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• come cade un atomo di antimateria?

• qual e’ il limite della meccanica quantistica?

• a cosa serve un computer?

• che cosa e’ il vuoto? il vuoto e’ simmetrico?

alcune domande

naturalmente uno puo’ fare qualsiasi domanda, ma 
un problema serio in fisica e’ che le domande 
devono essere “sensate”, nel senso di consentire 
l’individuazione di una strategia che permetta di 
dare una risposta (magari anche sbagliata        )



• Quantum simulations

• Antimateria

• Simmetrie del vuoto e gravita’

• Atomi freddi ed ottica quantistica

argomenti in discussione



a cosa serve un computer?

computer

“facile”

“difficile
”

computer quantistico

“facile”

classico
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1. INTRODUCTION 

On the program it says this is a keynote speech--and I don't  know 

what a keynote speech is. I do not intend in any way to suggest what should 

be in this meeting as a keynote of the subjects or anything like that. I have 

my own things to say and to talk about and there's no implication that 

anybody needs to talk about the same thing or anything like it. So what I 

want to talk about is what Mike Dertouzos suggested that nobody would 

talk about. I want to talk about the problem of simulating physics with 

computers and I mean that in a specific way which I am going to explain. 

The reason for doing this is something that I learned about from Ed 

Fredkin, and my entire interest in the subject has been inspired by him. It 

has to do with learning something about the possibilities of computers, and 

also something about possibilities in physics. If we suppose that we know all 

the physical laws perfectly, of course we don't have to pay any attention to 

computers. It's interesting anyway to entertain oneself with the idea that 

we've got something to learn about physical laws; and if I take a relaxed 

view here (after all I 'm here and not at home) I'll admit that we don't  

understand everything. 

The first question is, What kind of computer are we going to use to 

simulate physics? Computer theory has been developed to a point where it 

realizes that it doesn't make any difference; when you get to a universal 

computer, it doesn't matter how it's manufactured, how it's actually made. 

Therefore my question is, Can physics be simulated by a universal com- 

puter? I would like to have the elements of this computer locally intercon- 

nected, and therefore sort of think about cellular automata as an example 

(but I don't  want to force it). But I do want something involved with the 
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Intuizione (formidabile) di Feynman:
un sistema quantistico simula un sistema 
quantistico (laddove un sistema classico lo 
simulerebbe con difficolta’ esponenziale)
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Figure 2 | Relaxation of the local density for different interaction strengths. We plot the measured traces of the odd-site population nodd(t) for four
different interaction strengths U/J (circles). The solid lines are ensemble-averaged results from t-DMRG simulations without free parameters. The dashed
lines represent simulations including next-nearest neighbour hopping with a coupling matrix element JNNN/J ' 0.12 (a), 0.08 (b), 0.05 (c) and 0.03 (d)
calculated from the single-particle band structure.

lattices, which gives rise to a significant amount of longer-ranged
hopping. When including a next-nearest neighbour hopping term
�JNNN

P
j(â

†
j âj+2 + h.c.) in the t -DMRG simulations we obtain

quantitative agreement with the experimental data (dashed line
in Fig. 2). For larger values of U/J and correspondingly deeper
lattices, the tight-binding approximation is valid. For U/J ⇠> 10
(Fig. 2d), larger deviations are found. We attribute these to residual
inter-chain tunnelling and non-adiabatic heating. Both of these
effects become more relevant for larger values of U/J , because we
adjust this ratiomainly by tuning the tunnel coupling J .

The results of the density measurements can be related to the
expectations for an infinite chain with K = 0. There, the time
evolution can be calculated analytically in the case of either non-
interacting bosons (U/J = 0) or infinite interactions (U/J ! 1;
refs 17,18). These limiting cases can be understood well through
the mechanism of local relaxation by ballistically propagating
excitations. The on-site densities follow zeroth order Bessel
functions describing oscillations that are asymptotically dampened
by a power law with exponent �0.5. The damping we observe in
the interacting system, however, is much faster. As we will show
below, the dynamics is approximated well by a power law with an
exponent<�0.5 for the first tunnel oscillations. This behaviour has
also been found in t -DMRG simulations of homogeneous Hubbard
chains with finite interactions17,18. The exact origin of this enhanced
relaxation in the presence of strong correlations constitutes one of
themajor open problems posed by the results presented here.

Measurements of quasi-local currents
Employing the bichromatic superlattice, we were also able to detect
themagnitude and direction of quasi-local density currents. Instead
of raising the short lattice at the end of step (2), we ramped up the

long lattice to suppress the tunnel coupling through every second
potential barrier in the chain (Fig. 3a). At the same time, we set
the short lattice to a fixed value to obtain always the same value of
(U/J )DW ' 0.2 in the emerging double wells. By tuning the relative
phase between the long and short lattice we were able to selectively
couple sites with index (2j,2j + 1) (‘even–odd’, j integer) or
(2j�1,2j) (‘odd–even’).We recorded the time evolution in the now
isolated double wells using the same final read-out scheme as for the
densities (see Fig. 3b). We find sinusoidal tunnel oscillations which
dephase only slowly and decrease in amplitude with increasing
relaxation time t . The phase � and amplitude A of these oscillations
were extracted from a fit of a sine wave to the data and are plotted
in Fig. 3c as a function of the relaxation time for U/J = 5.16(7).
The phase contains the information about the direction of the mass
flow, whilst the amplitude is a combination of the local population
imbalance and the strength of the local current.

We find � to evolve linearly in time, giving strong evidence that
the excitations in the system expand approximately ballistically,
as suggested in refs 17,18. Furthermore, its value does not change
when coupling even–odd or odd–even sites, indicating the absence
of centre-of-mass motion in the system. The amplitude A, on
the other hand, decays to zero on the same timescale as the
oscillations in the local densities dampen out—in fact the quantities
(1 ± A)/2 provide envelopes to the traces nodd and neven (see
Supplementary Information). On short timescales, 0< 4Jt/h< 3,
we find the decay of the amplitude—and therefore also that of
the density oscillations—to follow an approximate power law/t�↵

with ↵ =0.86(7). This behaviourmight change for longer evolution
times, where no significant amplitude was measurable. We extract
the power-law coefficients ↵ for a wide range of U/J (right inset to
Fig. 3c). In all cases, the absolute values of the coefficients are larger
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Simulatori	  quan-s-ci	  con	  atomi	  ultrafreddi

Atomi	  ultrafreddi:

Ultralow-‐energy	  simulators	  of	  HEP

SU(N)	  fermions

Quantum	  simulators:

R.	  P.	  Feynman,	  Int.	  J.	  Theor.	  Phys.	  21,	  467	  (1982)

dedicated	  quantum	  computers	  to	  solve	  fundamental
problems	  untractable	  by	  a	  classical	  hardware

quantum	  Hamiltonians	  engineering	  in	  a	  table-‐top	  setup
Fermions	  and	  bosons
OpOcal	  laPces
InteracOons
Temperature

Topology/dimensionality
Gauge	  fields
RelaOvisOc	  dispersion
Dynamics

M.	  Inguscio	  and	  L.	  Fallani,	  Atomic	  Physics	  (Oxford,	  2013)
M.	  Lewenstein	  et	  al.,	  Ultracold	  atoms	  in	  opOcal	  laPces	  (Oxford,	  2012)

Extradimensions

LaPce	  gauge	  theories

Fermionic	  superfluidity

Efficacia	  gia‘	  provata	  per	  numerosi	  problemi!

e.g.	  M.	  Zwirlein	  et	  al.,	  Nature	  (2005)	  

G.	  Pagano	  et	  al.,	  Nat.	  Phys.	  (2014)

O.	  Boada	  et	  al.	  PRL	  (2012)

e.g.	  D.	  Banerjee	  et	  al.	  PRL	  (2012,	  2013)

Abelian	  vs	  non-‐Abelian	  (BO-‐NA-‐BA)
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Figure 1: (Color online). a) The commutation relations [H,G⌫

x

] guarantees that the gauge invariant subspace, i.e. the trivial
irreducible representation subspace for every lattice gauge subgroup, is dynamically decoupled from the rest of the Hilbert
space. b) The nontrivial support of every lattice gauge generator is a single matter field site  

x

and all the gauge field links
U

x,x+µ

x

connected to it. c) Typical coupling hamiltonian terms involve two matter sites  
x

and  
x+µ

x

and the gauge boson
connecting them U

x,x+µ

x

. d) In the QLM formulation, the gauge boson is split into a pair of rishons, linked together by a U(1)
symmetry constraint.

The bilinear representation of the bosonic gauge fields is fermionic or bosonic depending on the commutation
relations of these operators [cbx, c

a†
y ]± = �a,b�x,y. The statistics of the quantum link fields is completely arbitrary, and

does not change the physics of the gauge invariant model, since the link operators cax,µ
x

always appear in pairs related
to the same link. Usual terminology in Quantum Link Models call these modes, rishons, and their total number
Nx,x+µ

x

= nx+µ
x

,�µ
x

+ nx,+µ
x

on every link is a conserved quantity. This is due to the fact that the rishon degrees
of freedom cax,µ

x

appear both in the gauge symmetry operators G⌫
x and in the Hamiltonian H only via Uab

x,x+µ
x

, and

by constuction [Nx,x+µ
x

, Uab
y,y+µ

y

] = 0; from this follows that [Nx,x+µ, G⌫
y ] = [Nx,x+µ, H] = 0. In other words, in the

QLM formulation of lattice gauge theories, an additional, artificial local symmetry arises: That is the conservation
law of total rishons number on a given link, which is always U(1) symmetry generated by Nx,x+µ

x

. Depending on the
number of rishons per link N̄ one selects, di↵erent physical phenomena of the gauge invariant theory can be captured.
In any case, we restrict the Hilbert space to the ’physical’ states |'

phys

i which satisfyNx,x+µ
x

|'
phys

i = |'
phys

iN̄x,x+µ
x

.
For simplicity, we will refer to this symmetry selection rule as link constraint.

2. Local generators of the gauge symmetry, and gauge constraint (Gauss’ law).

The gauge symmetry is defined via the set of its generators G⌫
x, they all commute with the Hamiltonian [H,G⌫

x] = 0,
and have localized support. To properly characterize the generators G⌫

x, it is convenient to define the elementary
transformation on the gauge fields beforehand:

• The abelian U(1) part of the elementary transformation is generated by the di↵erence of the rishon occupation
numbers on the same link, i.e. Ex,x+µ

x

= 1

2

(nx+µ
x

,�µ
x

� nx,+µ
x

), which plays an equivalent role of the eletric

field in quantum electrodynamics. Its action on the gauge field changes the field with a phase,

Ũab
x,x+µ

x

= ei✓Ex,x+µ

xUab
x,x+µ

x

e�i✓E
x,x+µ

x = ei✓Uab
x,x+µ

x

, (1)

or infinitesimally
⇥
Ex,x+µ

x

, Uab
x,x+µ

x

⇤
= Uab

x,x+µ
x

.

• The non-abelian version of such electric field has a left component L⌫
x,x+µ

x

=
P

ab c
a†
x,+µ

x

�⌫

ab

2

cbx,+µ
x

and a right

component R⌫
x,x+µ

x

=
P

ab c
a†
x+µ

x

,�µ
x

�⌫

ab

2

cbx+µ
x

,�µ
x

operators, depending if their action changes the bosonic

gauge field Uab
x,x+µ

x

with a unitary ⌦ak acting on the left or on the right of the field

Ũab
x,x+µ

x

= ei
P

⌫

✓⌫L⌫

x,x+µ

xUab
x,x+µ

x

e�i
P

⌫

✓⌫L⌫

x,x+µ

x =
X
k

⌦akU
kb
x,x+µ

x

Ūab
x,x+µ

x

= ei
P

⌫

✓⌫R⌫

x,x+µ

xUab
x,x+µ

x

e�i
P

⌫

✓⌫R⌫

x,x+µ

x =
X
k

Uak
x,x+µ

x

⌦⇤
bk,

(2)

or infinitesimally
⇥
L⌫
x,x+µ

x

, Uab
x,x+µ

x

⇤
= �

P
k �

⌫
akU

kb
x,x+µ

x

and
⇥
R⌫

x,x+µ
x

, Uab
x,x+µ

x

⇤
=

P
k U

ak
x,x+µ

x

�⌫
kb, where �⌫

are the Hermitean generators of SU(N) which obey [�µ,�⌫ ] = 2ifµ⌫!�!, with fµ⌫! the structure constants of
the SU(N) algebra and Tr (�µ�⌫) = 2�µ⌫ .
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a) b)

Figure 2: (Color online). Gauge generators supports in a) the standard formulation and in b) the quantum link formulation
of lattice gauge theories of frustrated spin systems. Blue circles represents sites of the lattice, orange ones the link degree of
freedom, i.e. the spins. a) The red square on the lattice highlights the degrees of freedom on which the local gauge invariant
generator acts: a site and the connected links. b) The red diamond shows the degrees of freedom on which the local gauge
invariant generator acts for a QLM. The original link degree of freedom is split into two rishons, which are modeled by spinless
fermions in this context.

Similar, but not identical, is the quantum spin ice. In this case the local gauge symmetry conservation originates
from a strong antiferromagnetic Ising-type interaction between every pair of spins around a vertex:

H
Ising

=
⇣
�z
x,x+µ

x

+ �z
x,x+µ

y

+ �z
x�µ

x

,x + �z
x�µ

y

,x

⌘
2

. (14)

E↵ectively this interaction projects the Hilbert space to the zero magnetization subspace Gx|physi =⇣
�z
x,x+µ

x

+ �z
x,x+µ

y

+ �z
x�µ

x

,x + �z
x�µ

y

,x

⌘
|physi = 0. The gauge invariant space is reduced to configurations with

two spin |"i and two spin |#i around a vertex only, actually reducing the QLM vertex space dimension from 24 to 6.

III. MATRIX PRODUCT FORMULATION OF THE QLM CONSTRAINTS

In this section we embed the previous lattice gauge picture within the Tensor Network framework. To do so, we
sketch a general technique, based on projected entangled pairs on the links, which allows one to take operatively into
account the Quantum Link Model constraints defined previously, while reducing the computational space dimension,
and thus the complexity of related algorithms. The idea is to exploit the Gauge constraints to reduce the local space
dimension, and at the same time combine all the link constraints into a simple Projectors, which act directly upon
the reduced space and, in 1D, are conveniently written in the Matrix Product Operator (MPO) formalism.

As we have seen in the previous examples, the gauge constraint and the link constraint in the QLM formulation
allow to describe the system as composed by sites that groups a vertex of the original model and the nearest neighbor
interacting rishons sites. Therefore, we can introduce a computational vertex site that is formed by the tensor product
of a matter site and the rishons sites at that vertex, of compound dimension D = d (dc)z, where d is matter local
Hilbert space dimension, z is the coordination number of the lattice, and dc is the local rishon space dimension (equal
to dc = N + 1 in the abelian gauge case, larger otherwise). We show in the following that the gauge constraint can
be solved by reducing the local site Hilbert space and that the remaining link constraint can be exactly written in a
simple structure that allows for an e�cient implementation of numerical algorithms.

Precisely, let us denote by Gµ
x the largest Lie algebra of generators of the Gauge group acting on vertex x, so that

[H,Gµ
x ] = 0. We want to restrict the local physical space to a single irreducible representation (irrep) subspace |physi

of the Gauge group, e.g. the one identified by Gµ
x |physix = 0 (the trivial irrep). Since gauge symmetries on di↵erent

vertices commute, i.e. [Gµ
x , G

µ0

x0 6=x] = 0, we can enforce the gauge requirement at the same time upon all vertices x.
Typical examples are the SU(2) or SO(3) gauge group case, where the restricted states |physi are those vertex states
which behave like a spin-0 under Gµ. Let now Px be the projector upon the physical space related to vertex x, and
let us define an orthonormal basis |jxir for its range (which coincides with its support, since Px = P 2

x = P †
x). The

subscript r indicates that we reduced the e↵ective dimension to d = rnk(P ), since the rank of Px is always smaller
than the original dimension D of the combined degrees of freedom of vertex x, so that d < D. Then we have, for a

5

associates a positive energy density to the electric flux on every link; while the magnetic term associates a positive
energy density to every non-zero magnetic flux on every plaquette,

H
pure

=H
electric

+H
magn

=
X
x,µ

x

n
g2
abel

(Ex,x+µ
x

)2 + g2
non-ab

h
(Lx,x+µ

x

)2 + (Rx,x+µ
x

)2
io

� 1

g2
magn

X
x,µ

x

,µ
y

⇥
Tr

�
Ux,x+µ

x

Ux+µ
x

,x+µ
x

+µ
y

Ux+µ
x

+µ
y

,x+µ
y

Ux+µ
y

,x

�
+ h.c.

⇤ (7)

with g2
abel

, g2
non-ab

and g2
magn

are the coupling constants for the abelian part of the electric field, non-abelian part and
magnetic term, respectively.

The coupling of the gauge fields with the matter fields is done with the lattice version of the “minimal” coupling,
i.e. a hopping term of fermions mediated by the gauge field. Also, the mass term of the fermions is a gauge invariant
term, hence,

H
coup

=
X
x,µ

x

Jx,µ
x

�
 †
xUx,x+µ

x

 x+µ
x

+ h.c.
�

(8)

where we have defined site dependence hopping constants Jx,µ
x

and mass term mx, in case a specific distributions
of signs, depending on the sites, is needed for a particular type of fermion introduced on the lattice. This type of
minimal coupling is also sketched in Fig. 1, panel c.

4. Examples

We have presented all the ingredients that we need in a quantum link version of a lattice gauge theory, however for
the sake of clarity and concreteness, we will focus on four particular examples: first, the simplest (1 + 1) dimensional
Quantum Link Model with the abelian U(1) symmetry, the simplest (1+1) dimensional Quantum Link Model with the
non-abelian U(2) symmetry, and then, an application to two relevant models in condensed matter physics: quantum
dimer and spin ice models on the square lattice.

a. U(1) Quantum Link Model - The gauge invariant quantum Hamiltonian is given by

H = J
X
x

�
 †
xUx,x+1

 x+1

+ h.c.
�
+ g2

X
x

(Ex,x+1

)2 +m
X
x

(�1)x  †
x x (9)

where the last term is a staggered chemical potential profile for the matter field, which is a spinless fermion field
{ x, †

y} = �x,y. Here J is the strength of the matter-gauge field coupling, g2 the electric-field energy density and m

the staggered mass. The gauge fields can be written in terms of rishons Ux,x+1

= cx,+c
†
x+1,�, which are bosonic in

nature [cx,a, c
†
y,b] = �x,y�a,b.

The two independent local symmetries in this U(1) Quantum Link Model are:

1. Constant number of rishons per link: Nx,x+1

|'
phys

i = (nx+1,� + nx,+)|'phys

i = |'
phys

i N̄

2. Gauss’ law on every vertex:
�
 †
x x + nx,� + nx,+

�
|'

phys

i = |'
phys

i
⇣
2N̄ � 1+(�1)

x

2

⌘
In what follows, we would like to understand in more detail two limits depending on the occupation N̄ . For that

purpose, we characterize the action of the gauge operators and electric field operators on a Hilbert space defined by
the occupation of rishons nx,+ and nx+1,� or equivalent by the total number of rishons on the link Nx,x+1

= N̄ and
the electric flux Ex,x+1

= n
x+1,��n

x,+

2

, i.e., |n
+

, n�i = |N̄ , Ei, where we have omitted the labels of the link hx, x+1i

• N̄ � 1 (Wilson limit) [17].- Wilson formulation of compact U(1) gauge theories starts with an infinite local
dimensional Hilbert space defined with two conjugate variables: the electric field E and an angle �, that fulfill
the usual commutation relation of position and momentum [E,�] = i. Then defining the link operator U = e�i�,
it is straightforward to check that

⇥
U,U†⇤ = 0, [E,U ] = U or in an eigenstate basis of the electric field operator

U |Ei = |E + 1i.

7

a) b)

Figure 2: (Color online). Gauge generators supports in a) the standard formulation and in b) the quantum link formulation
of lattice gauge theories of frustrated spin systems. Blue circles represents sites of the lattice, orange ones the link degree of
freedom, i.e. the spins. a) The red square on the lattice highlights the degrees of freedom on which the local gauge invariant
generator acts: a site and the connected links. b) The red diamond shows the degrees of freedom on which the local gauge
invariant generator acts for a QLM. The original link degree of freedom is split into two rishons, which are modeled by spinless
fermions in this context.

Similar, but not identical, is the quantum spin ice. In this case the local gauge symmetry conservation originates
from a strong antiferromagnetic Ising-type interaction between every pair of spins around a vertex:

H
Ising

=
⇣
�z
x,x+µ

x

+ �z
x,x+µ

y

+ �z
x�µ

x

,x + �z
x�µ

y

,x

⌘
2

. (14)

E↵ectively this interaction projects the Hilbert space to the zero magnetization subspace Gx|physi =⇣
�z
x,x+µ

x

+ �z
x,x+µ

y

+ �z
x�µ

x

,x + �z
x�µ

y

,x

⌘
|physi = 0. The gauge invariant space is reduced to configurations with

two spin |"i and two spin |#i around a vertex only, actually reducing the QLM vertex space dimension from 24 to 6.

III. MATRIX PRODUCT FORMULATION OF THE QLM CONSTRAINTS

In this section we embed the previous lattice gauge picture within the Tensor Network framework. To do so, we
sketch a general technique, based on projected entangled pairs on the links, which allows one to take operatively into
account the Quantum Link Model constraints defined previously, while reducing the computational space dimension,
and thus the complexity of related algorithms. The idea is to exploit the Gauge constraints to reduce the local space
dimension, and at the same time combine all the link constraints into a simple Projectors, which act directly upon
the reduced space and, in 1D, are conveniently written in the Matrix Product Operator (MPO) formalism.

As we have seen in the previous examples, the gauge constraint and the link constraint in the QLM formulation
allow to describe the system as composed by sites that groups a vertex of the original model and the nearest neighbor
interacting rishons sites. Therefore, we can introduce a computational vertex site that is formed by the tensor product
of a matter site and the rishons sites at that vertex, of compound dimension D = d (dc)z, where d is matter local
Hilbert space dimension, z is the coordination number of the lattice, and dc is the local rishon space dimension (equal
to dc = N + 1 in the abelian gauge case, larger otherwise). We show in the following that the gauge constraint can
be solved by reducing the local site Hilbert space and that the remaining link constraint can be exactly written in a
simple structure that allows for an e�cient implementation of numerical algorithms.

Precisely, let us denote by Gµ
x the largest Lie algebra of generators of the Gauge group acting on vertex x, so that

[H,Gµ
x ] = 0. We want to restrict the local physical space to a single irreducible representation (irrep) subspace |physi

of the Gauge group, e.g. the one identified by Gµ
x |physix = 0 (the trivial irrep). Since gauge symmetries on di↵erent

vertices commute, i.e. [Gµ
x , G

µ0

x0 6=x] = 0, we can enforce the gauge requirement at the same time upon all vertices x.
Typical examples are the SU(2) or SO(3) gauge group case, where the restricted states |physi are those vertex states
which behave like a spin-0 under Gµ. Let now Px be the projector upon the physical space related to vertex x, and
let us define an orthonormal basis |jxir for its range (which coincides with its support, since Px = P 2

x = P †
x). The

subscript r indicates that we reduced the e↵ective dimension to d = rnk(P ), since the rank of Px is always smaller
than the original dimension D of the combined degrees of freedom of vertex x, so that d < D. Then we have, for a

U(1) 

Spin ice

!c y
x ¼ c y

x!
y
x , !Uxy ¼ !xUxy!

y
y , with !x2UðNÞ. The

SUðNÞ gauge transformations and the additional U(1)
gauge transformation contained in UðNÞ are generated by

Ga
x ¼ c iy

x !a
ijc

j
x þ

X

k

ðLa
x;xþk̂

þ Ra
x%k̂;x

Þ;

Gx ¼ c iy
x c j

x %
X

k

ðEx;xþk̂ % Ex%k̂;xÞ;
(1)

where k̂ is a unit vector in the k direction, !a (a 2
f1; 2; . . . ; N2 % 1g) are the SUðNÞ Gell-Mann matrices,
and fabc are the SUðNÞ structure constants, such that
½Ga

x; G
b
y' ¼ 2i"xyfabcG

c
x. The operators L

a
xy and R

a
xy repre-

sent SUðNÞ electric field operators associated with the left
and right end of a link hxyi, while Exy represents the
Abelian U(1) electric field operator. Physical states j"i
obey the SUðNÞ Gauss law Ga

x j"i ¼ 0, while in a UðNÞ
gauge theory also Gxj"i ¼ 0. The operators U, La, Ra,
and E associated with the same link obey

½La;Lb'¼2ifabcL
c; ½Ra;Rb'¼2ifabcR

c;

½La;Rb'¼½E;La'¼½E;Ra'¼0;

½La;U'¼%!aU; ½Ra;U'¼U!a; ½E;U'¼U;

(2)

while operators associated with different links commute.
In Wilson’s lattice gauge theory, U is an element of the

gauge group. In a UðNÞ gauge theory, detU ¼ expði’Þ 2
Uð1Þ represents a Uð1Þ link variable, canonically conjugate

to the electric flux operator E ¼ %i@’. In an SUðNÞ gauge
theoryU 2 SUðNÞ and La, Ra take appropriate derivatives
with respect to the matrix elements Uij. The resulting
Hilbert space per link is then unavoidably infinite dimen-
sional. In order to represent the commutation relations of
the gauge algebra of Eq. (2) in a finite-dimensional Hilbert
space, QLMs give up the commutativity of the matrix
elements Uij without compromising gauge invariance.
The real and imaginary parts of the matrix elements Uij

of the N ( N quantum link matrix are represented by 2N2

Hermitean operators. Together with the electric field op-
erators La, Ra, and E these are 2N2 þ 2ðN2 % 1Þ þ 1 ¼
ð2NÞ2 % 1 generators which form the embedding algebra
SUð2NÞ. While U(1) quantum links can be represented by
quantum spins embedded in an SU(2) algebra, UðNÞ or
SUðNÞ QLMs can be realized with different representa-
tions of SUð2NÞ. A useful representation is based on
fermionic rishon constituents of the quantum links [23]

La¼ ciyþ!a
ijc

j
þ; Ra¼ ciy%!a

ijc
j
%; E¼1

2
ðciy%ci%%ciyþciþÞ;

Uij¼ ciþc
jy
% ; N ¼ ciy%ci%þciyþciþ: (3)

The rishon creation and annihilation operators, ciy) and ci),
are associated with the left and right ends of a link
[cf. Fig. 1(a)] and obey standard anticommutation rela-
tions. Our construction of a quantum simulator for U(1)
gauge theories used Schwinger bosons to represent quan-
tum links [3]. Here it is natural to replace Schwinger
bosons by rishon fermions. N counts the number of
rishons on a link.
The Hamiltonian of a ðdþ 1ÞD UðNÞ QLM with stag-

gered fermions takes the form

H ¼ %t
X

hxyi
ðsxyc iy

x Uij
xyc

j
y þ H:c:Þ þm

X

x

sxc
iy
x c i

x

¼ %t
X

hxyi
ðsxyQy

x;þkQy;%k þ H:c:Þ þm
X

x

sxMx; (4)

where sx ¼ ð%1Þx1þ***þxd and sxy ¼ ð%1Þx1þ***þxk%1 , with

y ¼ xþ k̂. t is the strength of the hopping term, and m is
the mass. The summation convention is implicit in the
color indices. We have also introduced the UðNÞ gauge
invariant ‘‘meson’’ and ‘‘constituent quark’’ operators
Mx ¼ c iy

x c i
x and Qx;)k ¼ ciyx;)kc

i
x. Together with the

‘‘glueball’’ operators #x;)k;)l ¼ ciyx;)kc
i
x;)l, they form a

site-based Uð2dþ 1Þ algebra. The rishon number is con-
served locally on each link. The UðNÞ model has no
baryons, since the Uð1Þ baryon number symmetry is
gauged. In order to obtain charge conjugation invariance
C and to reduce the gauge symmetry to SUðNÞ, one must
work with N xy ¼ N rishons per link. Adding the term
#
P

hxyiðdetUxy þ H:c:Þ to the Hamiltonian explicitly breaks

the UðNÞ gauge symmetry down to a local SUðNÞ and a

(a)

(c)

(e)

(d)

(b)

FIG. 1 (color online). (a) (upper panel) UðNÞ QLM in ð1þ1ÞD
with quark fields c i

x on lattice sites and gauge fields Uij
x;xþ1 on

links; (lower panel) hopping of AE atoms between quark and
rishon sites of the same shading. (b) Implementation of the QLM
in rishon representation with fermionic atoms in ð2þ 1ÞD.
(c) Encoding of the color degrees of freedom for N ¼ 2 ( " , # )
in Zeeman states of a fermionic AE atom with I ¼ 3=2.
(d) Lattice structure to avoid the interaction in fermionic matter
sites using a species-dependent optical lattice (for an alternative
method using site-dependent optical Feshbach resonances, see
the main text). (e) Initial state loaded in the optical lattice with a
staggered distribution of doubly occupied sites for a U(2) QLM
with N ¼ 2.
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non abeliane



8

from 
P. Zoller 1D Schwinger Model: Fermions → Spins

• Hamiltonian

40

......

H0 = �J
3X

x=1

�
��
x

S�
x,x+1�

+
x+1 + h.c.

�
+m(t)

4X

x=1

(�1)x�z

x

S
x,x+1

�
x

�
x+1

• Gauss Law

G
x

= Sz

x�1,x + �z

x

� Sz

x,x+1 +
1

2
(�1)x

K. Stannigel

⇢�� · E , Sz

x�1,x + �z

x

� Sz

x,x+1 +
1

2
(�)x

enforce Gauss law in 
quantum simulation of  
lattice gauge theory

enforces Gauss law 
by quantum Zeno 

effect

large white noise⇥ (⇢�� · E)



come cade un atomo di antimateria?

• idee dei padri fondatori

• esplorare il principio di 
equivalenza

• interesse cosmologico

• esperimenti su antimateria al 
CERN

• tecniche di intrappolamento e 
raffreddamento di antiprotoni

apple

earth earth

anti-apple

g g ?



Atomi  di  an*-‐idrogeno  freddi  per  verifica  di  simmetrie  fondamentali

Spedroscopia	  per	  verifica	  CPT:	  	  	  	  
§ Violazioni	  invarianza	  Lorentz	  	  	  	  	  	  	  	  	  	  	  	  	  	  
§ differenza	  livelli	  energeOci	  H	  e	  anO-‐H
§ Standard	  Model	  Extension	  (SME)	  

R.	  Bluhm,	  V.	  A.	  Kosteleck,	  and	  N.	  Russell,	  Phys.	  Rev.	  Led.	  82	  (1999)	  2254.

Ground	  state	  Hyperfine	  SpliCng
Max	  sensibilita’	  a	  violazioni	  Invarianza	  Lorentz

1S-‐2S
Larghezza	  naturale	  10-‐15

Misura	  direda	  accelerazione	  gravita’	  terrestre	  g	  	  	  	  	  
§ Verifica	  validita’	  WEP	  per	  anOmateria
§ assenza	  misure	  direde	  per	  anOmateria
§ validita’	  per	  anOmateria	  e’	  estrapolazione	  
§ LimiO	  indireP	  (dipendenO	  da	  modelli,	  

controversi)	  	  	  	  	  

con	  X=6,7,8	  a	  seconda	  delle	  
ipotesi

M. Nieto et al Phys. Rep. 205 (5) 221 
(1991)                                                     

 M. Charlton et al Phys. Rep 241 65 (1994)                                                          

R. Hughes Hyp. Int.76 3 (1996)   

• Ricombinazione	  di	  anOprotoni	  e	  positroni	  raffreddaO	  e	  manipolaO	  in	  trappole	  
eledromagneOche

• dal	  2002:
• AnOproton	  Decelerator	  (CERN):	  dedicato	  a	  questo	  programma	  di	  fisica
• Unica	  macchina	  al	  mondo	  che	  permede	  cadura	  anOprotoni	  in	  trappola	  eledromagneOca
• Potenziamento	  dal	  2017-‐2018:	  post	  deceleratore,	  flusso	  anOprotoni	  X	  100

M.	  AmoreP	  et	  al.	  (ATHENA	  CollaboraOon)	  Nature	  	  419,	  456	  (2002).



                          Prospe7ve  sperimentali  nel  prossimo  futuro    (  dal  2018  in  poi)

• UOlizzo	  delle	  metodologie	  della	  fisica	  atomica	  (laser	  cooling,	  interferometria	  atomica)	  per	  
anO-‐atomi

• Formazione	  di	  anO-‐idrogeno	  ultrafreddo:	  
	  	  	  	  	  pre-‐raffreddamento	  di	  anOprotoni	  fino	  a	  1-‐10	  µK

	  	  	  	  	  	  	  	  	  	  confinamento	  simultaneo	  con	  ioni	  negaOvi
	  	  	  	  	  	  	  	  	  	  laser	  cooling	  ioni	  negaOvi:
• Uso	  sorgenO	  laser	  UV	  impulsate	  (Ly	  α)

• Misura	  di	  g	  con	  interferometro	  atomico	  e	  fascio	  impulsato	  Opo	  AEgIS:	  	  	  	  	  

• Cadura	  anO-‐idrogeno	  in	  trappola	  magneOca:	  dimostrato	  	  (esp.	  ALPHA)	  
• Formazione	  di	  fascio	  di	  anO-‐idrogeno:	  dimostrato	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (esp.	  ASACUSA)
• Temperatura	  anO-‐atomi:	  	  decine	  Kelvin	  	  o	  pochi	  Kelvin	  a	  seconda	  degli	  schemi	  sperimentali
• ObiePvo	  a	  medio	  termine	  esp.	  AEgIS:	  fascio	  anO-‐H	  impulsato	  	  con	  100	  mK	  	  

• misura	  GSHF	  con	  precisione	  con	  fascio	  ASACUSA
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
• misura	  GSHF	  con	  fascio	  AEgIS
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

WHAT	  NEXT

WHAT	  NOW

1-‐10	  µK	  
anO-‐H	  !!!



VUOTO di QED

-  Problema Costante Cosmologica?
   Perche’ l’universo mostra una densita’ di energia 
   del vuoto 120 OdG minore di quella attesa dalla
   QFT e dal Principio di Equivalenza ?
   Le fluttuazioni del vuoto di QED gravitano  ?
   Misura della forza di Archimede del vuoto attraverso la misura 
   dell’energia di Condensazione di un Superconduttore. NAPOLI

-  Vuoto e suo  momento  sono Lorentz invarianti nel SM ?
    Esplorare il "vuoto" del Modello Standard con 
    interferometria laser di precisione in mezzi gassosi.  CATANIA

-   Scattering Fotone-Fotone dall’eV al MeV
    Attraverso Tecniche Ottiche (Virgo) e FEL  FERRARA / TRIESTE

-   Effetti Dissipativi del vuoto: radiazione Schwinger e Unruh 
     PADOVA / LEGNARO 

-     LAMB SHIFT

-     g - 2

- CORREZIONI RADIATIVE

-    CAVITY QED 

Scala microscopica

SCALA MACROSCOPICA

che cosa e’ il vuoto? 
il vuoto e’ simmetrico?



GRAVITA’ : Dalle Basse Energie Alla Scala di Planck 

Tests  “Classici” di Relativita’ Generale ( Basse Energie ) :

Lunar Laser Ranging: Nuova Generazione Retroriflettori  FRASCATI

Parametrized Post-Newtonian beta    Equivalence Principle (WEP + SEP ))
Time Variation of the Gravitational Constant -  Inverse Square Law (ISL) – 
Yukawa potential  -  Geodetic Precession

Misura Effetto Lense Thirring Terra  PISA

Ring Laser Sagnac  :  Velocita Angolare     10          rad/sec !!!

Nuova Generazione Orologi Nucleari   INRIM  LEGNARO 

Utilizzo di Stati Eccitati Nucleari nella Banda Deep UV  (7,6 eV)  Th229
da Agganciare a Sistemi Laser            = 10       (rispetto orologi atomici 10     )  -20 -18

-14



Test sulla Natura Quantistica della Gravita’

Ricerca di Effetti sulla Scala di Planck:

 Sensibilita’ Magnetometria Ottica 10-27  eV,          Coerenza Spin Nucleari ORE

1)Attraverso lo studio di Sistemi Optomeccanici al Limite Quantistico
     
       HUMOR -  FIRENZE

	  - Meccanica Quantistica + Gravita’   è  Deviazioni dal Principio di Indeterminazione 

	  - Test della Discretezza dello Spazio –Tempo alla Scala di Planck  (spacetime fuzziness)

2) Torque da Campo Gravitomagnetico Terrestre su Spin Elementare:

 

3) Pettine di Frequenze da Laser e Dark Energy :

   - Spettrometri Astronomici e Misura Variazione  Redshift galassie
                     Doppler	  velocity	  driPs	  (	  Accelerazione	  )	  of	  ∼1	  cen-meter	  per	  second	  per	  year	  

     

	  



Spin Statistics: (VIP) at LNGS

           “Hopefully either violation will be found experimentally or our 
theoretical efforts will lead to understanding of why only Bose 
and Fermi statistics occur in Nature” (Greenberg)

Next  10-15 years: go towards 10-32 – 10-33

VIP-2 (to be installed at 
LNGS in 2014)

VIP limit on the probability
of PEP violation:



qual e’ il limite della meccanica quantistica?

• Si possono porre domande che i padri fondatori 
ritenevano accademiche (a volte addirittura 
“impossibili”) 

• Si possono esplorare i limiti stessi della teoria

• Si puo’ migliorare la precisione delle misure 
(metrologia quantistica)

• Atomi freddi ed ottica quantistica



n fotoni che si 
propagano attraverso 
un sistema integrato 

m -multiport 

BOSON SAMPLING (Roma I) 

Open questions:
- Come aumentare la complessita’ del Boson sampling ?
- Come certificare il corretto funzionamento di un expt di 
boson sampling? 
- Effetti di rumore ed imperfezioni 

Challenges
- Single photon sources
- Photon manipulation on a chip
- Single photon detectors

OBIETTIVO FINALE: n=10-20 fotoni e m=100-200 modi 

integrated photonics

distribuzione 
in uscita?



Photon	  number	  quantum	  
correla-ons:	  Sub	  shot	  noise	  
imaging	  Nature	  Photonics	  4,	  227	  (2010).

Detec-on	  of	  an	  object	  in	  
preponderant	  background
Phys.	  Rev.	  Le<.	  110,	  153603	  (2013)

INRIM	  Torino



Space Quantum Communications (PADOVA)

• Test di diseguaglianze di Bell in condizioni mai realizzate: 
orbite LEO o GEO, moving terminals, campo grav.

• Teleportation and distribuzione di entanglement dalla 
terra allo spazio

• Applicazioni: comunicazioni sicure per mezzo di 
Quantum Key Distribution

• Hub on the ground: ASI-MLRO in Matera
• Encoding in different degrees of freedom – entanglement 

swapping
• Receiving from active orbiters – dedicated satellites
• Intermodal links: space terminals to ground labs
• Interdisciplinary Research: QF@UniPD, ASI, space industries,
    detectors, fast electronics
• Synergy: Quantum measurements for HEP

Roadmap

D. Bacco et al. Nature Comm. 4, 2363 (2013), I. Capraro et al. Phys. Rev. Lett. 109, 200502 (2012)
P. Villoresi et al. New J. Phys. 10 033038 (2008), C. Bonato et al. Phys. Rev. Lett. 101, 233603 (2008)



Quantum	  Interferometry
Gli	  interferometri	  sono	  fra	  i	  piu’	  precisi	  strumenO	  di	  misura

Applicazioni:
• Rivelatori	  di	  onde	  grav.
• Iner-al	  sensors
• Misure	  di	  tempo
• Misure	  di	  forze	  di	  superficie

L’interferometria	  quanOsOca	  
usa	  staO	  entangled	  (di	  luce	  o	  
materia)	  per	  sOmare	  phase	  
shiqs	  (tempo,	  accelerazioni,	  
forze,	  onde	  grav,	  etc…)	  
con	  una	  precisione	  piu’	  alta	  del	  
limite	  classico	  (shot-‐noise)

Obiettivo a lungo termine: creare una generazione di strumenti ultrasensibili che 
siano piu’ precisi degli esistenti interferometri classici 
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... e mò?
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• nuove domande fondamentali al di la’ (o al di qua) delle alte energie

• nuovi approcci sperimentali a questioni aperte (per es: assioni)

• nuovi concetti per esperimenti di altissima precisione

• nuove applicazioni di “calcolo” per lo studio di teorie di campo 
inaccessibili a calcolatori classici

WHAT ELSE?


