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h ✓ The cleanest way to access FFs is e+e-→qq ̅

γ*/Z0 ✓ Fragmentation Functions (FFs) describe 
the process of hadronization of a parton q  

✓ non-perturbative objects but universal   

Fragmentation Functions: a brief introduction
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✓ depend on the scaled energy of the hadron h: 
x = 2Eh/√s

✓ Dih: new sets of function introduced: parton fragmentation functions 
✓ Dih(z,𝝁2) describes the probability that a parton i (i=u/u,̅d/d,̅s/s,̅c/c,̅b/b,̅g) fragments into 
a hadron h a fraction z of the parton’s momentum 
✓ 𝜇 is the factorization scale. Separates short and long distance physics

process dependent 
short distance interaction

non-perturbative part

QCD-factorization theorem:



What do we mean by fragmentation?

1) The process by which (a system) of hard 
quarks and/or gluons radiate more partons… 

2) … that combine into hadrons…

3) … that decay into 
“stable” particles…

…that can be observed 
in a detector… 

ElectroWeak Perturbative QCD

Hadronization

Decays

Detector

Theory/Phenomenology
Models

Experiments

Experimentally, we push 
from the right, as example: 
- measure all K± 
- then φ 
- subtracting φ daughters  
  gets closer to primary K± 
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e+e- data sets
• Perturbative QCD corrections lead to logarithmic 
scaling violations via the evolution equations (DGLAP)  
• Most of data are obtained at LEP energies 
• Measurement of both quark and antiquark 
fragmentation 
• 3-jet fragmentation to access gluon FF difficult  
• The information on how the individual q flavor 
fragments into h depends on the “tagging techniques”

Few data at high z and at low energy 
BaBar data cover this region

• Many attempts to extract FF from e+e- data: KKP, 
AKK, HKNS, Kretzer …

NPB 725,181(2006), NPB 803,42(2008), PRD 75,094009(2007), 
PRD 62,054001(2000), NPB 582,514(2000), NPB 803,42(2008); 

• Global analysis: e+e-, SIDIS, and pp
PRD 75,114010(2007); PRD 76,074033(2007); PRD 86,074028(2012)

z
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Chin. Phys. C38, 090001 (2014)



Collins Fragmentation Function

e+ e-

q̅

q

h1

h2

⇒
⇐ ⇐or

φ1

φ2

⇒

“Standard” unpolarized FF

Polarized FF (Collins FF): dependence on z=2Eh/√s, P⊥, and sq

• H1
⊥

 is the polarized fragmentation function or Collins FF 
• Chiral-odd function 
• could arise from a spin-orbit coupling 
• leads to an asymmetry in the angular distribution of final state 
particles (Collins effect) 
• first non-zero Collins effect observed in SIDIS PRL 94,012002(2005)!

 NPB 765, 31(2007)

NPB 396,161(1993)

In e+e- annihilation, γ* (spin-1) → spin-1/2 q and q̅  
- in a given event, the spin directions are unknown, but they must be parallel 
- they have a polarization component transverse to the q direction ~sin2θ (θ wrt the e+e-)   

• exploit this correlation by using hadrons in opposite jets  

e+e-→qq→̅π1π2X  (q=u, d, s) ==> σ∝cos(φi)H1
⊥(z1) ⊗ H1

⊥(z2),
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Different combinations of charged pions ⇒ sensitivity to favored or disfavored FFs  
• favored process: fragmentation of a quark of flavor q into a hadron  with a valence quark 
of the same flavor: i.e.: u→π+, d→π- 
• disfavored for d→π+, u→π-, and s→π±

u u ̅π+

π−
fav fav +

π−
π+

dis dis
u u ̅

e+

e-

e+

e-

u u ̅π+

π+
fav dis +

π−
π−

dis fav
u u ̅

e+

e-

e+

e-

fav + dis
fav + dis

e+

e-

u ̅
u π±

π±

Unlike-sign pion pair = U:!
π∓π±: (fav x fav)+(dis x dis) 

Like-sign pion pair = L:!
π±π±: (fav x dis)+(dis x fav) 

Charged pion pair = C (U+L): !
ππ: (fav + dis)x(fav + dis)!

π=π±

Favored and Disfavored processes
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Silicon Vertex Tracker

Solenoid (B=1.5T) Instrumented  

Flux Return

EMC

9 GeV

3.1 GeV

DIRC

• Asymmetric-energy e+e- collider operating at the 
   ϒ(4S) resonance (√s=10.58 GeV )  

- High Energy Ring (HER): 9.0 GeV e- 
- Low Energy Ring (LER): 3.1 GeV e+ 
- c.m.-lab boost, βγ≈0.56

• High luminosity: ∫L ~ 500 fb-1   

Drift  
Chamber 

• Asymmetric detector 
- c.m. acceptance -0.9<cosθ*<0.85 
wrt e- beam 

• Excellent performance 
- good tracking, mass resolution 
- good γ, π0 reconstruction 
- full e, µ, π, K, and p identification 

PEP-II and the BaBar detector at SLAC
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Inclusive hadron production @ BABAR
e+e- → γ* → uu,̅dd,̅ss,̅cc ̅→ hX (h= π±, K±, p/p)̅ 
                        4 :  1 : 1  : 4    @ 10.54 GeV
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✓ J.P. Lees et al. (BaBar Collaboration), PRD 88, 032011 (2013) 
✓ Data samples used: 0.91 fb-1 @ 10.54 GeV + 3.6 fb-1 on-peak for checks and 
    calibrations 
✓ “Prompt” and “conventional” hadrons: 

- prompt: primary hadrons or products of a decay chain in which all particles have 
lifetimes shorter than 10-11 s 
- conventional: includes the decay daughters of particles with lifetimes in the range 
1-3x10-11 (i.e. K0

s and weakly decaying strange baryons)  
✓ The uncertainties on the results are dominated by systematic contributions.



Efficiency matrix:

Charged hadron identification

10I. GarziaHiX2014

• Well-reconstructed tracks from the primary interaction point 
• Excellent identification of π±, K±, and p/p̅ 
   ⇒ Cherenkov light plus dE/dx 

- Efficiency matrix Eij: performance of our 
hadron identification procedure as a 
function of plab 

- very hight at low plab (good dE/dx) 
- plateau for plab where DIRC provides 
good separation 
- fall off at highest plab, where the Cherekov 
angles for different particles converge  

- calibrated using data control samples   
   → we derive corrections to the simulated 
        efficiency matrix (green band) 
- large efficiency over much of the 
momentum range 
- few-% mis-identification



Selection, corrections, and systematic checks

• extensive systematic cross checks: data-MC 
comparison, check for θ, φ,… dependence, 
compare positive and negative charged tracks,… 
   - largest contribution from particle 
      identification, backgrounds, and tracking 
      efficiencies
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• Correct these spectra for: 
- physics background: few-% (mostly τ+τ-) 
- interaction in the detector material (up to 4% 
at low momentum) 
- tracks and event selection efficiency, 
momentum resolution, transform to c.m. frame

• We use Eij to construct the raw production rates (1/Nevt
sel)(dni/dplab), defined as the number 

reconstructed particles per selected event per unit momentum in the lab frame 
• we count nj=n∑i Eijfi, and calculate fi ,  

      the true fraction of tracks of type i 



BABAR results: test of hadronization models

• Averaged results over θ, in terms of scaled 
momentum xp = 2p*/Ecm  [1] 
   - Coverage from 0.2 GeV/c to the kinematic limit of 
     5.27 GeV/c   
   - precise data and coverage at high xp

• Default parameters used: (based on previous data: 
higher energies plus ARGUS data)   
• Large discrepancies in general 

- all the models qualitatively describe the bulk of 
the spectra 
- no model describes any spectrum in detail 

• Peak positions consistent with data (except for the 
HERWIG K±) 
• Similar discrepancies observed at higher energies

We compare our cross section with the predictions of 
three hadronization models:

[1] The asterisk denotes quantities in the e+e- c.m. frame
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Scaling Properties

Consider π, K, and p from BABAR, TASSO and SLD   
• Strong scaling violation at high xp (running of αs) and 
at low xp (pion mass)  
• K±: the different flavor composition of the three samples 
modifies the expected scaling violation 
    - models predict about 10%-15% more scaling 
      violation than is observed 

• p/p:̅ the scaling 
prediction for 10.54 GeV 
is consistent with data for 
xp<0.07, but exceeding it 
by as much as a factor 3 
at xp=0.8

Is there something 
missing?

13I. GarziaHiX2014



14I. GarziaHiX2014

BaBar/Belle comparison

• Belle have measured differential cross 
section dσ/dz  [PRL 111, 062002 (2013)] 
• we normalize arbitrarily to compare 

the shapes

Courtesy of David Muller

M. Soleymaninia et al.,  
PRD 88, 054019 (2013)

model 
AKK: NPB 803, 42 (2008) 
HKNS: PRD 75, 094009 (2007)

BaBar
Belle

• FFs for 𝜋 and K from a global analysis of SIDIS 
and e+e- data: 

• BaBar, Belle, TPC, TASSO, TOPAZ, ALEPH, 
OPAL, SLD, DELPHI + HERMES, COMPASS 
• quarks treated as massless particles 

• More details in PRD 88, 054019 (2013)

DSS arXiv:1410.6027 (see also Marco Stratmann's talk)



Transform our cross section into the variable ξ=-ln(xp) 

- BABAR and Z0 data provide precise slope; 
the other data are consistent with the line that 
joins BABAR and Z0 data 
- Similar slopes of the lines for pions and 
protons; different for kaons ==> changing 
flavor composition with increasing ECM

Modified Leading Logarithm Approximation (MLLA) with Local Parton-
Hadron Duality (LPHD) ansatz: 
• a Gaussian function should provide a good description of these spectra  

• fit the spectra with a (distorted) Gaussian function ==>                           
reasonable description of the data  

• the peak position ξ* should decrease exponentially with increasing 
hadron mass at a given Ecm 

• ξ*π > ξ*K, but ξ*K ~ ξ*p/p ̅(consistent with behavior at higher E) 
• should increase logarithmically with Ecm for a given hadron type

Test of MLLA+LPHD QCD
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Collins Fragmentation Function @ BABAR

✓ J.P. Lees et al. (BaBar Collaboration), PRD 90, 052003 (2014) 
✓ Data samples used: 468 fb-1 at ~10.58 GeV 

e+e- → γ* → uu,̅dd,̅ss →  ππX
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RF12 or Thrust RF

All quantities in e+e- center of mass

• Thrust axis to estimate the qq̅ direction 
• φ1,2 defined using thrust-beam plane 
• Modulation diluted by gluon radiation, detector acceptance,…

RF0 or Second hadron momentum RF

[See NPB 806, 23 (2009)]

• Alternatively, just use one track in a pair  
• Very clean experimentally (no thrust axis), less so theoretically 
• Gives quark direction for higher pion momentum

Analysis Reference Frames (RF)
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Collins effect is measured as a function of the pions fractional energy (z1,2=2E𝜋/√s), pions 
transverse momentum (pt1,pt2,pt0), and as a function of the polar angle of the reference axis (𝜃th, 𝜃2)



Acceptance effects can be reduced by performing the 
ratio of U/L sign pion pairs (or U/C): 
-  MC: consistent with a flat distribution 
-  Data: cosine modulation clearly visible 

RF12

• Collins asymmetry: 
  - consider all the U (unlike) and L  (like) sign pion pairs 
  - make histograms of φα= φ1+φ2 or 2φ0 (α=12,0) 

• The MC generator (JETSET) does not include the Collins effect 
→ flat distribution is expected 
  - strong modulation due to acceptance of the detector 
  - but similar distribution for U and L pairs 
• Data shows difference between U and L distributions, that can 
be ascribed to the Collins effect

Raw asymmetries and Double Ratios
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• In each bin, the data sample includes pairs from 
- signal uds events 
- BB ̅events (small, mostly at low z) 
- cc ̅events (important at low/medium z) 
- τ+τ- events (important at high z)

Fraction of ππ due to 
the ith bkg process

True asymmetry

• Charm background contribution is about 30% on average  
       - Both fragmentation processes and weak decays can introduce azimuthal asymmetries  

- We used a D*±-enhanced control sample to estimate its effect

• We must calculate these quantities: 
- Fi using MC sample; we assign MC-data difference in 
each bin as systematic error 
- ABB ̅must be zero; we set ABB ̅= 0 
- Aτ small in simulation; checked in data; we set Aτ = 0

Backgrounds: contributions and corrections 

Bkg asymmetry
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Asymmetry dilution
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The experimental method assumes the thrust axis as qq ̅direction: 
this is only a rough approximation  
RF12: large smearing since the azimuthal angles φ1 and φ2 are 
calculated with respect to the thrust axis. 
RF0: the azimuthal angle φ0 is calculated with respect to the 
second hadron momenta → small smearing due to PID and 
tracking resolution.

We estimate this and other effects using simulation: 
• re-weight MC events in order to reproduce a 

Collins-like effect 
• Determine average dilution values for each bin of 

z, pt and 𝜃

RF12: correction ranges: 
- (1.3-2.3) as a function of z 
- (1.3-3) as a function of pt 
RF0:no correction needed.



Systematic uncertainties
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A large number of systematic checks were 
done. The main contributions come from:  
• Particle identification (PID): few 

percent change in the asymmetry by 
changing the PID cuts 

• Fit procedure: different angular bin size 
leads to about 1% of deviation from 
standard bins 

• MC uncertainties: we used different 
track selection requirements   

• Dilution method  
• Pion transverse momentum resolution 

(only for the asymmetry vs. (pt1,pt2)). The 
pt resolution is about 100 MeV on 
average ==> 10% effect on asymmetries 
for all bins, except for the lowest energies 
(30%)



• Significant nonzero AUL and AUC in all bins 
⇒ strong dependence on (z1,z2):  A12~1-39%, A0~0.5-11% 
⇒ AUC < AUL as expected;  complementary information about the favored and disfavored 
fragmentation processes (PRD 73, 094025 (2006))  
⇒ consistent with z1 ⇔ z2 symmetry 
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Results: A12,0 vs. (z1,z2) 
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Results: A12 vs. (pt1,pt2); A0 vs. pt0 
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• First measurement of Collins asymmetries vs. pt 
in e+e- annihilation at Q2~110(GeV/c)2

• only modest dependence on (pt1,pt2); 
• Interesting shape in RF0 
• Test of evolution effect

Z. Kang et al., arXiv:1410.4877

NLL’: next-to-leading-logarithm approx
LL: leading double logarithm approx
No TMD evolution

RF12 frame
RF0 frame



RF12: thrust polar angle θth

RF0: second-hadron polar angle θ2

A12∝

==> Intercept consistent with zero, as 
expected (consistent with Belle results 
[R.Seidl et al., PRD 86, 039905(E) (2012)])

==> The linear fit gives a non-zero 
constant parameter → the second hadron 
momentum provides a worse estimation 
of the qq ̅direction (consistent with Belle 
results)

A0∝

Results: A12 vs. θth; A0 vs. θ2 
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Anti-deuteron production - via quarks or gluons
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Dark matter (DM) annihilation to quarks and gluons would be a source of primary anti-deuteron (d) in 
cosmic rays 
• the production from standard astrophysical sources is widely expected to be low 
• the detection of an anomalous anti-deuteron flux would be evidence of DM annihilation to colored 

particles, such as quarks and gluons  
BUT 
• to predict the d flux from annihilating DM is necessary to know the fragmentation of q and g to d at 

different energies ==> dominant source of uncertainties (e.g., “coalescence model”) 
• more data in hadronic and e+e- collisions  may help to reduce uncertainties

probe quark fragmentation via  
e+e- → uu, dd, ss

e+e- →ϒ(nS) gives access to gluon 
fragmentation: ϒ(nS)→ggg, ggγ. 

Expected to be the dominant contribution due 
to the large barion production in gluon 

fragmentation

[arXiv:1006.0983; 
 PLB 683,248(2010)]



Anti-deuteron production

26

BABAR has made improved measurements 
of d production in ϒ(nS) (i.e. via gluons) 

and in e+e-→qq near √s~10.6 GeV

J.P.Lees et al., (BaBar Collaboration) 
PRD 89, 111102(R) (2014)

ϒ(1S) sample via  ϒ(2S)→ϒ(1S)𝜋+𝜋- 

D
at

as
et

s u
se

d

total fit

d signal peak
backgrounds

Yields extracted by fitting (fireball function) the 
normalized residual of the combined dE/dx

• Key element is the measurement of the 
combined energy loss (dE/dx) in the 
tracking system 

• Deuterons well-separated from protons 
up to 1.5 GeV/c: 0.5<pLAB<1.5 GeV/c 

• DIRC used as veto

(BaBar Coll.) NIM A 279,615 (2013)



Anti-deuteron production
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• Measured also by ARGUS Collaborations (PLB236, 102 (1990);) 
• Good agreement with CLEO results on the ϒ(2S) and ϒ(1S): 

•  - B(ϒ(2S)→dX)CLEO=(3.37±0.50±0.25)x10-5 
•  - B(ϒ(1S)→dX)CLEO=(2.86±0.19±0.21)x10-5

(D.M. Asner et al., PRD 75, 012009 (2007))

J.P.Lees et al., PRD 89, 111102(R) (2014)

• First measurements of d production in e+e- annihilation at 
c.m. energy ≈ 10.58 GeV and ϒ(3S) 

• Enhancement (one order of magnitude) of d production in 
ggg and gg𝛾 decays as compared to the production from qq  

• No significant evidence of anti-deuteron production in 
ϒ(4S) decays



Summary and conclusions

- precise data at the c.m. energy of 10.54 GeV and at high xp  
- consistent with, improvement upon, measurements at lower Ecm 

- consistent with Belle data [M.Leitgab et al. (Belle Collaboration), PRL 111,062002(2013)] 
- published in Phys. Rev. D 88,032011(2013) 

28I. GarziaHiX2014

Unpolarized FF: inclusive spectra for π±, K±, and p/p ̅ hadrons in e+e- annihilation

Polarized FF: Collins effect for pion pairs

Anti-deuteron results

- as a function of fractional energies, transverse momenta (first measurement in e+e- annihilation), 
reference axis polar angle, and four dimensional space ((z1,z2,pt1,pt2), RF12 only) 

- z and pt dependence as expected, but 𝜃 dependence in RF0 shows differences from expectation 
- general agreement with Belle data (R.Seidl et al. (Belle Collaboration), PRD 86, 039905(E) (2012)) 
- published in Phys. Rev. D 90,052003(2014)  
- Collins effect for KK pairs under investigation 

- Probe quark and gluon fragmentation 
- First measurement in ϒ(3S) decays and e+e-→qq near 10.58 GeV, most precise in ϒ(2S) decays 
- Published in Phys. Rev. D 89,111102 (R)(2014) 



These results are important in order to deeply investigate the 
nucleon structure, to understand the hadronization processes 

and to probe dark matter annihilation
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Stay tuned

Thanks for your attention
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Anselmino et al., PRD 75, 054032(2007), NP Proc.Suppl. 191, 98(2009) 

Improvements from BABAR studies: 
• Increase in the number of pion fractional energy intervals 
• Collins asymmetry behavior vs. pion transverse momenta

h1

H1
⊥σ

e e’

Xp
AT ∝ h1(xB) ⊗ H1

⊥(z)

SIDIS 
HERMES: PRL 94, 012002 (2005) 
COMPASS: NP B765, 31 (2007)

e+e-  annihilation 
BELLE: PRL 96, 232002(2006),  
              PRD 78, 03201 (2008) 

A ∝ H1
⊥(z1) ⊗ H1

⊥(z2)

+

GLOBAL ANALYSIS: simultaneous determination of 
H1

⊥ and the transversity parton distribution function h1 

Extraction of Collins FF from data

! G. Schnell



BaBar/Belle comparison

Courtesy of David Muller



BABAR Results

[1] H. Albrecht et al. (ARGUS Collaboration) Z. Phys. C 44, 547 (1989).

• Averaged results over θ, in term of scaled 
momentum xp = 2p*/Ecm 

- coverage from 0.2 GeV/c to the 
kinematic limit of 5.27 GeV/c  

• Compare nicely with previous data from 
ARGUS   

- consistent everywhere for xp>0.1 
- mass driven scaling violation for 
xp<0.1: ARGUS data systematically 
below  
- (BABAR) more precise  
- (BABAR) better coverage at high xp 
- (ARGUS) extends to low momentum 
for π± → complementary information 



Test of MLLA+LPHD QCD

Test of QCD prediction 
Modified Leading Logarithm Approximation (MLLA) with Local Parton-Hadron Duality (LPHD) ansatz: 
==> a Gaussian function should provide a good description of these spectra   
==> the peak position ξ* should decrease exponentially with increasing hadron mass at a given Ecm 
==> should increase logarithmically with Ecm for a given hadron type

Transform our cross section into the variable ξ=-ln(xp) 

• Fit the spectra with a (distorted) Gaussian function ==> reasonable description of the data 
• ξ*π is higher than ξ*K in agreement with the predicted drop, but ξ*p is not lower than ξ*K 

• Similar behavior observed at higher energies

I. Garzia



Test of MLLA+LPHD QCD: Peak Position

→ MLLA predicts that the peak 
position ξ* 
- should decrease exponentially 
with increasing hadron mass at a 
given Ecm 
- should increase logarithmically 
with Ecm for a given hadron type 
!
→ ξ*π is higher than ξ*K in 
agreement with the predicted drop, 
but ξ*p is not lower than ξ*K (or 
seems to follow different 
trajectories at higher energies)

→ BABAR and Z0 data provide precise slope  
→ The other data are consistent with the line that joins BABAR and Z0 data 
→ Similar slopes of the lines for pions and protons; different for kaons ==> changing 
flavor composition with increasing ECM



MC thrust distributions

uds (signal) 
and  

cc ̅(bg) τ+τ-  
 region

DATA: Evis vs thrust

BhaBha and µ+ µ -(γ) events, 
with γ→e+e- conversion 

uds (signal)
cc ̅
BB̅
τ+τ-

thrust

Event and track selection

• Select hadronic events: 
-number of well-reconstructed charged 
tracks > 2 from the interaction point 

• Selection of two-jet topology events:  
  thrust>0.8  
• Events in the τ+τ- region removed

E
vi

s l
ab

. (
G

eV
)

• Veto on electrons and muons 
• Select of pions in the detector acceptance 
region: 0.41<θlab<2.54 rad 
• Pion fractional energies:  
                         0.15<z=2Eh/√s<0.9



z2 pt2 (pt0)

6x6 bins in (z1,z2) 4x4 bins in (pt1,pt2) (9 in pt0)

• Asymmetry dilution due to the thrust axis approximation. The corrections in the RF12 frame 
range between 1.3-2.3 as a function of z, and between 1.3-3 as a function of pt 

⇒ No correction needed in the RF0 frame       

• Simulated asymmetries also depend on these quantities →must correct in each bin independently 
⇒ Systematic on MC value evaluated by varying track selection/acceptance

• The Collins effect is expected to depend on z1, z2, pt1, pt2 (or pt0), as well as cosθth (or cosθ2)  
⇒ analyze in bins of these quantities:

Asymmetry binning and corrections 



D*±-enhanced control sample

D*±→ D0π±, D0→ Kπ (mode 1) 
                   D0→ K3π (mode 2) 
                   D0→ Kππ0 (mode 3) 
       D0→ KSπ π (mode 4)

1.835<MD0<1.895 GeV/c2 
0.1425<ΔM<0.149 GeV/c2 

(ΔM=MD*-MD0)



Asymmetry dilution
Thrust/qq̅  opening angle

e+e-

thrust
qq ̅θ

The experimental method assumes the thrust axis as qq ̅direction: this 
is only a rough approximation  
RF12: large smearing since the azimuthal angles φ1 and φ2 are 
calculated with respect to the thrust axis; additional dilution due to 
very energetic tracks close to the thrust axis. 
RF0: the azimuthal angle φ0 is calculated with respect to the second 
hadron momenta → small smearing due to PID and tracking 
resolution.

→We study the influence of the detector effects by 
correcting a posteriori the generated angular distribution: 
weights defined as wUL(UC)=1±a•cos(φgen12,0) are applied 
to every selected pion pairs. 

RF12

RF0
 RF12: correction performed for 
each bins of z and pt:  
(1.3-2.3) as a function of z, and 
(1.3-3) as a function of pt. 
RF0:no correction needed.
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RF12: Comparison of BaBar/Belle asymmetries

⇒ Large discrepancy in the last two 
bins of z: 

      - bin-by-bin correction factors 
(30%) 
      - z<0.9 to remove the 
contamination from µµγ background 
and exclusive events  
⇒ Slightly higher at lower z

z1

z2

>0.7

>0.7

0.15-0.2

0.15-0.2 0.2-0.3 0.3-0.5 0.5-0.7 >0.7

0.3-0.5 0.5-0.7

0.3-0.5 0.5-0.7 >0.7 0.5-0.7 >0.7

1 2 3 4 5 6 7 8 9 10 11 (z1,z2)bin
0.2-0.3

Belle (0.2<z<1) 
∫L~547 fb-1 

PRD 86, 039905(E) (2012)

BaBar (0.15<z<0.9) 
 ∫L~468 fb-1

BaBar Preliminary

Belle

BaBar Preliminary

Belle
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z1

z2

>0.7

>0.7

0.15-0.2

0.15-0.2 0.2-0.3 0.3-0.5 0.5-0.7 >0.7

0.3-0.5 0.5-0.7

0.3-0.5 0.5-0.7 >0.7 0.5-0.7 >0.7

1 2 3 4 5 6 7 8 9 10 11 (z1,z2)bin
0.2-0.3

Belle (0.2<z<1) 
∫L~547 fb-1 

PRD 86, 039905(E) (2012)

In order to perform this comparison, 
we used 10 (+1) symmetrized z-bin 
subdivisions, averaging the measured 
Belle and BaBar asymmetries which 
fell in the same symmetric bins

A0
UL and A0

UC : good agreement 
between the BaBar asymmetries 
and the Belle results.

BaBar (0.15<z<0.9) 
 ∫L~468 fb-1

BaBar Preliminary

Belle

BaBar Preliminary

Belle

RF0: Comparison of BaBar/Belle asymmetries



4-D: asymmetry vs. (z1,z2)x(pt1,pt2)

5 5 2 2 5 3 3 5 5 5

U
L
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0

0.1

0.2
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2z
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0 0 5 1 1 5 2 2 5 3 3 5 4 4 5 5
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2z
0.15 0.2 0.3 0.5 0.9
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U
C
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A

0

0.05

0.1 z1=[0.15-0.2]

2z

U
C
12

A

-0.05

0

0.05

0.1

0.15 0.2 0.3 0.5 0.9

z1=[0.3-0.5]
5 5 2 2 5 3 3 5 5 5

z1=[0.2-0.3]

2z
0.15 0.2 0.3 0.5 0.9

z1=[0.5-1]

We study the asymmetries in the RF12 frame in 
a four-dimensional space: 

(z1,z2,pt1,pp2) 
!
• We use 4 zi and 3 pt intervals 
• Test to probe the factorization of the Collins 

fragmentation functions 
• Powerful tools to access pt - z correlation 
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