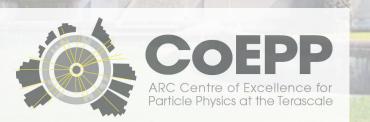


The 4th International Workshop on Nucleon Structure at Large Bjorken x HiX2014


Frascati, Italia: Nov 17-21, 2014.

TRANSVERSE PHYSICS: SIVERS EFFECT

Hrayr Matevosyan

Collaborators:

A. Kotzinian and A.W. Thomas

OUTLOOK

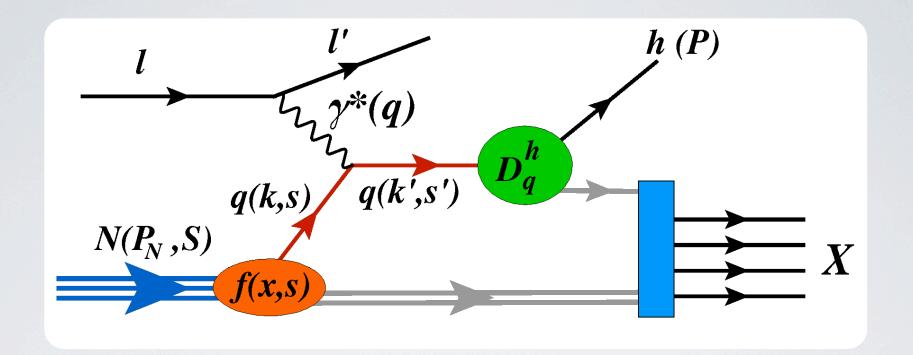
Introduction and Motivation.

- **▶ SIDIS** with Transversely Polarized Target:
 - Sivers PDF from One- and Two- Hadron Production
 - mLEPTO predictions for COMPASS SSAs.
 - mPYTHIA predictions for CLASI2 and EIC SSAs.
- Conclusions.

SIVERS PDF

D. Sivers: PRD 41, 83 (1990).

• Sivers Effect describes the correlation of the unpolarized quark's TM with the transverse spin of the nucleon

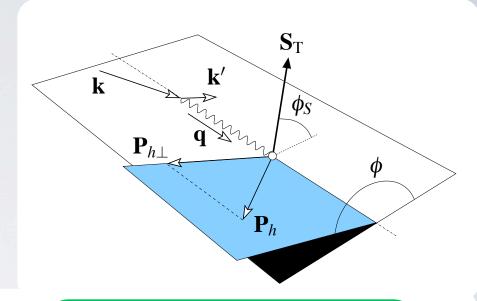

N/q	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_1 h_{1T}^{\perp}$

$$f_{\uparrow}^{q}(x, \mathbf{k}_{T}) = f_{1}^{q}(x, k_{T}) + \frac{[\mathbf{S} \times \mathbf{k}_{T}]_{3}}{M} f_{1T}^{\perp q}(x, k_{T})$$

$$\left(S_T k_T \sin(\varphi_k - \varphi_S)\right)$$

- Naively *T-odd*, gauge-link should be included in the definition.
- Accessible in Polarized SIDIS, Drell-Yan.

$$f_{1T}^{\perp SIDIS} = -f_{1T}^{\perp DY}$$



Sivers Effect in One Hadron SIDIS

SIDIS POLARIZED CROSS-SECTION

A. Bacchetta et. al.: JHEP08, 023 (2008).

• For polarized SIDIS cross-section there are 18 terms in leading twist expansion:

$$\frac{d\sigma}{dx\,dy\,dz\,d\phi_S\,d\phi_h\,dP_{h\perp}^2} \sim F_{UU,T} + \varepsilon F_{UU,L} + \dots$$

Sivers Term

$$+ |S_{\perp}| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) + \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \ldots \right]$$

Extract the specific harmonics:

$$F_{UU,T} \sim \mathcal{C}[f_1 \ D_1]$$

$$F_{UT,T}^{\sin(\phi_h - \phi_S)} \sim \mathcal{C}[k_T f_{1T}^{\perp q} \ D_1]$$

$$\mathcal{C}[fg...] \equiv \sum_{q} \int d^2 \mathbf{k}_T \ f \ g \ ...|_{\mathbf{P}_T = \mathbf{P}_\perp + z\mathbf{k}_T}$$

NEED TMD Fragmentation Function to access Sivers PDF from SIDIS!

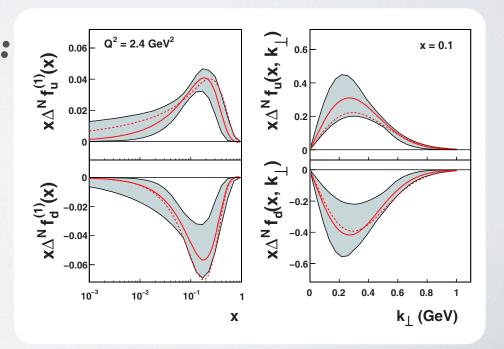
EMPIRICAL EXTRACTIONS OF SIVERS

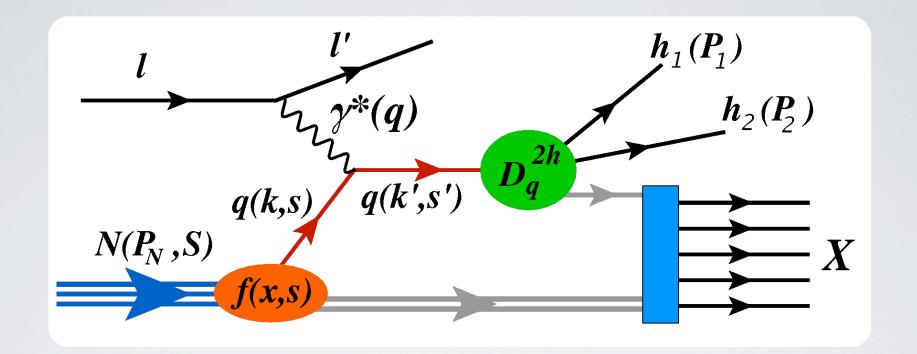
M. Anselmino et. al.: PRD 72, 094007 (2005). PRD 86, 014028 (2012).

Talk by S. Melis

- Sivers SSAs from SIDIS
- Use LO expression for factorized cross-section.
- Parametrize PDFs and FFs.
- Use Gaussian TMD dependence.
- Also TMD evolution in 2012.

$$A_{Siv}^{h} \equiv 2 \frac{\int d\varphi_{S} d\varphi_{h} \, \left(\sigma_{\uparrow}^{h} - \sigma_{\downarrow}^{h}\right) \sin(\varphi_{h} - \varphi_{S})}{\int d\varphi_{S} d\varphi_{h} \, \left(\sigma_{\uparrow}^{h} + \sigma_{\downarrow}^{h}\right)}.$$

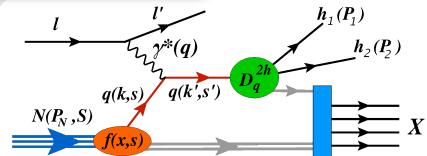

$$A_{Siv}^{h} \sim \mathcal{C}[k_T f_{1T}^{\perp q} \ D_1] / \mathcal{C}[f_1^q \ D_1^{h/q}]$$


$$\Delta^{N} f_{q/p^{\uparrow}}(x, k_T) = \mathcal{N}_q(x) h(k_T) f_1^q(x, k_T)$$

$$\Delta^N f_{q/p^\uparrow} \equiv -rac{2k_T}{M} f_{1T}^{\perp q}$$

$$f_1^q(x, k_T) = f_q(x) \frac{1}{\pi \mu^2} e^{-k_T^2/\mu^2}$$

- Fits to HERMES and COMPASS:
- Current Data can only afford:
 - Large uncertainties, esp. for sea.
 - Approximations: TM and flavor dependence of FF, etc.



Sivers Effect in Two Hadron SIDIS

TWO-HADRON SIDIS

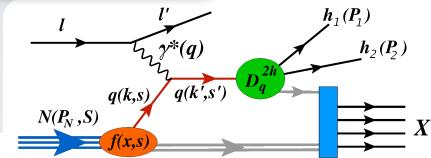
Kotzinian, H.M., Thomas: PRL.113, 062003; PRD.90, 074006; 1407.6572 (2014);

Correlations of quark's TM transferred to two hadrons.

$$\frac{d\sigma^{h_1 h_2}}{dz_1 dz_2 d^2 \mathbf{P}_{1T} d^2 \mathbf{P}_{2T}} = C(x, Q^2) (\sigma_U + \sigma_S)$$

$$\sigma_U = \sum_q e_q^2 \int d^2 \mathbf{k}_T \ f_1^q \ D_{1q}^{h_1 h_2} \quad \sigma_S = \sum_q e_q^2 \int d^2 \mathbf{k}_T \frac{[\mathbf{S}_T \times \mathbf{k}_T]_3}{M} f_{1T}^{\perp q} \ D_{1q}^{h_1, h_2}$$

- ▶ Unpolarized fully unintegrated dihadron Fragmentation Function
 - **♦ Single hadron** FF.
 - $D_{1q}^h(z,P_\perp)$


♦ Dihadron FF.

$$D_{1q}^{h_1,h_2}(z_1,z_2,P_{1\perp},P_{2\perp},\boldsymbol{P}_{1\perp}\cdot\boldsymbol{P}_{2\perp})$$

TWO-HADRON SIDIS

Kotzinian, H.M., Thomas: PRL.113, 062003; PRD.90, 074006; 1407.6572 (2014);

Correlations of quark's TM transferred to two hadrons.

$$\frac{d\sigma^{h_1 h_2}}{dz_1 dz_2 d^2 \mathbf{P}_{1T} d^2 \mathbf{P}_{2T}} = C(x, Q^2) (\sigma_U + \sigma_S)$$

$$\sigma_U = \sum_q e_q^2 \int d^2 \mathbf{k}_T \ f_1^q \ D_{1q}^{h_1 h_2} \quad \sigma_S = \sum_q e_q^2 \int d^2 \mathbf{k}_T \frac{[\mathbf{S}_T \times \mathbf{k}_T]_3}{M} f_{1T}^{\perp q} \ D_{1q}^{h_1, h_2}$$

- ▶ Unpolarized fully unintegrated dihadron Fragmentation Function
 - **♦ Single hadron** FF.

$$D_{1q}^h(z,P_\perp)$$

♦ Dihadron FF.

$$D_{1q}^{h_1,h_2}(z_1,z_2,P_{1\perp},P_{2\perp},P_{2\perp},P_{1\perp}\cdot P_{2\perp})$$

two-hadron correlations

TWO-HADRON SIDIS

Cross Section in terms of Total and Relative Momenta

$$P_h = P_1 + P_2$$
 $R = \frac{1}{2}(P_1 - P_2)$

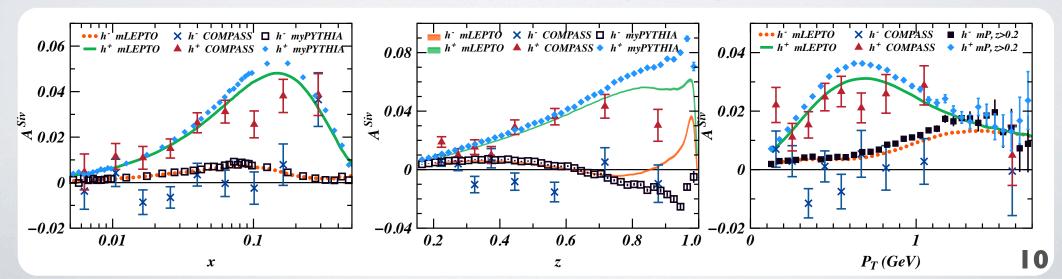
▶ The Sivers term:

$$\sigma_{S} = S_{T} \left(\sigma_{T} \frac{P_{hT}}{M} \sin(\varphi_{T} - \varphi_{S}) + \sigma_{R} \frac{R_{T}}{M} \sin(\varphi_{R} - \varphi_{S}) \right)$$

$$\int d\varphi_{R} \, \sigma_{S} = S_{T} \left(\sigma_{T,0} \frac{P_{hT}}{M} + \sigma_{R,1} \frac{R}{2M} \right) \sin(\varphi_{T} - \varphi_{S})$$

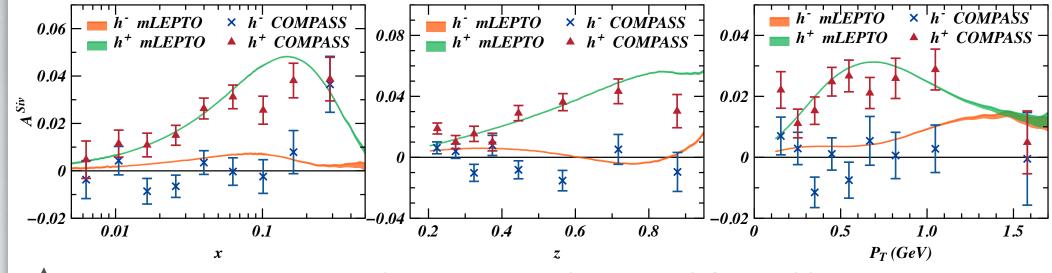
$$\int d\varphi_{T} \, \sigma_{S} = S_{T} \left(\sigma_{T,1} \frac{P_{hT}}{2M} + \sigma_{R,0} \frac{R}{M} \right) \sin(\varphi_{R} - \varphi_{S})$$

+Non-vanishing σ_R is new! Contradiction with earlier

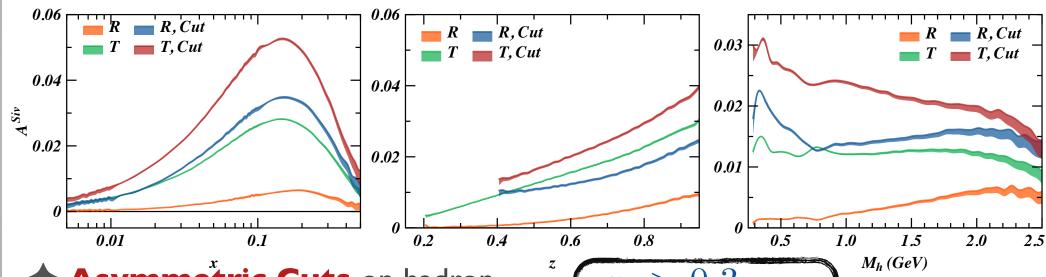

results Bianconi et al: PRD62, 034008 (2000) ? No: Kotzinian et al: 1407.6572 (2014)

$$egin{aligned} oldsymbol{R}^P &\equiv oldsymbol{R} - (oldsymbol{R} \cdot oldsymbol{\hat{P}}_h) oldsymbol{\hat{P}}_h & oldsymbol{R}^P \simeq \xi_2 oldsymbol{P}_1 - \xi_1 oldsymbol{P}_2 \ oldsymbol{R}_T^P \simeq \xi_2 oldsymbol{P}_{1\perp} - \xi_1 oldsymbol{P}_{2\perp} & \xi_i \equiv z_i/(z_1+z_2) \end{aligned}$$

No $oldsymbol{k}_T$ dependence at LO! No contradiction, different R ! ,


EVENT GENERATORS + SIVERS EFFECT

- Two-hadron Sivers SSA need dihadron FF: yet unknown.
- Event generators allow to study exp. kinematics effects.
- Sivers effect modulates quark's azimuthal angle: relatively easy to include in MC generators.
- Use Sivers PDF extraction from Torino group.
- mLPETO used for COMPASS. Earlier studies + Cahn effect, also for CLAS.
- mLEPTO and mPYTHIA agree pretty well.



DIHADRON SIVERS USING MLEPTO MC

→ mLEPTO Predictions for DiHadron Sivers in COMPASS kinematics

Asymmetric Cuts on hadron pair momenta enhances the signal!

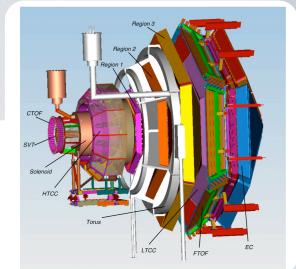
 $z_1 > 0.3$ $P_{1T} > 0.3 \text{ GeV}$

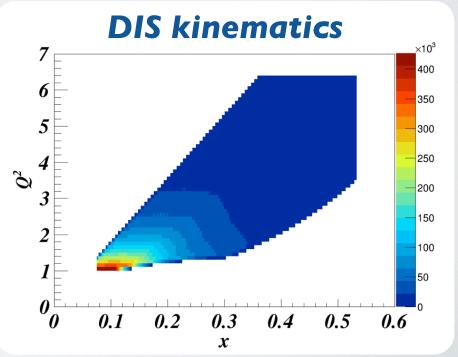
mPYTHIA 6.4 Simulations for CLAS12 and EIC

in collaboration with E.-C. Aschenauer and H. Avakian

CLASI2 @ JLAB I2GeV

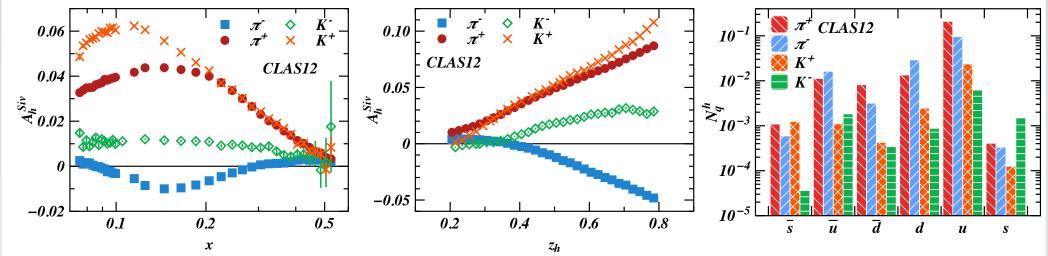
- Upcoming SIDIS experiment, IH and 2H
- 11 GeV electron off polarized proton target.
- Access to large x region of nucleon structure.
- We use mPYTHIA for SIDIS predictions.

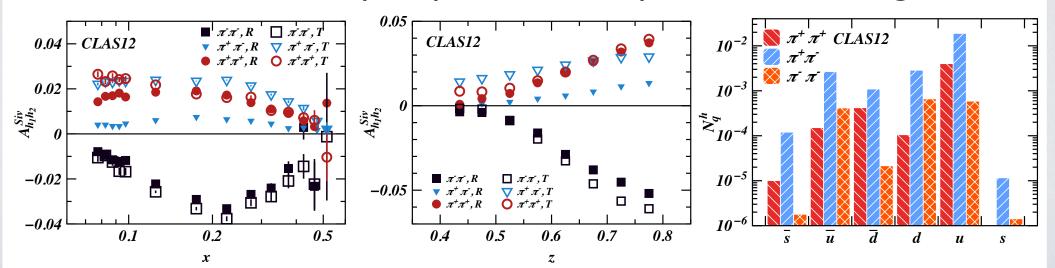

$$0.075 \le x \le 0.532$$


$$1 \text{ GeV} \le Q^2 \le 6.3 \text{ GeV}$$

$$W > 2 \text{ GeV}$$

$$MMis_{(ep)-(e'hX)} \ge 1.5 \text{ GeV}$$

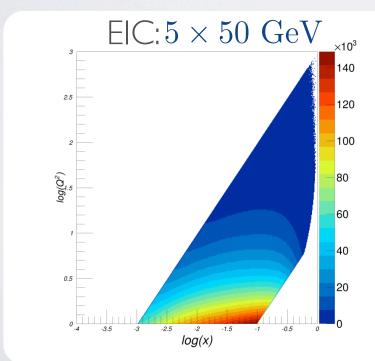

$$MMis_{(ep)-(e'h_1h_2X)} \ge 1.5 \text{ GeV}$$

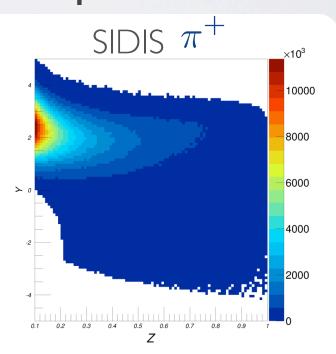


Sivers SSAs at CLAS 12

- **Exploring the large x (HiX) region.**
- **♦ Single hadron** SSAs.

lacktriangle Dihadron SSAs for pion pairs: identical pairs via z-ordering $z_1 \geq z_2$

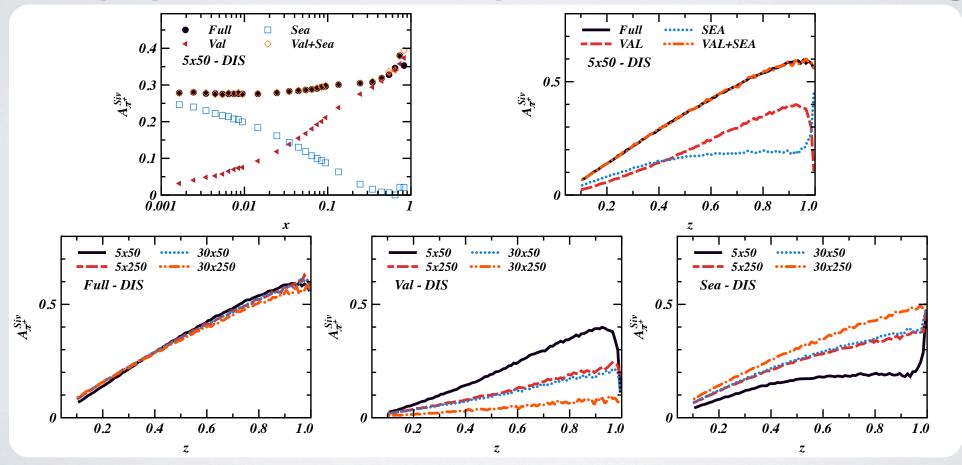



◆ Both Single and Dihadron SSAs are comparable in size!

EIC: eRHIC

White Paper -- Accardi et. al.: 1212.1701(2012).

- EIC using RHIC + electron ring.
- ullet Various proposed beam momenta: $l_e imes P_N$
- We use mPYTHIA for SIDIS predictions.

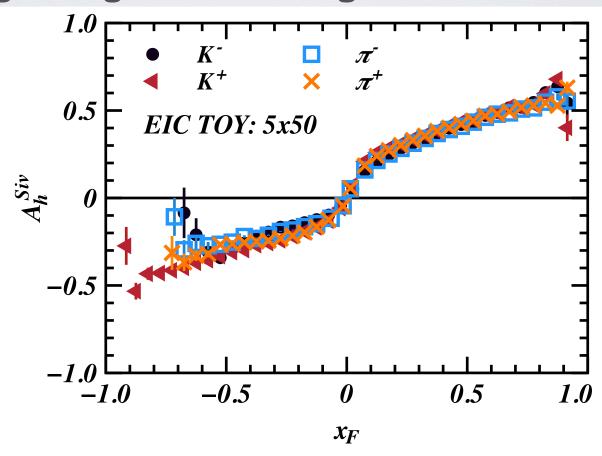

eSTAR

EIC TOY MODEL STUDIES

- What can we learn about Sivers PDF at EIC?
- Use a TOY model for Sivers PDF to explore.

$$f_{\uparrow}^{q,Toy}(x, \mathbf{k}_T) = f_1^q(x, k_T)[1 + 0.9\sin(\varphi_q - \varphi_S)]$$

Interplay of valence and sea quarks, at different CM energies.


Access Sivers PDF at small x, and for sea quarks.

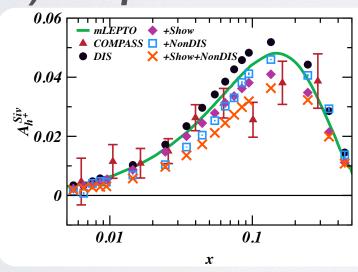
TOY MODEL: TARGET FRAGMENTATION

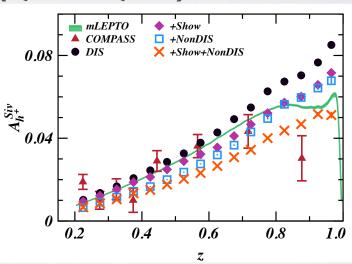
- What can we learn about Sivers PDF at EIC?
- Use a TOY model for Sivers PDF to explore.

$$f_{\uparrow}^{q,Toy}(x, \mathbf{k}_T) = f_1^q(x, k_T)[1 + 0.9\sin(\varphi_q - \varphi_S)]$$

• Explore Target Fragmentation Regions $x_F < 0$.

• Sivers SSA changes sign, fragmentation of nucleon remnant!

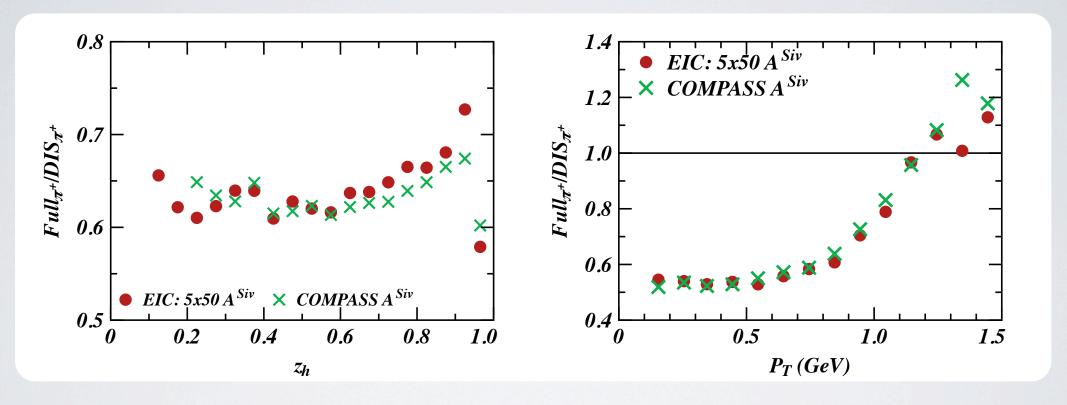

LO APPROXIMATION FOR SSA


• Fits for Sivers PDF from HERMES and COMPASS data utilize LO DIS-only expressions for SSAs.

M. Anselmino et. al.: PRD 86, 014028 (2012).

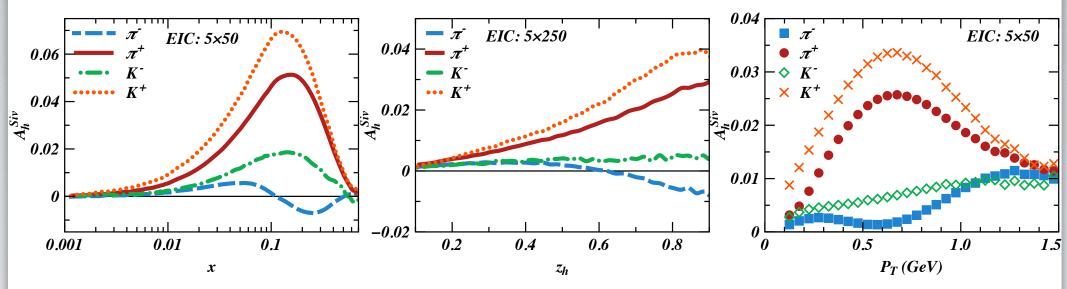
$$A_{UT}^{\sin(\phi_h - \phi_S)} = \frac{\sum_{q} \int d\phi_S d\phi_h d^2 \mathbf{k}_{\perp} \Delta^N \hat{f}_{q/p^{\uparrow}}(x, \mathbf{k}_{\perp}, Q) \sin(\varphi - \phi_S) \frac{d\hat{\sigma}^{\ell q \to \ell q}}{dQ^2} \hat{D}_q^h(z, p_{\perp}, Q) \sin(\phi_h - \phi_S)}{\sum_{q} \int d\phi_S d\phi_h d^2 \mathbf{k}_{\perp} \hat{f}_{q/p}(x, \mathbf{k}_{\perp}, Q) \frac{d\hat{\sigma}^{\ell q \to \ell q}}{dQ^2} \hat{D}_q^h(z, p_{\perp}, Q)}$$

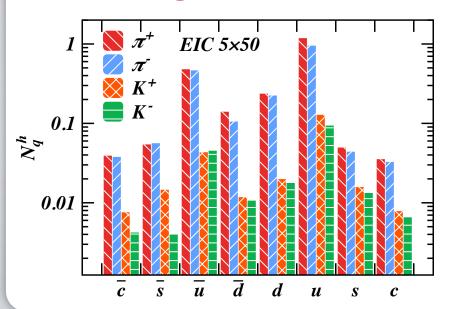
- Is this justified at COMPASS energies?
- Test using mPYTHIA: turn on non-DIS effects (VMD, GVMD, "direct") and parton showering (QCD+QED).



- Significant effects, but still agrees with data!
- Current Sivers PDF extractions may be underestimated.

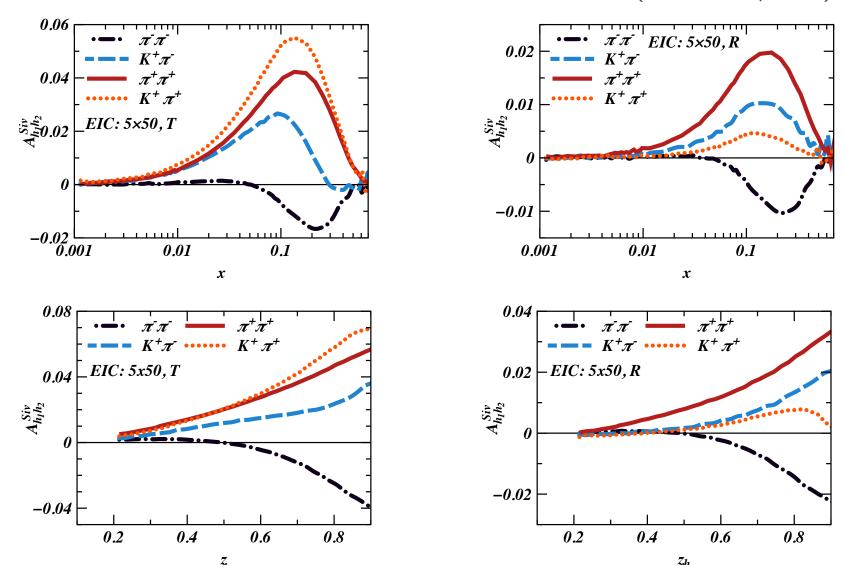
HOW ABOUT EIC?


 Ratios of full(+nonDIS+showers) to DIS-only SSAs for EIC and COMPASS.


•Ratios are **very similar**: can use mPYTHIA with DIS-only channel **to predict** EIC SSAs.

mpythia results for eic: one h

◆ SSAs for charged pions and kaons from **proton** target.


◆ Average number of hadrons by struck quark flavor.

 $\bigstar \pi^+$ multiplicities larger than K^+ , but kaon SSAs are larger. Up quark dominates the multiplicities.

DIHADRON SIVERS FOR EIC

lacktriangle Identical pairs via z-ordering: $z_1 \geq z_2 \ (\operatorname{so} \sigma_R \neq 0)$

• Dihadron SSA's are comparable to single hadron ones! (the one- and two-hadron FFs should mostly cancel in the ratios)

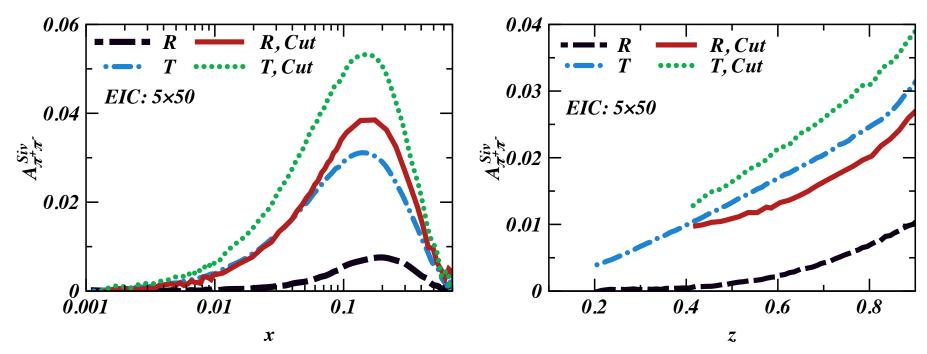
CONCLUSIONS - I

- Sivers Effect allows us to explore the momentum correlations of partons and the transverse spin of the nucleon.
- One-hadron SIDIS has long been one of the key processes to access Sivers PDF.

Two-hadron SIDIS will provide complementary information and wider basis for extracting flavor and TM dependencies.
 (Together with one hadron SIDIS and Drell-Yan measurements at COMPASS).
 Can be extracted from the same data used for IFF analyses
 (different variables). Such analysis proposal E12-10-006A for IFF
 + 2H Sivers at SoLID has been approved.

CONCLUSIONS - II

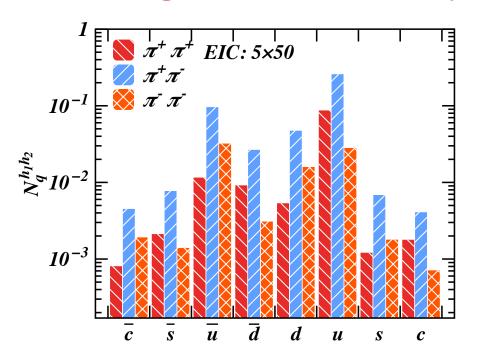
- LEPTO and PYTHIA MC event generators have been modified to predict Sivers SSAs for both one and two hadrons:
 - ▶ mLEPTO for COMPASS: dihadron SSA ≈ single hadron SSA.
 - ▶ CLASI2 and SoLID predictions.
 - ▶ EIC: Measurable SSAs, non-DIS processes and showers should be considered in the extractions of the Sivers PDF.
- Future Plans:
 - Feasibility study for CLASI2 (with detector effects, integrated luminosity, etc).
 - Explore the target fragmentation.
 - ▶ Include TMD evolution (using TMDlib?).

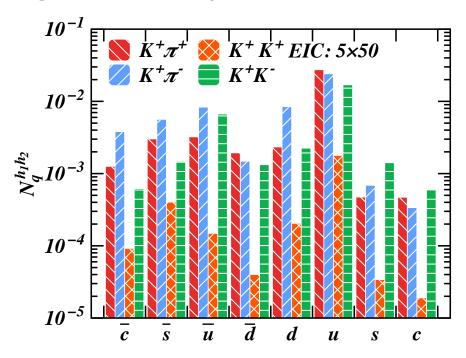


BACKUP SLIDES

ASYMMETRIC CUTS FOR HADRON PAIR

★ Asymmetric Cuts on hadron pair momenta enhances the signal!

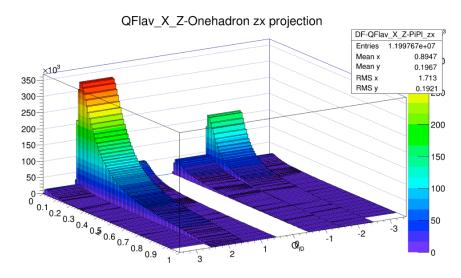

$$z_1 > 0.3 P_{1T} > 0.3 \text{ GeV}$$

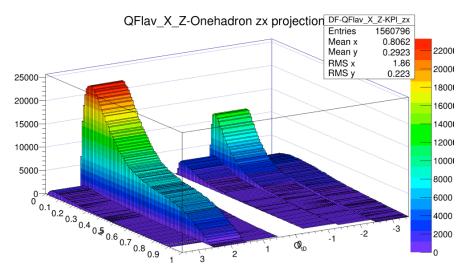


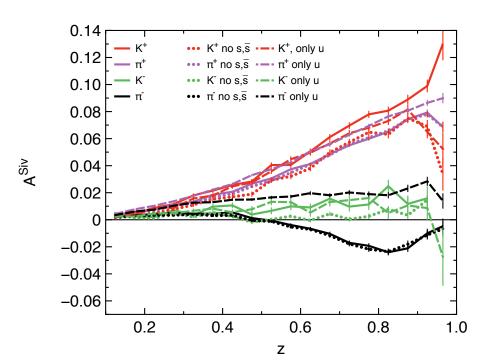
- **◆ Enhancement** in SSA, but **decrease** of the average multiplicities. (especially R mods are enhanced, due to our choice of R)
- Should be chosen to maximize signal/noise for a specific experiment!

RATES FOR PAIR PRODUCTION AT EIC

Average number of hadron pairs for given struck quark flavor.




- ◆ Pure pion pairs dominate, but mixed pion-kaon pairs are also large enough.
- ◆ Different pairs allow to enhance the contributions of different quark flavors! Needed for flavor decomposition.


K^+ Study at EIC

◆ Positive pion and kaon multiplicities by quark flavor .

♦ SSAs for positive pion and kaon with SSAs for various flavors turned off.

