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The EMC Effect

1983: First observation of the modification of inelastic structure functions
In nuclei

—> Thirty years of measurements of inclusive lepton scattering from
nuclei have shown definitively that quark distributions are modified in

nuclei.
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Properties of the EMC
effect:

1. Shape appears to
be more or less
universal

2. Small or no Q?
dependence

3. Size of the effect at
large x increases
with A
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The EMC Effect

A huge theoretical and experimental effort has been expended in
attempts to understand the origin of the EMC effect
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EMC Effect Models

Early attempts to model the EMC effect included the “known” nuclear
structure via the Fermi gas model, or some other mean field model

—> Convolution calculations, combined with nuclear binding effects
—>Introduction of non-nucleonic degrees of freedom - “Nuclear pions”

Other explanations rely on direct modification of nucleon structure or
other “exotic” configurations

—>Dynamical rescaling

—>Multiquark clusters — 6 quark, 9 quark bags
- Quark-meson coupling inspired models

Recently, efforts have been made to start from the “best” nuclear
structure information available (realistic wave functions beyond mean
field, pion contributions constrained by Drell-Yan) Kulagin and Petti NPA 765,
126 (2006)

- Helps separate the “interesting” part of the EMC effect from regular
“nuclear physics”
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Nuclear Dependence of the EMC Effect

SLAC E139 studied the nuclear
dependence of the EMC Effect at
fixed x

Results consistent with
- Simple logarithmic A dependence
—>Average nuclear density*

*uniform sphere with radius R,,
R.? = 5/3 <r?> > charge radius of nucleus

Many models of the EMC effect either
implicitly or explicitly assume the size
of the EMC effect scales with average
nuclear density

- Constraining form of nuclear
dependence can confirm or rule out
this assumption
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JLab Experiment E03-103

Measurement of the EMC Effect in light nuclei (3He and “He) and at
large x

—>3He, “He amenable to calculations using “exact” nuclear
wave functions

- Large x dominated by binding, conventional nuclear effects

A(e,e’) at 5.77 GeV in Hall C
at JLAB (with E02-019, x>1)

Targets: H, ?H, 3He, “He,
Be, C, Cu, Au

Six angles to measure Q2
dependence

Spokespersons: DG and J. Arrington
Graduate students: J. Seely and A.
Daniel
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Deep Inelastic Scattering at low W

o AR I IR LR R B A BN AL
210 - E03103/E02019 [
) X w213 |
: =~ % E,=5.77 GeV
Caponlcal DIS O 5| s cev Jws2 |
regime:
6
Q?>1GeV? AND
W2 > 4 GeV? 4
—> Scattering from 2
“quarks” in the nucleon or
T Ty L1 L1
nucleus %2 03

*At JLab (6 GeV), we have access to large Q?, and W?>4 GeV? up to x=0.6

*At x>0.6, we are in the “resonance region” - excited, bound states of the
nucleon, but Q7 is still large

*Are we really sensitive to quarks in this regime?
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Carbon/?H Ratio and Q? Dependence

E03-103 Results |
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Carbon/?H Ratio and Q? Dependence

E03-103 Results |
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Clear deviation from scaling at W?<2.2 GeV?
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More detailed look at scaling

C/D ratios at fixed x
are Q2independent
for

W?>2 GeV?2 and
Q%>3 GeV?

For E03-103, this
extends to x=0.85
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Large correction due
to “proton excess”

Note: HERMES
data has been

renormalized by
1.009 - NMC

SLAC fit; A=3

SLAC fit; A=12
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EMC Effect in He
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Large correction due
to “proton excess”

—> Test validity of
Isoscalar correction
using 3He/(D+p) for
x<0.6

SLAC fit; A=3
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EMC Effect in 2He
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JLab E03103 and the Nuclear
Dependence of the EMC Effect

Carbon New definition of “size” of

~ 1.1 the EMC effect
2
= IdR_,,/dx|=0.280 +/- 0.028 —~ Slope of line fit from
L i x=0.351t0 0.7
R i
' q ek b
n *H Assumes shape is
= HH # : $ universal for all nuclei
* bt
09 - H$ i | —~>Normalization
{ Normalization (1.6%) * uncertainties a much
L smaller relative

0.3 0.4 0.5 0.6 0.7 0.8 0.9 contribution

—->Measured EMC ratios for light nuclei (*He, “He, Be, and C)
- Results consistent with previous world data
—>Examined nuclear dependence a la E139
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JLab Results — Light Nuclel

J. Seely, et al., PRL103, 202301 (2009)
0B p——7T—— T T T
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Scaled nuclear density = (A-1)/A <p>

- remove contribution from struck nucleon
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<p> from ab initio few-body calculations

- [S.C. Pieper and R.B. Wiringa, Ann. Rev.
Nucl. Part. Sci 51, 63 (2001)]

14



JLab Results — Light Nuclel

J. Seely, et al., PRL103, 202301 (2009)
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<p> from ab initio few-body calculations

- [S.C. Pieper and R.B. Wiringa, Ann. Rev.
Nucl. Part. Sci 51, 53 (2001)]
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EMC Effect and Local Nuclear Density
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Are there other quantities
sensitive or related to local
density?

16



Local Density > Short Range Correlations

What drives high “local” density in the nucleus?

Tensor interaction and short range repulsive core in NN potential
lead to high momentum tail in nuclear wave function - correlated
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High momentum - short distance scales

SRCs an indication of two nucleons at relatively small separation
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Measuring Short Range Correlations

To measure the (relative) probability of finding a correlated pair, ratios of
heavy to light nuclei are taken at x>7 - QE scattering

If high momentum nucleons in nuclei come from correlated pairs, ratio of A/D
should show a plateau (assumes FSls cancel, etc.)
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1.4<x<2 => 2 nucleon correlation

2.4<x<3 => 3 nucleon correlation
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(6x/A)(6/2)

SRCs and Nuclear Density

New JLab data on ratios at x>7
a, ratios for:

—>Additional nuclei (Be, Cu, Au)
—>Higher precision for targets with
already existing ratios
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N. Fomin et al, Phys.Rev.Lett. 108 (2012) 092502

- Relative probability to find
SRC shows similar
dependence on nuclear density
as EMC effect
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SRCs and Nuclear Density
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New JLab data on ratios at x>7
a, ratios for:

—>Additional nuclei (Cu, Be, Au)
—>Higher precision for targets with
already existing ratios

- Relative probability to find
SRC shows similar

dependence on nuclear density

as EMC effect
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EMC Effect and SRC

Weinstein et al first
observed linear correlation
between size of EMC
effect and Short Range
Correlation “plateau”

Connection strengthened
with addition of Beryllium
data

-dREMC/dx
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4.895/5

-0.08426 + 0.003869

O. Hen et al, Phys.Rev. C85 (2012) 047301

1 2 1 1 1

3 4 5 6

a,(A/d)

This result provides a quantitative test of level of correlation
between the two effects

- |s the EMC effect a result of SRCs? High momentum nucleons very far

off shell?
.geff;Zon Lab
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Short Range Correlations — np Dominance

® SRCs can be studied in more detail via triple-
G , Scanere coincidence reactions
eeren \1 —> Electron knocks out high momentum proton from
D carbon nucleus
& Q - “Partner” backward-going proton or neutron also
Knocked-out deteCted
proton
0 qurelated partner ‘
10° i v 0
. . c - 96 +/- 22%
Conclusion: High S l : | °
e
momentum nucleons & - Subedi, et al, Science
are domlnated by np Lt L B pp/np from ['°C(e,e’pp) /'*C(e,e’pn) 1/2 320, 1476 (2008)
S 12 12
H -‘—B | pp/2N from [ “"C(e,e’pp) / "C(e,e’p) 1/2

pal IS o V¥V np/2N from 12C(e,e’pn) /1ZC(e,e’p)

0 0 (&) n rom "C(p,2pn) /C(p,
Similar measurements |& 1qo|- 4 "™ cernice®

4 n -

for “He recently N 4 5
published = Larger [ J 9.5 +/- 2%
P, approaching | } Shneor, et al, PRL 99,

repulsive core 03 0.4 0.5 0.6 | 072501 (2007)

PRL 113 (2014) 022501 Missing Momentum [GeV/c]
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NP Dominance in Heavy Nuclei
O. Hen et al., Science 346 (2014) 614, doi:10.1126/science. 1256785

The Jefferson Lab CLAS Collaboration
Selected for Science Express (16 October 2014)

2 100 :_ np fraction J
s || c Al Fe Pb
-06 -
g 50 - B68% C.L.
T N _ 095% C.L.
2—) - pp fraction
0 ‘_ .—*
(dp) 0 1 2 < 1

10 50 10 A

CLAS data mining initiative examined high-
momentum protons at x>7 to examine np
dominance for large range of nuclei

Examined double ratio:
[A(e,e'pp)/ A(e,e'p))/[12C(e,e'pp)/12C(e,e'p)]
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Flavor Dependence and Short Range
Correlations

High momentum nucleons in the nucleus
come primarily from np pairs

- The relative probability to find a high
momentum proton is larger than for
neutron for N>Z nuclei

1 7
A
n (p) ~ CLQ(A,y)TLdQ)) Ty, = —
g 2w, PA
1 A—Z
n, (p) . az(A,y)na(p)  wn = ——

Probability to find SRC

-dR /X

=
th

S
N

If the EMC effect comes from high momentum nucleons then effect driven by

protons (u-quark dominates) 2>

u-quarks modified more than d-quarks
Similar flavor dependence predicted earlier in mean-field approach
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M. Sargsian, arXiv:1209.2477 [nucl-th] and arXiv:1210.3280 [nucl-th]
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Flavor Dependence of the EMC Effect

Mean-field calculations predict a flavor dependent EMC effect for N2Z nuclei

—_
[\

—_
—_

u (d) quark to feel additional vector

Gold / y | Isovector-vector mean field (p) causes
/ attraction (repulsion) in N#Z nuclei

—_

<
©

Cloét, Bentz, and Thomas, PRL 102,
252301 (2009)

<
o's

e
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<
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Flavour dependent EMC ratios
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o

Experimentally, this flavor dependence has not been observed directly

Flavor dependence could be measured using PVDIS, pion Drell-Yan, SIDIS,
unpolarized EMC Effect...
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Flavor dependence from 4°Ca and #8Ca

CBT model predicts a

~3% effect for 48Ca at / 1.2 "
x=0.6 O0D | o 4882- no flavor dependence |
>N/Z=1.4 T 8Ca - with flavor dependence
Will be measured at JLab 1 F
@ 12 GeV
E12-10-008
Spokespersons: Daniel, o8 - 7
Arrington, Gaskell I car’®ca Relative Norm. (1.4%)

| | |

02 03 04 05 06 0.7 0.8 0.9

X

Assuming no flavor dependence, difference between 4°Ca and “8Ca should
be less than < 1% assuming SLAC E139 A-dependant parametrization

.geffggon Lab
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Summary: EMC-SRC Connection

* New, high precision data has provided insight into the nuclear
dependence of the EMC effect - local density

« A wealth of new data in the arena of Short Range Correlations
has allowed quantitative, detailed comparisons of the
“‘number” of SRCs in nuclei to the size of the EMC effect

* The striking EMC-SRC correlation implies that both share the
same origin, or one drives the other

« If EMC effect caused by highly virtual nucleons, expect to see
enhanced effect for up quarks (for N>Z nuclei)

« Calculation by Cloét et al also predicts enhancement for u
quarks even for pure shell model structure

.geff;Zon Lab
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Quarks in the Nucleus

« The observed EMC-SRC connection provides exciting

new information about the “mechanics” of the origin of
the EMC effect

 Fundamental questions remain:

— Description of the nucleus using only hadronic
degrees of freedom remarkably successful- why?

— Related: at what point do we need quarks and
gluons?

— SRCs may tell us where to find the EMC effect — (high
momentum nucleons) — but what are the dynamics
that lead to this modification of quark distributions?
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Measuring Short Range Correlations

- At x>1, we can access
higher momentum
components, if we go to
large enough Q?
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High momentum nucleons in the nucleus can
be accessed using quasi-elastic scattering

- At quasi-elastic peak (x=17), all parts of the
nucleon momentum distribution contribute
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Figure courtesy N. Fomin, after Frankfurt, Sargsian,
and Strikman, Int.J.Mod.Phys. A23 (2008) 2991-3055 30



EMC Effect: From Light to Heavy Nuclei

* Few-body nuclei provide an excellent opportunity to
attempt calculations incorporating detailed nuclear

structure

* |nfinite nuclear matter also a useful limit for EMC effect
calculations/modeling

— E03-103 took additional data from Cu and Au in part
to examine shape of EMC effect at very large x

« Analysis of large A data complicated by Coulomb
Corrections - no clear prescription for DIS
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EMC Effect in Heavy Nuclei - Cu

All data sets
corrected for

coulomb distortion | 2 1-2 §  E03103 Norm. (1.8%) v ; |
E139/E140 did ©) . (1.4%
otncudenn | & : oenemorg
published results) | — |

FLT Y N o
Some tension ! L ; |
between E03103/ Ut ;
E140and E139 — | Lty
results : !

Potential nuclear

dependence of R?
- See Simona
Malace’s talk

02 03 04 05 06 07 08 0.9
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Ongoing Studies at JLab

E03-103: Heavy target data for more information on EMC ratios = higher
precision QE ratios (a2) on aluminum?

E07-006: Triple coincidence measurement (e,e’pN) from “He. Study SRCs from a
few body target

E08-014: Inclusive electron scattering at x>1 (x>2) from 4°Ca, 48Ca, 3He, “He
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Inclusive EMC and SRC Ratios at 12 GeV

Straightforward extension of EMC-SRC correlation studies with additional nuclei

—>JLab 12 GeV experiments will provide data on a variety of targets, including:

—=>2H, SHe, 4He
—>6Li, 7Li, Be, 19B,11B, C
—->Al, 40Ca, 48Ca, Cu

EMC: E12-10-008 (Arrington, Daniel, Gaskell)
SRC: E12-06-105 (Arrington, Day, Fomin, Solvignon)

super-fast quarks,

medium modifications
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E12-10-008 and E12-06-105

Hall C experiments will
provide more inclusive
data

—->E12-06-105 x>1
—->E12-10-008 EMC Effect

Will provide additional
data on light and medium-
heavy targets

—>2H, 3He, “He

6L, 7Li, Be, 1°B,"B, C
~Al, 4°Ca, 48Ca, Cu

" e JLab + SLAC existing data

- ® HallC-12 GeV, year 1 56Fe 197 pu
_ +%
i 27A|

1.5 2 25 3 35 4 45 5
a,-1

First running in Hall C after completion of
12 GeV Upgrade will include a few days
for EMC/x>1 measurements on 0B, 1B,

and Al (parasitic)
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E12-11-107: In-Medium Structure Functions

Measure structure function of high momentum 14 q Pje
: ) : 7
nucleon in deuterium by tagging the spectator ‘U,

—>Final state interactions cancelled by taking
double ratios

—~>Requires new, large acceptance proton/neutron
detector at back angles

1.1 Q*=5GeV? P

GYIGP

1

----- {i‘% | !

0.7
o ; LAD Sector 3
85° ;"
0.5 . i .
0.4 d(e e ’p) ;7: LAD Sector 2
0.3 A LAD Sector 1 j
L 1 1.1 1.2 1.3 14 1.5 1.6 i i
. ; : } ; = Spokespersons: O. Hen, L. Weinstein,
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Sensitivity to flavor dependence

Extracting the flavor dependence from the inclusive ratio relies on comparing
the measured to the “expected” EMC effect in “Ca relative 4°Ca
- Can measure “size” of the EMC effect either at fixed x, or via “slope”

Ratio __________|R@x=06 dRJdx (x=0.3-0.7)

48Ca/*0Ca (no flavor dep.) 0.993 1.050
48Ca/*°Ca (w/flavor dep.) 0.970 +/- 0.013 +/- 0.014 1.115 +/- 0.057 +/- 0.016

o —

normalization
stat + random sys

The “no flavor dependence” ratio above uses the nuclear dependence of the
EMC effect from SLAC E139 A-dependent fit

- Other, plausible nuclear dependencies (e.g. A-13) yield similar results,
change the expected ratio by < 0.5% at fixed x=0.6, or by 2.5% for the slope
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EMC Effect Measurements at Large x

SLAC E139 most extensive and
precise data set for x>0.2

(GA/GD)ls

Measured o,/o0, for A=4 to 197
“He, °Be, C, 27Al, 40Ca, %¢Fe, 198Ag, 197Au

Size at fixed x varies with A, but
shape (x dep.) nearly constant

JLab E03103 aimed to build on

E139 with:
- Higher precision data for “He

—> Addition of 3He data
—> Precision data at large x

Determine if EMC Effect depends
on A or density, p
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Experimentally, has been shown that high momentum nucleons dominated by np

Short Range Correlations

pairs — also seen in variational Monte Carlo calculations
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