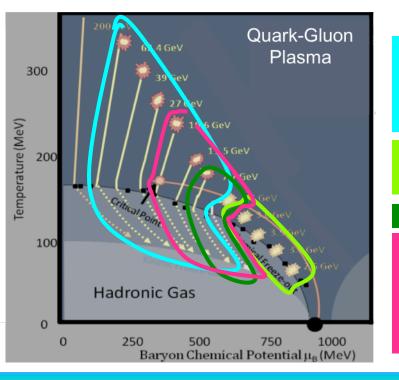

Similar to CMB anisotropies!

INFN what NEXT?, Roma, 07<u>-08.04.14</u>

WHAT NEXT? HI programme at the LHC

- HI programme till 2028 with all 4 experiments (LHCb pA only)
- After LS2 ALICE aims at collecting x100 larger minimumbias sample than in Run 2
- Focus on precision measurements of rare probes, study their coupling with QGP medium




Onset of deconfinement and critical point at SPS

Large spread of predictions on the position of the phase transition line and critical point

For illustration: compiled by M. Stephanov \rightarrow

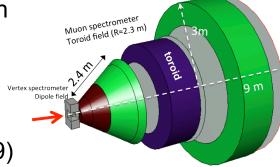
- Th: extend lattice QCD to high μ_B (sign problem)
- Exp: cover a large portion of the phase diagram

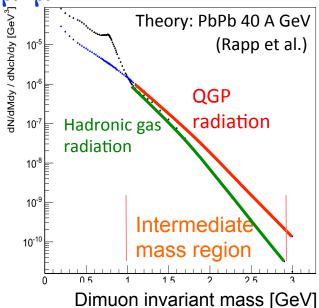
RHIC collider energy scan: good coverage, but much lower statistics than fixed-target experiments

- FAIR (CBM):
- SIS-100 (>2020) limited coverage
- SIS-300 better coverage but unclear timeline SPS: better coverage than FAIR; existing facility; other AA experimental programmes are ongoing (NA61) and could offer interesting opportunities

WHAT ELSE ?

what else ?


New experiment at SPS?


- Precise measurement of electromagnetic radiation and charmonium over full SPS energy range 11<*E*_{beam}<160 GeV/nucleon and with different nuclei
 - Onset of deconfinement and first order phase transition
 - Chiral symmetry restoration
- Successor of NA60 (2001-2004)
 - Dimuon spectrometer with pixel tracker)
 - First simulation studies carried out (G. Usai, PRIN2009)

Onset of deconfinement: thermal radiation $\gamma^* \rightarrow \mu^+ \mu^-$

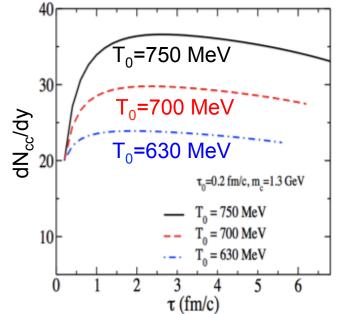
- μμ mass distribution has contributions from radiation by the QGP and radiation by the hot hadronic gas
- Onset of deconfiment: QGP radiation dominant

Example measurement: slope of mass spectrum $dN/dM \rightarrow$ temperature *T* of the source with few MeV precision E_{Beam} scan $\rightarrow T$ scan around $T_c \sim 150$ MeV

Also discussed: AFTER@LHC

Extract p/A from beam-halo towards a fixed target experiment

- Bent crystal extractor R&D at CERN (UA9, LUA9)
- > No impact on LHC operation
- Centre-of-mass energy: pp 115 GeV, Pb-Pb 72 GeV
- Relevant for QGP physics: precision measurements of heavy quarks and quarkonium in an energy region where only low-statistics measurements are available (RHIC)
- Competitiveness with RHIC: high interaction rate and possibility to make a A-target scan with p+A and Pb+A
- But also several other QCD measurements:
 - Heavy quark, quarkonium, photon production
 - Nucleon spin structure using polarized targets



WHAT NEXT-TO-NEXT...? FCC with ion beams?

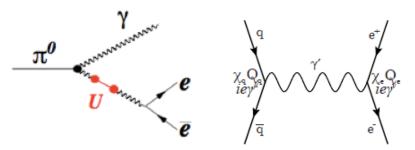
- Centre-of-mass energy: LHC x7 $\rightarrow \sqrt{s_{PbPb}} = 39 \ TeV$
- Could aim for a programme of L_{int} ~ 100 nb⁻¹ (LHC x10)

Potential opportunities:

- Novel reach for study of gluon saturation (probe PDFs down to x~10⁻⁷ with pA/eA)
- Abundant production of "new" hard probes (e.g. Z+jets, top…)
- Collective effects enhanced (could become important also in pp collisions)
- Initial temperature higher (up to 1 GeV?)
- → e.g. thermal charm production?

Calculation for LHC energy B.-W. Zhang et al. PRC77 (2008)

Searching for dark photons with heavy-ion collisions?


Dark photons can be searched in their decay to a dilepton pair

a) Dalitz decays, e.g. of π^0

WHY NOT ?

b) Prompt dileptons, $\overline{q}q \rightarrow l^+ l^-$

Sensitive to coupling to both quarks and leptons

 Some of the HI experiments (e.g. ALICE and PHENIX) collect large samples of π⁰ and dileptons (minimum bias pp, pA, AA collisions) and have excellent reconstruction capabilities

Channel b) could be favoured by larger QGP thermal radiation

Potentially competitive for searches both at low-masses (<100 MeV) and also at ~1 GeV masses (complementarity with Jlab programme) (see e.g. Davis et al. arXiv:1306.3653)

Synergy with DM GdL in the next months

INFN what NEXT?, Roma, 07-08.04.14

Precision SM | Heavy lons

