Jefferson Lab Measurements of Nuclear R and F_L

Simona Malace Jefferson Lab

HiX2014, November 17 – 21 2014, Frascati Italy

Outline

- Why are we interested in high-precision measurements of nuclear R and separated structure functions?
- Methodology of model-independent, true Rosenbluth L/T separations and why those are "hard" measurements to do! (*thus only few have been done*)
- Quantitatively, how small of a nuclear medium effect on R would be needed to re-assess the way we think about the antishadowing and the EMC effect regions?
- Brief summary of existing measurements of R_A-R_D from charged lepton scattering in the Deep Inelastic Scattering (DIS) region
- Preliminary, exciting results on R_A-R_D from Jefferson Lab in the Resonance (RES) region from the 6 GeV running
- Plans for future: new experiment planned at Jefferson Lab during the 12 GeV running to measure nuclear modifications of R and of the separated structure functions via modelindependent, true Rosenbluth L/T separations

Physics Motivation for Nuclear L/Ts

> Fundamental questions on the nuclear modifications of the nucleon structure functions

- What is the origin of the antishadowing?
- EMC effect
- Nuclear Parton Distribution Functions: no constraints from separated structure functions \rightarrow working in the limit of $\sigma_A/\sigma_D = F_2^A/F_2^D$

Too few measurements on $R_A - R_D$, $F_L^{A,D}$, $F_1^{A,D}$, $F_2^{A,D}$, and even on R_p , F_1^p , F_2^p , F_2^p

Basics: Rosenbluth L/T Separations

Separate L and T contributions to the total cross section by performing a fit of the reduced cross section dependence with ε at *fixed x and Q²*

$$\frac{d^2\sigma}{d\Omega dE'} = \Gamma(\sigma_T(x,Q^2) + \varepsilon\sigma_L(x,Q^2)) = \Gamma\sigma_T(1+\varepsilon R) \quad \varepsilon = 1/(1+2(1+\nu^2/Q^2)\tan^2(\theta/2))$$

$$F_1(x,Q^2) = \frac{KM}{4\pi^2 \alpha} \sigma_T(x,Q^2) \quad F_2(x,Q^2) = \frac{K}{4\pi^2 \alpha} \frac{\nu}{(1+\nu^2/Q^2)} [\sigma_T + \sigma_L]$$

Requirements for precise L/Ts:

As many ε points as possible spanning a large interval from 0 to 1

 \rightarrow as many (E, E', θ) settings as possible

• Very good control of point-to-point systematics \rightarrow 1-2 % on the reduced cross section translates into 10-15 % on F_L

Example: L/Ts at Jefferson Lab

True, model-independent Rosenbluth L/Ts are time consuming

- Each ϵ point requires different values of: beam energy, momentum and angle
- Here 5 changes of beam energy, momentum and angle to obtain R and the separated structure functions at one given (x,Q²) via model-independent true Rosenbluth L/T separations

5 hours per beam pass change

٠

• 12 hours per linac energy change

Hall C at Jefferson Lab

• 20 minutes per angle and momentum change

Basics: $R_A - R_D$ from σ_A / σ_D

$$\frac{\sigma_A}{\sigma_D} = \frac{\sigma_A^T}{\sigma_D^T} (1 + \frac{\varepsilon}{1 + \varepsilon R_D} (R_A - R_D)) \quad \varepsilon' = \frac{\varepsilon}{1 + \varepsilon R_D} \qquad \frac{\sigma_A}{\sigma_D} \approx \frac{F_2^A}{F_2^D} [1 - \frac{(R_A - R_D)(1 - \varepsilon)}{(1 + R_D)(1 + \varepsilon R_D)}]$$

- The cross section ratio is equal to the F_2 structure function ratio only if ϵ = 1 or R_A = R_D
- Advantage of extraction method: many systematic uncertainties cancel in the cross section ratio (detector performance, kinematics, acceptance, beam...)

Basics: $R_A - R_D$ from σ_A / σ_D

▶ R typically a small quantity (< 1): even a *small non-zero* $R_A - R_D$ in absolute value could imply *non-negligible nuclear medium modifications of* R

Example: x = 0.175, $Q^2 = 4 \text{ GeV}^2$ R ~ 0.2: if $\Delta R = 0.04 \rightarrow \sim 20\%$ effect from nuclear medium

x = 0.175, Q² = 20 GeV² R ~ 0.08: if ~20% effect from nuclear medium $\rightarrow \Delta R = 0.016$

- Very good control of experimental systematics needed, all possible corrections to the cross section ratio must be accounted for (i.e. Coulomb corrections, if non-negligible)
- Search for medium effects most efficient at low to moderate Q² in a dedicated L/T experiment

Implications of $\Delta R \neq 0$

How small of a ΔR becomes significant?

V. Guzey et al., PRC 86 045201 (2012)

 \blacktriangleright The impact of a non-zero ΔR for the **antishadowing region** has been analyzed

"Since the nuclear dependence of R has not as yet been systematically measured, we shall test two assumptions for ΔR ..."

1) (Absolute) $R_A - R_D = 0.04$

2) (Relative) $(R_A - R_D)/R_N = 30\%$

Both assumptions based on NMC $R_{sn} - R_c$

Two data sets have been analyzed:

• EMC, BCDMS, NMC:
$$\varepsilon \sim 1$$

$$\frac{\sigma_A}{\sigma_D} \approx \frac{F_2^A(x, Q^2)}{F_2^D(x, Q^2)}$$

■ SLAC: ε < 1

$$\frac{F_1^A(x,Q^2)}{F_1^D(x,Q^2)} < \frac{\sigma_A}{\sigma_D} < \frac{F_2^A(x,Q^2)}{F_2^D(x,Q^2)}$$

Implications of $\Delta R \neq 0$

V. Guzey et al., PRC 86 045201 (2012)

 \blacktriangleright The impact of a non-zero ΔR for the **antishadowing region**

 \rightarrow Antishadowing disappears for F_1 ratio, remains for F_2

 \rightarrow Antishadowing from longitudinal photons?

Implications of $\Delta R \neq 0$

EMC effect

> A very well measured behaviour like the EMC effect still offers surprises – the tension between *low* ε *Jefferson Lab and high* ε *SLAC* data on heavy targets

- Х
- > How would the ratio look for the separated structure functions F_2 , F_1 , F_L ? Is F_1 modified differently than F_2 by the nuclear medium?
- Often the cross section ratio is identified with the F₂ structure function ratio and therefore with nuclear modifications of **quark** distributions

Is $\sigma_A / \sigma_D \epsilon$ dependent?

Hints of $\Delta R \neq 0$ in DIS

 Coulomb effects have not been accounted for in the SLAC E140 analysis (non-negligible at SLAC and Jefferson Lab kinematics)

→ Re-analysis of combined data sets from SLAC and Hall C: E140 (Fe), E139 (Fe) and Hall C (Cu) at x = 0.5 and $Q^2 = 4 - 5 \text{ GeV}^2$ arXiv:0906:0512

• Coulomb corrections calculated within the Effective Momentum Approximation and the ϵ' dependence of the cross section ratios σ_A/σ_D fitted to re-extract $R_A - R_D$

Basics: Coulomb Effects

- Acceleration of incoming and deceleration of outgoing electrons in the Coulomb field of the target nucleus
- Effect can be neglected at high energies but not at Jefferson Lab and <u>effect</u>
 SLAC kinematics
- Distorted and NOT plane wave Born approximation (DWBA vs PWBA) is the appropriate framework to calculate the scattering cross section

A more practical calculation, the Effective Momentum Approximation (EMA) has been verified/tuned to agree with DWBA calculations in the quasielastic region (no such study done for DIS)

Correction factor for cross sections in EMA:

$$F_{ccor} = \frac{\sigma(E,E')}{\sigma(E+V,E'+V)} \times \frac{1}{F_{foc}^2} \qquad F_{foc} = \frac{E+V}{E}$$
$$V = \frac{4}{5}V_0 \qquad V_0 = \frac{3\alpha(Z-1)}{2R}$$

Aste et al., Eur.Phys.J.A26 167-178, 2005

Coulomb corrections calculated with EMA

Existing Measurements of R_A-R_D from Charged-Lepton Scattering

Model-independent extractions from dedicated L/T experiments

E140, <mark>SLAC</mark> – before 1988	DIS	Fixed target: D, Fe, Au 5 beam energies	Q ² : 1 – 5	R _d , R _{Fe} , R _{Au} R _{Fe,Au} - R _d
E140x, <mark>SLAC</mark> - 1991	DIS	Fixed target: H, D, Be 5 beam energies	Q ² : 0.5 – 7	R _p , R _d , R _{Be} R _{d,Be} - R _p
E02-109/E04-001, JLab – 2005	QE+RES	Fixed target: H, D, C, Al, Fe 4 beam energies	Q ² : 0.2 – 2.5	R _{d'C,Al,Fe} R _{C,Al,Fe} - R _d
E06-009/E04-001, JLAB – 2007	QE+RES	Fixed target: D, C, Al, Fe, Cu 6 beam energies	Q ² : 0.5 – 4	R _{d'C,Al,Fe,Cu} R _{C,Al,Fe,Cu} - R _d

RES \rightarrow W < 2, DIS \rightarrow W > 2, QE \rightarrow quasielastic scattering on nuclei

Other extractions: NMC, HERMES

NMC, CERN – before	DIS	Fixed target: C, Ca, Sn several beam energies	Q ² : 3 – 35	R _{Sn} -R _C , R _{Ca} - R _C
HERMES, <mark>DESY</mark> – before 2000	DIS	Fixed target: H, D, He, N 1 beam energy	Q ² : 0.5 – 15	R_N/R_D , R_{He}/R_D

Existing Measurements of R_A-R_D in DIS: HERMES

> Other extractions, HERMES: single beam energy (no ε arm at fixed x and Q²)

• No clear pattern from HERMES: at lower $Q^2 R_A/R_D$ appears to be systematically larger than 1

Existing Measurements of R_A-R_D in DIS: NMC

Other extractions, NMC: several beam energies Arneodo et al., Nucl. Phys. B 481 23-39, 1996

The cross section ratio in each x bin is fitted simultaneously to the data at all muon energies for all values of Q^2 using a parametrization with 4 free parameters: ΔR and 3 other to describe the Q^2 dependence of the F_2 structure function ratio

$$\frac{\sigma^{A}}{\sigma^{C}} \approx \frac{F_{2}^{A}}{F_{2}^{C}} \left[1 - \frac{1 - z_{i}}{(1 + \bar{R})(1 + z_{i}\bar{R})} \Delta R\right] \quad z_{i} = f(y, Q^{2}, E) \quad \bar{R} = \frac{1}{2} (R^{A} + R^{C}) \quad \frac{F_{2}^{A}}{F_{2}^{C}} = (a_{1} + a_{2} lnQ^{2})(1 + a_{3}/Q^{2})$$

Existing Measurements of R_A-R_D in DIS: SLAC

Model-independent extractions, SLAC: 5 beam energies, extractions of R_A – R_D at fixed x and Q²

> Coulomb corrections have not been applied; corrections are not negligible: for example, for Fe at x = 0.5 and Q² = 5 it can range from 0.5% at large ε to 2% at low ε

Measurements of ΔR in the Res. Region: JLab

Jefferson Lab @ 6 GeV: E04-001/E06-109, true Rosenbluth L/T separations on D and Al, C, Fe, Cu in the resonance region

Primary physics goals:

3.5

3

2.5

1.5

0.5

0 0

0.5

 $Q^2 (GeV)^2$

- → Study the nuclear dependence of R and of the separated structure functions
- ightarrow Study quark-hadron duality in nuclei

.137 GeV

1.5

 $W^2 (GeV)^2$

Hall C at Jefferson Lab

Vahe Mamyan, Ph.D. thesis, University of Virginia

Measurements of $\Delta R \neq 0$ in the Res. Region: JLab

- 6 GeV JLab E04-001/E06-109: very careful analysis to yield a high-precision measurements of ΔR
 - → all relevant corrections applied (Coulomb corrections included)
 - ightarrow 2 methods for cross sections extraction employed
 - \rightarrow exhaustive study of systematics underway

Vahe Mamyan, Ph.D. thesis, University of Virginia

R_c - R_D (Q² = 3.5) = 0.07 +/- 0.005 (uncorr.) +/- 0.016 (corr.) preliminary

Preliminary results point to detectable nuclear medium modifications of R in the resonance region

Measurements of F_1 , F_L in the Res. Region: JLab

6 GeV JLab E04-001/E06-109: access the separated structure functions on nuclei and study quark-hadron duality

To the MRST pQCD fit EMC effect corrections and isoscaler corrections are also added

Vahe Mamyan, Ph.D. thesis, University of Virginia 19

Plans for Future: E12-14-002 at JLab

We plan to extract in a model independent fashion via the Rosenbluth technique:
8 proceeding of the second seco

 $\overrightarrow{} R_p, R_p - R_p$ $\overrightarrow{} R_A - R_p \text{ for C, Cu, Au}$ $\overrightarrow{} F_1, F_L, F_2 \text{ for H, D, C, Cu, Au}$ $x: 0.1 - 0.6 ; Q^2:1 - 5 GeV^2$

Each central L/T extraction (black stars) :

→ Hall C spectrometers, SHMS and HMS
→ up to 6 beam energies

 \rightarrow D, Cu at all kinematics shown; H, C, Au at select kinematics

 Statistical goal: 0.2 – 0.5% (depending on the target) in a W² bin of 0.1 GeV²

S.P. Malace - Spokesperson and contact

E. Christy, D. Gaskell, C. Keppel, P. Solvignon spokespeople

Hall C at JLab after the 12 GeV Upgrade

A new spectrometer (SHMS) built and installed in Hall C for the 12 GeV run
 E12-14-002 will use both spectrometers for L/Ts

SHMS in Hall C at JLab

Calorimeter	S1X S1Y	Nobel Gas	Dipole	Parameter	SHMS Design
		Cerenkov		Range of Central Momentum	2 to 11 GeV/c
			00 00	Momentum Acceptance $\boldsymbol{\delta}$	-10% to +22%
				Momentum Resolution	0.03-0.08%
				Scattering Angle Range	5.5 to 40 deg
				Solid Angle Acceptance	> 4.5 msr
Aerogel	Wire Ch	nambers		Horizontal Angle Resolution	0.5 - 1.2 mrad
S2X S2Y	leavy Gas Cerenko	ov		Vertical Angle Resolution	0.3 - 1.1 mrad
				Vertex Length Resolution	0.1 - 0.3 cm
Trigger: 2 pairs of scintillators segmented in the x and			Tracking Rate Capability	5 MHz	
y directions (quartz	bars)			Beam Capability	Up to 90 μA,

- → Tracking: 2 drift chambers, 6 planes each
- → Particle identification: Nobel Gas Cherenkov (Ar/Ne) for electron pion separation
- \rightarrow Particle identification: Heavy Gas Cherenkov (C₄F₈O) for kaon pion separation
- → Particle identification: electromagnetic shower calorimeter (Pb glass)

11 GeV beam

E12-14-002: Experimental Setup

SHMS has a large momentum bite: we will collect a wealth of data within the spectrometers acceptance

Besides the model-independent L/T separations at the central kinematics, we will perform L/Ts everywhere in the spectrometers acceptance where (E, E', θ) scans overlap

S.P. Malace - Spokesperson and contact E. Christy, D. Gaskell, C. Keppel, P. Solvignon spokespeople

E12-14-002: Projections

- → Models/fits to generate the σ_{red} (to extract R, σ_T) and σ_A/σ_D (for ΔR and σ_A^T/σ_D^T extraction)
- → Best assumptions for (ϵ) point-to-point systematic uncertainties (inspired by 6 GeV JLab run): 1.8 % on σ_{red} and 1.1 % on σ_A/σ_D and use a Monte Carlo method to propagate the uncertainties into the extraction of σ_T , R, σ_A^T/σ_D^T , R_A-R_D

Method:

 \rightarrow large sets of random numbers are generated and used as weights for σ_{red} or σ_A/σ_D at each individual ϵ

 \rightarrow fits are performed with ε to pseudo-data sets of randomized quantities and the average and the standard deviation of each collective are obtained

S.P. Malace - Spokesperson and contact E. Christy, D. Gaskell, C. Keppel, P. Solvignon spokespeople

E12-14-002: Impact for $R_A - R_D$

Map the x and Q^2 dependence of R_A - R_D independently by measuring on Copper

We will use C and Au to measure $R_A - R_D$ at select kinematics to map the A-dependence of medium modifications of R S.P. Malace - Spokesperson and contact E. Christy, D. Gaskell, C. Keppel, P. Solvignon spokespeople

E12-14-002: Impact for R_A-R_D

Recent analyses have shown that a relatively small but non-zero value of R_A-R_D changes the way we interpret the observations of medium modifications in the antishadowing or in the EMC effect regions

The quality/quantity of existing data is not sufficient to pin down nuclear effects with a high level of precision as needed

Projections shown at central kinematics only; enhanced coverage by adding L/Ts from spectrometers acceptance

E12-14-002 will measure via true, model-independent Rosenbluth L/Ts R_A-R_D in one dedicated experiment and set the most precise constraints to date on possible nuclear medium modifications of R

E12-14-002: Impact for σ_A/σ_D and F_L^A/F_L^D , F_1^A/F_1^D

- > Constrain/verify the universality of nuclear modification in σ_A/σ_D
- > Provide *experimental constraints for nuclear PDF fits from separated structure functions*
- > Are the separated structure functions modified differently by the nuclear medium?

Proposed measurements shown at central kinematics only; the large acceptance of SHMS/HMS will provide enhanced coverage (data will extend to lower and higher x than shown)

Summary

→ R_A - R_D has a direct impact on the way we interpret the observations of medium modifications in the antishadowing and in the EMC effect regions R_A - R_D → $\frac{F_1^A}{F_2^D} \neq \frac{F_2^A}{F_2^D}$

 \rightarrow There are hints of a non-zero R_A - R_D from DIS analyses and resonance region preliminary measurements

→ The quality/quantity of existing data on nuclear separated structure functions and R is not sufficient to pin down nuclear effects with a high level of precision as needed

E12-14-002 at Jefferson Lab will measure separated structure functions and R on the free nucleon and nuclei via model-independent true Rosenbluth L/Ts to address fundamental questions on the nuclear modifications of the nucleon structure functions

- Origin of the antishadowing: are longitudinal photons playing a role?
- EMC effect: is F₁ modified differently than F₂ by the nuclear medium?
- Constraints for nuclear PDFs from separated structure functions
- Experimental constraints on nuclear medium modifications of σ_A/σ_D

Backup Slides

Impact for R_p and R_d-R_p: Summary

- R_p (x and Q² dependence) in a kinematic region where its contribution to the structure functions is not negligible but measurements are scarce
- $R_d R_p$ measurements, verify whether $R_d R_p \sim 0$ at higher Q^2

Model-independent Rosenbluth L/Ts from dedicated experiments (DIS)

Model-independent F_L, F₁, F₂ for proton and deuteron: constrain moments of L/T separated structure functions; access non-singlet distributions

PR12-14-002: Impact for R_p

Without our proposed measurements very few model-independent, true Rosenbluth L/Ts from dedicated experiments at low to moderate x and Q²

We have the same kinematic coverage for R_d-R_p but with smaller uncertainties

Existing L/Ts on proton in DIS

 → Data sets (on H and D) from 8 experiments (1970 - 1985), 7 of which normalized to E140
 → Corrections applied to bin-center data at the same x and Q² for a given L/T Model-independent L/Ts on proton from *dedicated experiments* in DIS surprisingly scarce: E140x and E99-118

→ Uncertainties on R translate directly into uncertainties on structure functions

Moments of Structure Functions

> Moments of the F_1 structure function: tests of pQCD fits

P. Monaghan et al. Phys. Rev. Lett. 110 (2013) 15, 152002

Formalism: Nuclear PDFs

Nuclear PDFs: the free proton framework is typically used to analyze nuclear data in search of process-independent nuclear PDFs (nPDFs)

Assumptions:

- Factorization
- nPDFs obey the same evolution equations and sum rules as free PDFs
- Isospin symmetry: $u^{n/A}(x) = d^{p/A}(x)$, $d^{n/A}(x) = u^{p/A}(x)$
- Some collaborations: neglect nuclear modifications in deuterium

■ ..

Formalism: Nuclear PDFs

Nuclear PDFs: the free proton framework is typically used to analyze nuclear data in search of process-independent nuclear PDFs (nPDFs)

Example: EPS09

<u>Data</u>: most constraints from charged lepton scattering DIS (F_2^A/F_2^D) but few also from Drell-Yan dilepton production on p+A and from neutral pion production on dAu and pp

Nuclear PDFs: EPS09

Not enough data to allow for an independent extraction of each parton flavor; no constraints from separated structure functions; working in the limit of R_A=R_D

ΔR : Model-Dependent Extractions

<u>NMC: R_{Sn} - R</u> Nucl. Phys. B 481, 23 (1996)

 \rightarrow 3 muon beam energies but ΔR extracted using Q² dependent fit at fixed x

From published paper

The function R is sensitive to the differences in cross sections measured at different incident muon energies. For a given (x, Q^2) bin the cross section ratio $\sigma^{\text{Sn}}/\sigma^{\text{C}}$ for an incident muon energy E_i can be written as

$$\frac{\sigma^{\text{Sn}}}{\sigma^{\text{C}}}(E_i) = \frac{F_2^{\text{Sn}}}{F_2^{\text{C}}} \frac{1+R^{\text{C}}}{1+R^{\text{Sn}}} \frac{1+z_i R^{\text{Sn}}}{1+z_i R^{\text{C}}} \approx \frac{F_2^{\text{Sn}}}{F_2^{\text{C}}} \left[1 - \frac{1-z_i}{(1+\bar{R})(1+z_i\bar{R})} \Delta R \right], \tag{6}$$

where

$$z_i = \frac{1}{1 + \frac{1}{2}(y_i^2 + Q^2/E_i^2)/(1 - y_i - Q^2/4E_i^2)},$$
(7)

with $y_i = \nu/E_i$ and $\bar{R} = \frac{1}{2}(R^{Sn} + R^C)$; the z_i coefficients are always smaller than unity and mainly depend on y_i .

For each x bin a parametrisation with the form of Eq. (6) was fitted simultaneously to the data at each incident muon energy for all values of Q^2 . The parametrisation had four free parameters: the mean value of ΔR in the bin, and the three parameters a_1 , a_2 and a_3 of the function $F_2^{\text{Sn}}/F_2^{\text{C}} = (a_1 + a_2 \ln Q^2)(1 + a_3/Q^2)$ describing the Q^2 dependence of the structure function ratio in this x bin. The quantity \overline{R} was taken to be equal to the SLAC parametrisation [18] with artificially large errors.

ΔR : Model-Dependent Extractions

Å

0.4

NMC: R_{Sn} **- R**_C Nucl. Phys. B 481, 23 (1996)

From published paper

Since no significant x dependence of ΔR was observed, we averaged the measurements over x and obtained at a mean Q^2 of 10 GeV²

$$\Delta R = R^{\rm Sn} - R^{\rm C} = 0.040 \pm 0.021 \text{ (stat.)} \pm 0.026 \text{ (syst.)}.$$
(8)

ΔR : Model-Dependent Extractions

HERMES: ³He/D, N/D, Kr/D Phys. Let

Phys. Lett. B 567, 339 (2003)

 \rightarrow 1 beam energy

→ R_A/R_D extracted at fixed x by fitting the cross section ratio as a function of ε with R_A/R_D and F_2^A/F_2^D as free parameters under the assumption that:

 R_A/R_D and F_2^A/F_2^D are constant over the Q² range covered by the data

Cross section ratio at fixed x, running Q^2 and ε

R1990

SLAC: Whitlow et al. Phys. Lett. B 250 (1990)

→ Combined re-analysis of 8 SLAC experiments to extract R_p , R_D and $R_D - R_p$

→ The data from the other 7 experiments were normalized to E140 by fitting cross sections to a model with normalization factors as free parameters

→ The normalized cross sections were binned in intervals of x and Q² and bin-centering corrections was applied. R was extracted at the center of each bin by doing a linear regression of cross sections with ε

 \rightarrow It was observed that $R_p \sim R_d$ thus the 2 values in each bin were averaged to yield R

 \rightarrow A global parametrization of R (R1990) was obtained by fitting these extractions with world data: E140, EMC, BCDMS, CDHSW...

Experiment	Hydrogen normalization	Deuterium normalization
E49a [1] E49b [3] E61 [4] E87 [2] E89a [5] E89b [6] E139 [7]	$1.012 \pm 0.005 \pm 0.003$ 0.981 1.011 \pm 0.008 \pm 0.004 0.982 \pm 0.005 \pm 0.011 0.989 \pm 0.020 \pm 0.020 0.953 ± 0.004 ± 0.004	$\begin{array}{c} 1.001 \pm 0.006 \pm 0.002 \\ 0.981 \pm 0.005 \pm 0.002 \\ 1.033 \pm 0.007 \pm 0.003 \\ 0.986 \pm 0.004 \pm 0.010 \\ 0.985 \pm 0.021 \pm 0.020 \\ 0.949 \pm 0.004 \pm 0.001 \\ 1.008 \pm 0.004 \pm 0.002 \end{array}$
E140 [8,9]		1.000

E140: the only L/T experiment (on D, Fe, Au)

Why as Many Beam Energies as Possible?

E94-110 (Hall C) Y. Liang, Ph.D. Thesis, Hampton 2002

 \rightarrow ~ 200 individual L/T separations

→ one of the most precise L/T ever performed: it became a benchmark for this type of experiments

→ data have been since included in global fits of F_1 , F_L , R, F_2 and used for F_L moments calculations

7 beam energies

Why as Many Beam Energies as Possible?

E94-110 (Hall C) Y. Liang, Ph.D. Thesis, American University 2002

3

Why as Many Beam Energies as Possible?

PR12-14-002

Example:

Without non-standard beam energies: uncertainty on R extraction larger

Out of 23 central L/Ts, 9 have the lowest ε point provided by a 5.5 GeV beam energy setting

PR12-14-002: Backgrounds and Corrections

Coulomb Corrections

→ We will take additional measurements to constrain/verify Coulomb corrections procedure

Q^2	x_b	E	E'	θ	ϵ	у	W	$C^{Au}_{ m Coulomb}$
3.48	0.50	4.4	0.69	64.6	0.20	0.84	2.08	11.6%
9.03	0.50	11.0	1.38	45.5	0.20	0.88	3.10	6.2%
2.15	0.50	4.4	2.11	27.9	0.70	0.52	1.74	3.5%
5.79	0.50	11.0	4.83	19.0	0.70	0.56	2.58	1.9%

At fixed ε we expect σ_{Au}/σ_D to scale with Q², any measured variation would be mostly due to Coulomb corrections

PR12-14-002: Impact for R_d-R_p

 \blacktriangleright We plan to map the x and Q² dependence of R_d - R_p independently

> We will extend measurements of $R_d - R_p$ to larger Q^2

Impact of R_p uncertainties on F₂ extractions

> When transitioning from cross sections to F_2 at low to intermediate Q^2 even a small offset in R can lead to a non-negligible uncertainty in the structure function extraction

Example: At low Q² (between 1.1 and 2.4 GeV²), and moderate x (between 0.1 and 0.5), a ~25% (0.08 in absolute value) change in R allowed by the precision of current data, leads to up to 4% change in F_2