# Parity-Violating Deep Inelastic Scattering (PVDIS) 

 at JLab 6 and 12 GeVXiaochao Zheng (Univ. of Virginia)
November 21, 2014
-PVDIS and electron-quark effective couplings

- The 6 GeV PVDIS experiment
- DIS results - electron-quark effective VA couplings
- Resonance results - duality in EW sector?
- Outlook for the 12 GeV Program - PVDIS with SoLID


## Jefferson Lab

## Inclusive Electron Scattering Basics

Inclusive: only scattered electron is detected

"Resonance": $1<\mathrm{W}<2 \mathrm{GeV}$ (structure functions)
"Deep Inelastic": W>2 GeV, (structure functions, parton distribution functions)


## Parity-Violating Electron Scattering

- To study nucleon structure not accessible in electromagnetic interaction:
* elastic PVES: nucleon strange form factors; "neutron skin" in heavy nucleus
- To test the electroweak Standard Model:
* Moller - E158
- PVDIS




## Parity Violation in the Standard Model

electron



- In weak interaction, all elementary fermions behave differently under parity transformation
- They have a preferred chiral state when coupling to the $Z^{0}$


## Parity Violation in the Standard Model

- Unlike electric charge, need two charges (couplings) for weak interaction: $g_{L}, g_{R}$
or "vector" and "axial" weak charges: $g_{\mathrm{V}} \sim\left(g_{L}+g_{R}\right) \quad g_{A} \sim\left(g_{L}-g_{R}\right)$

$$
-i \frac{g_{Z}}{2} \gamma^{\mu}\left[g_{V}^{e}-g_{A}^{e} \gamma^{5}\right]
$$

| fermions | $g_{A}^{f}=I_{3}$ | $g_{V}^{f}=I_{3}-2 Q \sin ^{2} \theta_{W}$ |
| :---: | :---: | :---: |
| $\nu_{e}, \nu_{\mu}$ | $\frac{1}{2}$ | $\frac{1}{2}$ |
| $e-, \mu-$ | $-\frac{1}{2}$ | $-\frac{1}{2}+2 \sin ^{2} \theta_{W}$ |
| $u, c$ | $\frac{1}{2}$ | $\frac{1}{2}-\frac{4}{3} \sin ^{2} \theta_{W}$ |
| $d, s$ | $-\frac{1}{2}$ | $-\frac{1}{2}+\frac{2}{3} \sin ^{2} \theta_{W}$ |

## Parity Violation in the Standard Model

- Unlike electric charge, need two charges (couplings) for weak interaction: $g_{L}, g_{R}$
or "vector" and "axial" weak charges: $g_{V} \sim\left(g_{L}+g_{R}\right) \quad g_{A} \sim\left(g_{L}-g_{R}\right)$
- PVES asymmetry comes from $V(e) \times A(t a r g)$ and $A(e) \times V(t a r g)$



## Effective Couplings in the Standard Model

- Unlike electric charge, need two charges (couplings) for weak interaction: $g_{L}, g_{R}$
or "vector" and "axial" weak charges: $g_{V} \sim\left(g_{L}+g_{R}\right) \quad g_{A} \sim\left(g_{L}-g_{R}\right)$
- PVDIS asymmetry comes from:

$$
C_{1 \mathrm{q}} \equiv 2 g_{A}^{e} g_{V}^{q}, C_{2 \mathrm{q}} \equiv 2 g_{V}^{e} g_{A}^{q}
$$


"electron-quark effective couplings"

## Effective Couplings and New Contact Interactions

- Unlike electric charge, need two charges (couplings) for weak interaction: $g_{L}, g_{R}$
or "vector" and "axial" weak charges: $g_{V} \sim\left(g_{L}+g_{R}\right) \quad g_{A} \sim\left(g_{L}-g_{R}\right)$
- PVDIS asymmetry comes from:

$$
C_{1 \mathrm{q}} \equiv 2 g_{A}^{e} g_{V}^{q}, C_{2 \mathrm{q}} \equiv 2 g_{V}^{e} g_{A}^{q}
$$


"electron-quark effective couplings"

## Effective Couplings and New Contact Interactions

- Unlike electric charge, need two charges (couplings) for weak interaction: $g_{L}, g_{R}$
or "vector" and "axial" weak charges: $g_{V} \sim\left(g_{L}+g_{R}\right) \quad g_{A} \sim\left(g_{L}-g_{R}\right)$
- PVDIS asymmetry comes from:

"electron-quark effective couplings"


Erler\&Su, Prog. Part. Nucl.
Phys. 71, 119 (2013)

## Accessing $C_{1 q, 2 q}$

- Need electron beam on hadronic target
- In elastic PVES
- directly probes $C_{1 q}$, electrons' parity-violating property;
- quarks' parity-violation is represented by the nucleon axial form factor $G_{A}$, and extracting $C_{2 q}$ from $G_{A}$ is model-dependent
- Only in PVDIS, electron probes the quark and PVDIS asymmetry depends on $C_{2 q}$ directly.


## Formalism for Parity Violation in DIS

$$
A_{P V}=\frac{G_{F} Q^{2}}{\sqrt{2} \pi \alpha}[a(x)+Y(y) b(x)]
$$

$$
\begin{aligned}
& x \equiv x_{\text {Bjorken }}=\frac{Q^{2}}{2 M v} \\
& q_{i}^{+}(x) \equiv q_{i}(x)+\bar{q}_{i}(x) \\
& q_{i}^{-}(x)=q_{i}^{V}(x) \equiv q_{i}(x)-\bar{q}_{i}(x)
\end{aligned}
$$

$$
a(x)=\frac{1}{2} g_{A}^{e} \frac{F_{1}^{\gamma Z}}{F_{1}^{\gamma}}=\frac{1}{2} \frac{\sum_{i} C_{1 i} Q_{i} q_{i}^{+}(x)}{\sum_{i} Q_{i}^{2} q_{i}^{+}(x)}
$$

$$
b(x)=g_{V}^{e} \frac{F_{3}^{\gamma Z}}{F_{1}^{\gamma}}=\frac{1}{2} \frac{\sum_{i} C_{2 i} Q_{i} q_{i}^{-}(x)}{\sum_{i} Q_{i}^{2} q_{i}^{+}(x)}
$$

For an isoscalar target
$\left({ }^{2} \mathrm{H}\right)$, structure functions largely simplifies:

$$
a(x)=\frac{3}{10}\left(2 C_{1 \mathrm{u}}-C_{1 \mathrm{~d}}\right)\left(1+\frac{0.6 s^{+}}{u^{+}+d^{+}}\right) \quad b(x)=\frac{3}{10}\left(2 C_{2 \mathrm{u}}-C_{2 \mathrm{~d}}\right)\left(\frac{u_{V}+d_{V}}{u^{+}+d^{+}}\right)
$$

## Formalism for Parity Violation in DIS

$$
A_{P V}=\frac{G_{F} Q^{2}}{\sqrt{2} \pi \alpha}[a(x)+Y(y) b(x)]
$$

$$
\begin{aligned}
& x \equiv x_{\text {Bjorken }}=\frac{Q^{2}}{2 M v} \\
& q_{i}^{+}(x) \equiv q_{i}(x)+\bar{q}_{i}(x) \\
& q_{i}^{-}(x)=q_{i}^{V}(x) \equiv q_{i}(x)-\bar{q}_{i}(x)
\end{aligned}
$$

$$
a(x)=\frac{1}{2} g_{A}^{e} \frac{F_{1}^{\gamma Z}}{F_{1}^{\gamma}}=\frac{1}{2} \frac{\sum_{i} C_{1 i} Q_{i} q_{i}^{+}(x)}{\sum_{i} Q_{i}^{2} q_{i}^{+}(x)}
$$

$$
b(x)=g_{V}^{e} \frac{F_{3}^{\gamma Z}}{F_{1}^{\gamma}}=\frac{1}{2} \frac{\sum_{i} C_{2 i} Q_{i} q_{i}^{-}(x)}{\sum_{i} Q_{i}^{2} q_{i}^{+}(x)}
$$

For an isoscalar target
$\left({ }^{2} \mathrm{H}\right)$, structure functions largely simplifies:

If neglecting sea quarks, asymmetry is no longer sensitive to PDFs $\rightarrow$ "static limit"

Still, $C_{2 q}$ are more difficult to access than $C_{1 q}$

$$
\begin{gathered}
A_{P V}=\frac{G_{F} Q^{2}}{\sqrt{2} \pi \alpha}[a(x)+Y(y) b(x)] \quad \begin{array}{c}
y \equiv \frac{E-E^{\prime}}{E}=\frac{v}{E} \\
r^{2}=1+\frac{Q^{2}}{v^{2}}
\end{array} \\
Y=\left[\frac{r^{2}}{1+R}\right] \frac{1-(1-y)^{2}}{1+(1-y)^{2}-y^{2}\left[1-\frac{r^{2}}{1+R}\right]-x y \frac{M}{E}}
\end{gathered}
$$

- The term sensitive to the quark spin is kinematically suppressed due to angular momentum conservation.
- $C_{2 q}$ are much smaller than $C_{1 q}$ :

$$
\begin{array}{ll}
C_{1 \mathrm{u}}=-\frac{1}{2}+\frac{4}{3} \sin ^{2} \theta_{W} & C_{2 \mathrm{u}}=-\frac{1}{2}+2 \sin ^{2} \theta_{W} \\
C_{1 \mathrm{~d}}=\frac{1}{2}-\frac{2}{3} \sin ^{2} \theta_{W} & C_{2 \mathrm{~d}}=\frac{1}{2}-2 \sin ^{2} \theta_{W}
\end{array}
$$

## Best Data on $C_{1 q}$ (eq AV couplings) from PVES+APV



Androic et al., PRL 111, 141803 (2013);
X. Zheng, HiX2014, Laboratori Nazionali di Frascati, November 2014

## Projecting to $C_{1 q}$ vs $C_{2 q}$ (e-q AV vs. VA couplings)



## Add E122 - the first PVES (1978)



## and combine them


then zoom in


## PVDIS at 6 GeV (JLab E08-011)



## Jefferson Lab

OThomas Jefferson National Accelerator Facility


## - Staff: ~700

- User community: ~1300
- Beam first delivered in 10/95
- In full operation since 11/97
- ~102 PhDs to date ( $\sim 1 / 3$ of US PhDs in Nuclear Physics)
- 6 GeV until 2012, 12 GeV - 2014
- "Continuous beam", provides the highest polarized luminosity of the world


## PVDIS at 6 GeV (JLab E08-011)

- Ran in Oct-Dec 2009, 100uA, 90\% polarized electron beam, 20cm liquid deuterium target
$\rightarrow$ Two High Resolution Spectrometers (HRS pair) detected electrons in the inclusive mode at DIS $Q^{2}=1.1$ and $1.9 \mathrm{GeV}^{2}$, and five resonance kinematics.
- Spokespersons: Robert Michaels, Paul Reimer, X. Z.
- Students: Xiaoyan Deng, Kai Pan, Diancheng Wang
- Postdoc: Ramesh Subedi



## E08-011 Kinematics

| Kine\# | HRS | $E_{b}(\mathrm{GeV})$ | $\theta_{0}(\mathrm{deg})$ | $E_{0}^{\prime}(\mathrm{GeV})$ | $R_{\mathrm{e}}(\mathrm{kHz})$ | $R_{\pi^{-}} / R_{e}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DIS\#1 | Left | 6.067 | 12.9 | 3.66 | $\approx 210$ | $\approx 0.5$ |
| DIS\#2 | Left \& Right | 6.067 | 20.0 | 2.63 | $\approx 18$ | $\approx 3.3$ |
| RES I | Left | 4.867 | 12.9 | 4.0 | $\approx 300$ | $<\approx 0.25$ |
| RES II | Left | 4.867 | 12.9 | 3.55 | $\approx 600$ | $<\approx 0.25$ |
| RES III | Right | 4.867 | 12.9 | 3.1 | $\approx 400$ | $<\approx 0.4$ |
| RES IV | Left | 6.067 | 15 | 3.66 | $\approx 80$ | $<\approx 0.6$ |
| RES V | Left | 6.067 | 14 | 3.66 | $\approx 130$ | $<\approx 0.7$ |

## DIS Asymmetry Results

$$
\begin{aligned}
& \qquad A_{Q^{2}=1.085, x=0.241}^{\text {phys }}=-91.10 \pm 3.11 \pm 2.97 \mathrm{ppm} \\
& A^{S M}=\left(1.156 \times 10^{-4}\right)\left[\left(2 C_{1 \mathrm{u}}-C_{1 \mathrm{~d}}\right)+0.348\left(2 C_{2 \mathrm{u}}-C_{2 \mathrm{~d}}\right)\right]=-87.7 \mathrm{ppm} \\
& \text { uncertainty due to PDF: } 0.5 \% \\
& \text { uncertainty due to } \mathrm{HT}: 0.5 \% / \mathrm{Q}^{2}, \quad 0.7 \mathrm{ppm}
\end{aligned}
$$

$$
A_{Q^{2}=1.901, x=0.295}^{p h y s}=-160.80 \pm 6.39 \pm 3.12 \mathrm{ppm}
$$

$$
A^{S M}=\left(2.022 \times 10^{-4}\right)\left[\left(2 C_{1 \mathrm{u}}-C_{1 \mathrm{~d}}\right)+0.594\left(2 C_{2 \mathrm{u}}-C_{2 \mathrm{~d}}\right)\right]=-158.9 \mathrm{ppm}
$$

uncertainty due to PDF: 0.5\% 5\% uncertainty due to $H T: 0.5 \% / Q^{2}, \quad$ 1.2ppm

## Previous data: Elastic PVES + APV



## Add JLab PVDIS


zoom in

best fit

$2 C_{1}$ Wang et al., Nature 506, no. 7486, 67 (2014);
best fit

## pa:TICLE PHYSICS

## Quarks are not ambidextrous

By separately scattering right - and left-handed electrons off quarks in a deuterium target, researchers have improved, by about a factor of five, on a classic result of mirror-symmetry breaking from 35 years ago. SEE LETTER P. 67
Marciano., Nature 506, no. 7486, 43 (2014);

## BSM Mass Limit on eq VA contact interaction



Wang et al., Nature 506, no. 7486, 67 (2014);
X. Zheng, HiX2014, Laboratori Nazionali di Frascati, Nuveוnטeו <U ו4

## Resonance Background Data Coverage


$\rightarrow$ Four setting covered the full resonance region;
*"Grouping" of lead glass blocks allowed a reasonable study of the W-dependence;

## Resonance PV Asymmetry Results

A: Matsui, Sato, Lee, PRC72,025204(2005)
B: Gorchtein, Horowitz, Ramsey-Musolf, PRC84,015502(2011)
C: Hall, Blunden, Melnitchouk, Thomas, Young, PRD88, 013011 (2013)


Wang et al., PRL 111, 082501 (2013);

## Coherent PVDIS Program with SoLID @ 11 GeV



SoLID Physics topics:

- PVDIS deuteron (180 days) $-C_{2}, \sin ^{2} \theta_{w}$, CSV, diquarks,
- PVDIS proton (90 days) d/u
- PV with ${ }^{3} \overrightarrow{\mathrm{He}}$ (LOI)
- SIDIS
- J/ $\psi$
X. Zheng, HiX2014, Laboratori Nazionali di Frascati, November 2014


## Coherent PVDIS Program with SoLID @ 11 GeV



Goal on $C_{2 q}$ : one order of magnitude improvement over 6 GeV
X. Zheng, HiX2014, Laboratori Nazionali di Frascati, November 2014

## Coherent PVDIS Program with SoLID @ 11 GeV

$\left[2 \mathrm{~g}^{\mathrm{eu}}-\mathrm{g}^{\mathrm{ed}}\right]_{\mathrm{AV}}$


Coherent PVDIS Program with SoLID @ 11 GeV $\left[29^{\circ \mathrm{ou}}-\mathrm{g}^{\mathrm{ec}}\right]_{\mathrm{Av}}$

$\left[2 g^{\text {eu }}-g^{\text {ed }}\right]_{V A}$
X. Zheng, HiX2014, Laboratori Nazionali di Frascati, November 2014

## Summary and Perspectives

The 6 GeV PVDIS from JLab:

- Improved world data on the eq VA effective coupling term $2 C_{2 u}{ }^{-} C_{2 d}$ by factor of five; agrees with the SM; and showed $2 C_{2 u}-C_{2 d}$ is $2 \sigma$ from zero-indicating a nonzero contribution to PVDIS asymmetry due to quark's chirality preference; BSM mass limits complimentary to collider experiments.
- Resonance PV asymmetries seem to indicate duality in the electroweak observables for the first time.
"New construction" experiments at JLab 12 GeV :
- PVDIS @ 11 GeV (SoLID) will improve $C_{2 q}$ by another order of magnitude.

Subedi et al, NIM-A724, 90 (2013); Wang et al., PRL111, 082501 (2013);
Wang et al., Nature506, no.7486, 67 (2014); Want et al., arXiv:1411.3200 (nucl-ex)

## It's not easy to count electrons! - Our customized fast counting DAQ with online particle identification



## Data Quality

## (pair-wise

 asymmetry pull plots):$$
\text { pull }=\frac{A_{i}-\langle A\rangle}{\Delta A_{i}}
$$


helicity-pair-wise asymmetry pull
X. Zheng, HiX2014, Laboratori Nazionali aı rrascatı, November ZU14

## From Measured to Physics Asymmetry

-correcting for background $f_{i}$ with asymmetry $A_{i}$ :

$$
A^{\text {phys }}=\frac{\left(\frac{A^{\text {raw }}}{P_{b}}-\sum_{i} A_{i} f_{i}\right)}{1-\sum_{i} f_{i}}
$$



$$
\begin{aligned}
A^{\text {phys }} & \approx \frac{A^{r a w}}{P_{b}} \Pi_{i}\left(1+\bar{f}_{i}\right) \\
\bar{f}_{i} & \equiv f_{i}\left(1-\frac{A_{i}}{A^{\text {raw }}} P_{b}\right)
\end{aligned}
$$

From Measured to Physics Asymmetry

$$
A_{Q^{2}=1.085, x=0.241}^{\text {raw }}=-78.45 \pm 2.68 \pm 0.07 \mathrm{ppm}
$$

| $P_{b}$ | $88.18 \%$ |
| :---: | :---: |
| $\Delta P_{b}$ | $\pm 1.76 \%$ |
| $1+f_{\text {depol }}$ | 1.0010 |
| (syst.) | $<10^{-4}$ |
| $1+f_{\mathrm{Al}}$ | 0.9999 |
| (syst.) | $\pm 0.0024$ |
| $1+f_{\mathrm{dt}}$ | 1.0147 |
| (syst.) | $\pm 0.0009$ |
| $1+f_{\mathrm{rc}}$ | 1.015 |
| (syst.) | $\pm 0.020$ |
| $1+f_{\gamma \gamma \text { box }}$ | 0.998 |
| $1+\bar{f}_{\gamma \gamma, \gamma \mathrm{Zboxes}}$ | - |
| (syst.) | $\pm 0.002$ |
|  |  |


| $\Delta f_{\pi-}$ | $\pm 0.009 \%$ |
| :---: | :---: |
| $\Delta \bar{f}_{\text {pair }}$ | $\pm 0.04 \%$ |
| $\Delta \bar{f}_{A_{n}}$ | $\pm 2.5 \%$ |
| $\Delta Q^{2}$ | $\pm 0.85 \%$ |
| rescatt bg | $\ll 0.2 \%$ |
| target impurity | $\pm 0.06 \%$ |
|  |  |
| $A^{\text {phys }}$ (ppm) |  |
| (stat.) | -91.10 |
| (syst.) | $\pm 3.11$ |
| (total) | $\pm 2.97$ |
|  |  |

From Measured to Physics Asymmetry

$$
\begin{aligned}
& A_{Q^{2}=1.901, x=0.295}^{\text {raw }}=-140.30 \pm 10.43 \pm 0.16 \mathrm{ppm}(\text { LHRS }) \\
& A_{Q^{2}=1.901, x=0.295}^{\text {raw }}=-139.84 \pm 6.58 \pm 0.46 \operatorname{ppm}(R H R S)
\end{aligned}
$$

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\Delta P_{b}$ | $1.19 \%$ | $\begin{aligned} & 0.1 .50 \% \\ & \pm 1.50 \% \end{aligned}$ | $\Delta f_{\pi^{-}}$ | $\begin{gathered} \pm 0.006 \% \\ +04 \% \end{gathered}$ | $\begin{gathered} \pm 0.003 \% \\ +0.9 \% \end{gathered}$ |
| $\begin{gathered} 1+f_{\text {depol }} \\ \text { (syst.) } \\ \hline \end{gathered}$ | $\begin{aligned} & 1.0021 \\ & <10^{-4} \end{aligned}$ |  | $\begin{gathered} \Delta \bar{f}_{\text {pair }} \\ \Delta \bar{f}_{A_{n}} \end{gathered}$ | $\begin{aligned} & \pm 0.4 \% \\ & \pm 2.5 \% \end{aligned}$ | $\begin{aligned} & \pm 0.2 \% \\ & \pm 2.5 \% \end{aligned}$ |
| $\begin{gathered} 1+f_{\mathrm{Al}} \\ \text { (syst.) } \end{gathered}$ | $\begin{gathered} 0.9999 \\ \pm 0.0024 \end{gathered}$ | $\begin{gathered} 0.9999 \\ \pm 0.0024 \end{gathered}$ | $\Delta Q^{2}$ <br> rescatt bg | $\begin{aligned} & \pm 0.64 \% \\ & \ll 0.2 \% \end{aligned}$ | $\begin{aligned} & \pm 0.65 \% \\ & \ll 0.2 \% \end{aligned}$ |
| $1+f_{\mathrm{dt}}$ <br> (syst.) | $\begin{gathered} 1.0049 \\ \pm 0.0004 \end{gathered}$ | $\begin{gathered} 1.0093 \\ \pm 0.0013 \end{gathered}$ | target impurity | $\pm 0.06$ | $\pm 0.06 \%$ |
| $\overline{1+f_{\mathrm{rc}}}$ <br> (syst.) | $\begin{gathered} 1.019 \\ \pm 0.004 \end{gathered}$ |  | $\begin{gathered} A^{\text {phys }}(\mathrm{ppm}) \\ \text { (stat.) } \\ \text { (syst.) } \\ \text { (total) } \\ \hline \end{gathered}$ | $\begin{gathered} \hline-160.80 \\ \pm 6.39 \end{gathered}$ |  |
| $\begin{gathered} 1+f_{\gamma \gamma \text { box }} \\ 1+\bar{f}_{\gamma \gamma, \gamma \text { Zboxes }} \\ \text { (syst.) } \\ \hline \end{gathered}$ | $\begin{gathered} \hline 0.997 \\ - \\ \pm 0.003 \end{gathered}$ | $\begin{gathered} - \\ 1.005 \\ \pm 0.005 \\ \hline \end{gathered}$ |  |  |  |

## Pion Asymmetries

| HRS, Kinematics | Left DIS\#1 | Left DIS\#2 | Right DIS\#2 |
| :---: | :---: | :---: | :---: |
| narrow path |  |  |  |
| $A_{\pi}^{\text {meas }} \pm \Delta A_{\pi}^{\text {meas }}$ (total) (ppm) | $-48.8 \pm 14.0$ | $-22.0 \pm 21.4$ | $-20.3 \pm 6.0$ |
| $A_{e, \text { dit }}^{\text {bc,raw }} \pm A_{e, \text { dit }}^{\text {bc, raw }}$ (stat.) (ppm) | $-78.5 \pm 2.7$ | $-140.3 \pm 10.4$ | $-139.8 \pm 6.6$ |
| $f_{\pi / e} \pm \Delta f_{\pi / e}($ total $)\left(\times 10^{-4}\right)$ | $(1.07 \pm 0.24)$ | $(1.97 \pm 0.18)$ | (1.30 $\pm 0.10)$ |
| $\left(\frac{\Delta A_{e}}{A_{e}}\right)_{\pi^{-}, n}$ | $0.89 \times 10^{-4}$ | $0.63 \times 10^{-4}$ | $0.27 \times 10^{-4}$ |
| wide path |  |  |  |
| $A_{\pi}^{\text {meas }} \pm \Delta A_{\pi}^{\text {meas }}$ (total) (ppm) | $-41.3 \pm 12.8$ | $-23.7 \pm 21.4$ | $-20.3 \pm 6.0$ |
| $A_{e, \text { dit }}^{\text {bc,raw }} \pm \Delta A_{e, \text { dit }}^{\text {bc,raw }}$ (stat.) ( ppm ) | $-78.3 \pm 2.7$ | $-140.2 \pm 10.4$ | $-140.9 \pm 6.6$ |
| $f_{\pi / e} \pm \Delta f_{\pi / e}$ (total) $\left(\times 10^{-4}\right)$ | (0.72 $\pm 0.22)$ | $(1.64 \pm 0.17)$ | (0.92 $\pm 0.13)$ |
| $\left(\frac{\Delta A_{e}}{A_{e}}\right)_{\pi^{-}, w}$ | $0.54 \times 10^{-4}$ | $0.55 \times 10^{-4}$ | $0.21 \times 10^{-4}$ |

## Pair Production Background

- Took reversed-polarity runs, mostly to determine e+/e-ratio. Positron asymmetry from those runs have very large error;
- Assumed positron asymmetry to be similar to $\pi$ - asymmetry;
- Effect on the measurement is about 10 times larger than $\pi$ background.


## SLAC E122 vs. JLab E08-011

|  | SLAC E122 (1978) | JLab E08-011 (2009) |
| :--- | :--- | :--- |
| Beam | $37 \%, 16.2-22.2 \mathrm{GeV}$ | $90 \%, 6.0674 \mathrm{GeV}, 100 \mathrm{uA}$ |
| Target | $30-\mathrm{cm}$ LD2, LH2 | $20-\mathrm{cm}$ LD2 |

