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Dealing with an increasingly complicated and diverse set of observables
TMDs
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And more...
Fragmentation Functions (FFs)
Fracture Functions (FFs)...




Conventional models give interpretations in terms of the microscopic
properties of the theory (focus on the behavior of individual particles)

Parameterizations depend on the analytical form of the PDFs

f(x,02A,b,.)=Ax"(1-x)"(A+dx+ex’+..)

1) One finds the best-fit values of parameters.

2) The uncertainty is determined with the Hessian method.



We can attack the problem from a different perspective:

study the behavior of multi-particle systems as they
evolve from a large and varied number of initial conditions

This goal is at reach with HPC



Artificial Neural Networks in HEP/Nuclear Data Analyses

v" Neural Networks (NN) have been widely applied for the analysis of HEP
data and PDF parameterizations

v When applied to data modeling, NNs are a

v The network makes changes to its connections upon being informed of the
“correct” result.

v We quantify this through
Cost function

n= number of training inputs

X = training input

Y(x) = desired output, a=output when x is the input
w= weights

measures the importance to detect or miss a particular occurrence

v' The aim is to minimize the cost!



Input Layer

Weights

Hidden Layer

Output Layer



Back propagation

1) Take the output from the network

2) Compare it to the real data values

3) Calculate how wrong the network
was (define error: how wrong the
parameters/weights were)

4) The errors are used to calculate the

partial derivatives in the parameters

which are necessary to minimize the cost

function!

http://www.holehouse.org/

Input layer  Hidden layer Output layer,

Supervised learning

1) A set of examples is given

2) The goal is to force the data to
match the examples as closely as
possible.

The cost function includes
information about the data domainl!



Application to PDFs...

http://nnpdf.hepforge.org/html/GenStr.html

» Monte Carlo generation of data replicas ExnerimentallData Fi  i=1,..,Ndata
[ ik NMC,BCDMS,SLAC,HERA,CHORUS...
— no need for linear propagation of errors

— possibility to test for non Gaussian behaviour @
in fited PDFs

» Neural Networks parametrization of PDFs [ MC:generation J{, , ,
— 7 independent PDFs, 259 parameters

— unbiased parametrization TRAINING

l l l I
EVOLUTION

+ Genetic Algorithm's training of neural networks
parameters
« Analysis of 2 distributions el 2 e

¢ Evolution using DGLAP equations
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> Conventional methods' problem: Dependence on initial bias

Important for TMD,GPD
analysis!

> To overcome this introduce Neural Networks

.. yepr If data are missing it is not
> NNs' problem: Extrapolation is difficult wes) FFPETNPERS de‘rer'rr?ine output!

One must improve on the ANN type algorithm!

No a priori examples are given.
The goal is to

, or by finding how the
data cluster or

J. Carnahan, H. Honkanen, S.Liuti, Y. Loitiere, P. Reynolds, Phys Rev

D79, 034022 (2009)



1) Possible non-Gaussian behavior of data; error treatment
(H12000,...)

2) Study of variations from using different data sets and different
methods (Alekhin,...)

3) Comparison of parameterizations where fits where error
treatment is the same but methods are different

What is the ideal flexibility of the fitting functional forms?
What is the impact of such flexibility on the error determination?

SOMs are ideal to study the impact of the different fit variations!



Self Organizing Maps (SOMs)



The various nodes form a topologically ordered map during the
learning process.

The learning process is unsupervised  no “correct response”
reference vector is needed.

The nodes are decoders of the input signals -- can be used for
pattern recognition.

Two dimensional maps are used to cluster/visualize high-
dimensional data.



SOMs Algorithm

Each cell (neuron) is sensitized to a different domain of vectors:
cell acts as decoder of domain

l

Initialization =  Input vector of dimension “n” associated to cell “i”:

Vi = [UE”,.“, UEH}]

V, is given spatial coordinates that define the geometry/topology of a 2D map

Training — Input data:

- [fmj ___?étnlt] isomorphic

x compared to V., 's with “similarity” metric(L1):
|| & —my ||

(Aggawal et al., 2000)

Location of best match “winner” gives location of response
(active cell, all others are passive)

Learning (updating) — cells V, that are close up to a certain distance

activate each other to “learn” from x



earning:

Map cells, V,, that are close to “winner neuron”
activate each other to “learn” from x

V,(n+1)=Vi(n) + ()] x(n) =V, (m)]

iteration number

< | )
ha(m)= f{r. = nlh = atmexp| — 5= )

eighborhood function decreases with “n” and “distance”




Map representation of 5 initial samples: blue, yellow, red, green, magenta

“Colors” Example




Simple Functions Example

Final Step : clusters of similar functions from input data get
distributed on the map



. a set of database/input PDFs is formed by selecting at random

from existing PDF sets and varying their parameters.
Baryon number and momentum sum rules are imposed at every step.

These input PDFs are used to initialize the map.

Mixing

* In generating the PDFs (for the map and for the
training) we need to avoid introducing a
functional bias

* Thus we mix together variations of different
structure functions

— Random perturbations are used to generate a variant
of a standard set of structure functions—currently
based on GRV, MRST, AMP. We select some number
of these varied functions, then combine them in a
weighted-average linear combination to obtain a final
candidate PDF.

— Sum rules are enforced on each candidate “mixed”

PDF




. A subset of input PDFs is used to train the map.
The similarity is tested by comparing the PDFs at given (x,Q?) values. The new
map PDFs are obtained by averaging the neighboring PDFs with the
“winner” PDFs.







X2 minimization through genetic algorithm
Once the first map is trained, the x?per map cell is
calculated.

We take a subset of PDFs that have the best x2from the
map and form a new initialization set including them.

We train a new map, calculate the x? per map cell, and
repeat the cycle.

We iterate until the x° stops varying (stopping criterion).
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7.

Advantages with respect to “conventional way”:

e Initial scale ansatz

F(z,Q) = Agx (1 — )2 P(x; A3, ...)
e Evolve to higher scale
e Compute observables e.g. FJ(x, Q%)
e Compare with the data e.g,
v*({a}) = Zl'xpl.. {Z:ﬂ — T' - L:. w=1 Bi (A _llk.l;,ﬂ
where B = Z:ﬂ’l Bu(Di— T4 }, Appr = Oppr + Z;_’l i*—n?"—

r'!:"

Similarly to NNPDFs we eliminate the bias due to the initial
parametric form




Advantages over NNPDFs

Mechanism responsible for the self-organization of the different representations
of information: the response of the network changes in such a way that the

location of the cell holding a given response corresponds to a specific input
signal.

Geometrical arrangement of information is maintained during the
training.

SOM work differently from ANN that do not keep track of the inter-connections
among clustering of data at different stages of the network training.

Important because it allows for “user/expert's” intervention:
evaluate the impact of possibe theoretical input




Error Analysis

= Treatment of experimental error is complicated because of
incompatibility of various experimental x2.

= Treatment of theoretical error is complicated because they are
not well known, and their correlations are not well known.

= In our approach we performed the theoretical error evaluation
with the Lagrange multiplier method and using the generated
PDFs as a statistical ensemble



History/Organization of work

PDF Parametrization Code - SOMPDF.O - using Python, C++,
fortran. Preliminary results discussed at conferences: DIS 2006,...

First analysis published
J. Carnahan, H. Honkanen, S.Liuti, ¥. Loitiere, P. Reynolds, Phys Rev D79, 034022 (2009)

New group formed (K. Holcomb, D. Perry)
Rewriting, reorganization and translation of First Code into a uniform
language, fortran 95.

Implementation of Error analysis. Extension to new data analyses.
(E. Askanazi, K. Holcomb)

PDF Parametrization Code ready to be released- SOMPDF.1
Group Website (under construction):

J. Carnahan, H. Honkanen, S.L., Y. Loitiere, P. Reynolds, Phys Rev D79, 034022 (2009)

K. Holcomb, S.L., D.Z.Perry, hep-ph (2010)
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Extension to multidimensional parton distributions/multiparton
correlations: GPDs

SOMs differently from standard ANN methods are “unsupervised” they find
similarities in the input data without a training target.

They have been used in theoretical physics approaches to critical phenomena,
to the study of complex networks, and in general for the study of high

dimensional non-linear data
(see e.g. Der, Hermann, Phys.Rev.E (1994), Guimera et al., Phys. Rev.E (2003) )

D O O b quarks
O 00 @ @ @b
O ® O @® @ @cqus
K X X X JEOIa = c quarks

O O (

Lonnblad, Peterson, Pi, Computer Physics Comm. 1991

uds quarks




Initial application: d/u ratio
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We are studying similar characteristics of SOMs to devise a fitting
procedure for GPDs: our new code has been made flexible for this use

Main question: Which experiments, observables, and with what
precision are they relevant for which GPD components?
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8 GPD-related functions

“a challenge for phenomenology...” (Moutarde) + “theoretical bias”



The 8 GPDs are the dimensions in our analysis




Conclusions/QOutlook

v We presented a new computational method,
Self-Organizing Maps
for parametrizing nucleon PDFs

v The method works well: we succeeded in minimizing the x and
in performing error analyses

v' In progress: applications to more varied sets of data where
predictivity is important (polarized scattering, x 2 1, ...)

v'Future Studies: GPDs, theoretical developments, connection
with "similar approaches”, complexity theory...



New ingredients for multi-variable analysis

Theoretical vs. Experimental, Systematic and Statistical Uncertainties
(correlations)

Estimators: x4, weighted X2, ...

Non-linearity



