Generalised form factors and charges from lattice QCD

S. Collins University of Regensburg

Rece: Gunnar S. Bali, Benjamin Gläßle, Meinulf Göckeler, Johannes Najjar, Rudolf H. Rödl, Andreas Schäfer, Rainer W. Schiel, Wolfgang Söldner, André Sternbeck.

HiX 2014, Frascati, Nov. 17th, 2014.

Outline

- Introduction: what do we calculate?
- Aspects of lattice calculations recent progress.
- ▶ Iso-vector quark momentum fraction: $\langle x \rangle_{u-d}$.
- Axial charge: g_A^{u-d} .
- Strangeness contribution to the spin of the nucleon $\Delta s + \Delta \bar{s}$.
- Outlook

What do we calculate?

Matrix elements of local operators $\langle N, p + q, s' | \mathcal{O} | N, p, s \rangle$:

$$\mathcal{O}_{q}^{\{\mu_{1}\dots\mu_{j}\}} = \bar{q}\gamma^{\mu_{1}} \stackrel{\leftrightarrow}{D}{}^{\mu_{2}} \dots \stackrel{\leftrightarrow}{D}{}^{\mu_{j}} q \qquad \mathcal{O}_{5q}^{\{\mu_{1}\dots\mu_{j}\}} = \bar{q}\gamma^{\mu_{1}}\gamma_{5} \stackrel{\leftrightarrow}{D}{}^{\mu_{2}} \dots \stackrel{\leftrightarrow}{D}{}^{\mu_{j}} q$$
$$\mathcal{O}_{g}^{\{\mu_{1}\dots\mu_{j}\}} = \mathsf{Tr}F^{\mu_{1}\nu} \stackrel{\leftrightarrow}{D}{}^{\mu_{2}} \dots \stackrel{\leftrightarrow}{D}{}^{\mu_{j-1}} F^{\mu_{j}}_{\nu}$$

Lorentz decomposition gives generalised form factors. $t = q^2$

Unpolarised :
$$\langle N, p + q | \mathcal{O}_q^{\mu_1} | N, p \rangle = \overline{u}_N \left[\gamma^{\mu_1} \mathcal{A}_{10}(t) + \frac{i}{2m} \sigma^{\mu_1 \alpha} q_{\alpha} \mathcal{B}_{10}(t) \right] u_N$$

Polarised : $\langle N, p + q, s' | \mathcal{O}_{5q}^{\mu_1} | N, p, s \rangle = \overline{u}_N \left[\gamma^{\mu_1} \gamma_5 \tilde{\mathcal{A}}_{10}(t) + \frac{1}{2m} q^{\mu_1} \gamma_5 \tilde{\mathcal{B}}_{10}(t) \right] u_N$

 $\mathcal{O}_q^{\{\mu_1\mu_2\}} \to A_{20}(t), \ B_{20}(t), \ C_{20}(t), \ \mathcal{O}_{5q}^{\{\mu_1\mu_2\}} \to \tilde{A}_{20}(t), \ \tilde{B}_{20}(t), \ \tilde{C}_{20}(t), \ \text{etc.}$

$$A_{10}=F_1$$
, $B_{10}=F_2$ and $ilde{A}_{10}=F_A$, $ilde{B}_{10}=F_P$

Also transition matrix elements, meson matrix elements.

Generalised form factors are moments of generalised parton distributions:

$$\frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p' | \bar{q}(-\frac{1}{2}z) \gamma^{+}q(\frac{1}{2}z) | p \rangle \Big|_{z^{+}=0} = \frac{1}{2P^{+}} \left[H^{q}(x,\xi,t) \bar{u}(p')\gamma^{+}u(p) + E^{q}(x,\xi,t) \bar{u}(p')\frac{i\sigma^{+\alpha}\Delta_{\alpha}}{2m}u(p) \right]$$

Similarly $\tilde{H}^q(x,\xi,t)$, $\tilde{E}^q(x,\xi,t)$ and gluon distributions.

$$\int_{-1}^{1} dx \, H(x,\xi,t) = A_{10}(t), \qquad \int_{-1}^{1} dx \, E(x,\xi,t) = B_{10}(t)$$

$$\int_{-1}^{1} dx \, x \, H(x,\xi,t) = A_{20}(t) + (2\xi)^2 \, C_{20}(t), \qquad \int_{-1}^{1} dx \, x \, E(x,\xi,t) = B_{20}(t) - (2\xi)^2 \, C_{20}(t)$$

Forward limit: $(\xi = t = 0)$, $\Delta q(-x) \equiv \Delta \bar{q}(x)$

$$\langle \mathbb{1} \rangle_{\Delta q} = \int_{-1}^{1} dx \,\Delta q(x) = \tilde{A}_{10}(0) = F_{A}(0), \qquad \langle x \rangle_{\Delta q} = \int_{-1}^{1} dx \,x \,\Delta q(x) = \tilde{A}_{20}(0)$$

$$\langle x \rangle_q = \int_{-1} dx \, x \, q(x) = A_{20}(0)$$

High moments are dominated by high x.

Difficulty in calculating higher moments

- Statistics: higher n require matrix elements of operators with more derivatives. Signal/noise is low, at present n = 1, 2 calculated.
- ▶ Renormalisation: mixing of operators under renormalisation due to reduced symmetry on the lattice (rotational sym.→ hypercubic). Worse for higher *n*.

Nonetheless wide variety of quantities can be calculated

- momentum fractions $\langle x \rangle_q + \langle x \rangle_g = 1$.
- decomposition of spin contributions $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + J_g$.
- vector, axial form factors and charges $(Q^2 = 0)$.
- estimate charge radii r₁ and r₂.
- similar quantities for other baryons and mesons (pion and ρ).
- nucleon and pion distribution amplitudes.
- ▶ scalar, pseudoscalar, tensor form factors \rightarrow new physics processes.

Very active field: 45 talks/posters at Lattice 2014 conference.

Ideally calculate parton distributions from first principles on the lattice:

$$q(x,\mu) = \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p | \bar{q}(-\frac{1}{2}z) \gamma^{+}q(\frac{1}{2}z) | p \rangle \Big|_{z^{+}=0}$$

▶ Ji [1305.1539] calculate spatial (quasi) parton distributions $\tilde{q}(x, \mu, p_z)$ where N has momentum p_z , which $\rightarrow q(x, \mu)$ as $p_z \rightarrow \infty$ when properly renormalised.

Exploratory studies by Lin et al. [1402.1462] and ETMC [1411.0891]. Talk by F. Steffens

► Transverse momentum distributions, talk by M. Engelhardt.

Lattice QCD

"Measurement": average over a *representative* ensemble of gluon configurations $\{U_i\}$ with probability $P(U_i) \propto \int [d\psi] [d\bar{\psi}] e^{-S[U,\psi,\bar{\psi}]}$

$$\langle O \rangle = \frac{1}{n} \sum_{i=1}^{n} O(U_i) + \Delta O \qquad \Delta O \propto \frac{1}{\sqrt{n}} \xrightarrow{n \to \infty} 0$$

Input: $\mathcal{L}_{QCD} = -rac{1}{16\pilpha_L}FF + ar{q}_f(D \!\!\!/ + m_f)q_f$

$$m_N^{\text{latt}} = m_N^{\text{phys}} \longrightarrow a$$

 $m_\pi^{\text{latt}}/m_N^{\text{latt}} = m_\pi^{\text{phys}}/m_N^{\text{phys}} \longrightarrow m_u \approx m_d$

Output: hadron masses, matrix elements, decay constants, etc...

Required:

- ▶ Large enough volume: ideally use several volumes. FSE suppressed with $\exp(-Lm_{\pi})$, want $Lm_{\pi} \ge 4$.
- Extrapolation to physical quark masses: typically quark masses such that $m_{\pi} > 200$ MeV, requiring (chiral) extrapolation of results.
- Continuum extrapolation: need results for several a (> 3) in order to perform a → 0.

Cost estimate: fixed Lm_{π}

$$\mathrm{cost} \propto rac{1}{a^{\geq 6} \, m_\pi^{7.5}}$$

additional systematic uncertainties ...

- Sea quarks: present simulations with $N_f = 2 (u/d)$, $N_f = 2 + 1 (u/d + s)$, $N_f = 2 + 1 + 1 (u/d + s + c)$.
- Excited state contamination: all states with same QNs are created.
- \blacktriangleright Renormalisation constants: needed to relate lattice matrix elements to continuum results in the $\overline{\rm MS}$ scheme.

However, balance between statistical and systematic error, for some quantities (stat.)>(sys.).

Landscape of recent lattice simulations

Precision calculations now possible

Huge progress in algorithms as well as hardware.

lso-vector/lso-scalar matrix elements

Unpolarised, $\langle N, p + q | \mathcal{O} | N, p \rangle$ or polarised, $\langle N, s', p + q | \mathcal{O} | N, s, p \rangle$ matrix elements

 Γ contains combinations of γ -matrices and D_{μ} .

Disconnected terms computationally very expensive to calculate - need to solve matrix equations with $M = 12V \times 12V$ and $V \sim 10^7$ (all-to-all propagators).

Previously isovector operators considered: $\bar{u}\Gamma u - \bar{d}\Gamma d$. Progress using stochastic methods: $12V \times N_{stoch}$. Now, iso-scalar quantities also computed.

Iso-vector quark momentum fraction: $\langle x \rangle_{u-d}^{\overline{\mathrm{MS}}}(2 \,\mathrm{GeV})$

 $\triangle Lm_{\pi} < 3.4$ $\times Lm_{\pi} < 4.0$ $\bullet Lm_{\pi} < 6.0$ $\Box Lm_{\pi} > 6.0$

Mild dependence on V, m_{π} . Renormalised nonperturbatively. O(a) leading errors, a varied from 0.08 to 0.06 fm.

Results near the physical point.

Improvement on earlier calculations which suffered from excited state contamination $\langle x \rangle_{u-d}^{\overline{\text{MS}}}(2 \,\text{GeV}) \sim 0.25$.

More work needs to be done - lattice spacing dependence.

Excited state contributions: $A_{20}^{\overline{\mathrm{MS}}}(t)$

Ground state dominates in the limit of large time separations (source-sink, source-operator).

If $\mathcal{O}_{\mathcal{N}}$ not optimised then significant excited state contributions also for larger time separations.

Excited state analysis performed in forward limit, to be repeated for $Q^2 > 0$.

$B_{20}(t)$

 $a\sim 0.07$ fm, $m_{\pi}=150$ MeV, $Lm_{\pi}=3.49$

$\langle x \rangle_{u-d}^{\overline{\mathrm{MS}}}(2 \,\mathrm{GeV})$: summary of recent lattice results

Consistency from different actions, N_f , volumes, lattice spacings - different systematics.

Several collaborations with near physical point results.

Big improvements but precision calculation requires more work.

ETMC [arXiv:1410.8761] disconnected contributions small \Rightarrow predictions for $\langle x \rangle_q^{\overline{\text{MS}}}(2 \text{ GeV}) \text{ soon } \Rightarrow \langle x \rangle_g.$

Iso-vector quark spin contribution

$$g_A = \Delta u - \Delta d = \tilde{A}^u_{10}(0) - \tilde{A}^d_{10}(0) = F^u_A(0) - F^d_A(0)$$

With optimised $\mathcal{O}_{\mathcal{N}}$ excited states are under control.

Significant dependence on V and m_{π} .

Finite volume effects similar between g_A and f_{π} (seen from chiral pert. theory). Cancellation in the ratio. QCDSF [1302.2233]

Extrapolation to physical point: $g_A/F_{\pi} = 13.88(29) \text{ GeV}^{-1}$ cf. Expt= 13.797(34) GeV⁻¹.

Using $F_{\pi}(\text{Expt}) = 92.21$ MeV we obtain $g_A = 1.280(27)(35)$ cf. Expt= 1.2670(35).

g_A: summary of recent lattice results

Spin content of the nucleon

Spin of the nucleon:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + J_g$$

where

$$\begin{split} \Delta \Sigma &= \sum_{q=u,d,s} \Delta q, \quad \text{and} \quad \Delta q = \tilde{A}_{10}^{q}(0) = F_{A}^{q}(0) \\ J_{q} &= \frac{1}{2} \sum_{q=u,d,s} (A_{20}^{q}(0) + B_{20}^{q}(0)) \\ L_{q} &= J_{q} - \Delta \Sigma \end{split}$$

Notation: Δq contains both the spin of the quarks q and of the antiquarks \bar{q} .

 $\Delta\Sigma\sim$ 0.30, individual Δq not well known.

 Δs : model fits to DIS and SIDIS data not well constrained.

QCDSF [1112.3354] N_f = 2, m_{π} = 289 MeV g_A underestimated by 13% and therefore allow for 20% systematic errors.

Comparison of recent lattice calculations

Consistency between different determinations, small $\Delta s + \Delta \bar{s}$ favoured.

ETMC result shows statistical accuracy that can now be achieved. Systematics!

 $J_q = \frac{1}{2} \left(A_{20}^q(0) + B_{20}^q(0) \right)$

Figure taken from Lattice 2014 review by M. Constantinou [1411.0078]

LHPC $N_f = 2 + 1$ [1111.0718], QCDSF/UKQCD $N_f = 2$ [1203.6579], ETMC $N_f = 2$ [1104.1600,Lattice2014] and $N_f = 2 + 1 + 1$ [1303.5979].

Outlook

- Enormous progress in lattice calculations in last 10 years.
- Nucleon structure is a very active area.
- ► Moving towards precision lattice calculations of iso-vector n ≤ 2 generalised form factors.
- Results with near physical m_{π} .
- Improvements in $\langle x \rangle_{u-d}$ but requires more work.
- ► *g*_A sensitive to finite size effects.
- Techniques have been developed to determine iso-scalar quantities strangeness in the nucleon, Δs . More results likely soon.
- Future studies of SU(3) flavour symmetry breaking.
- Exploratory studies of new approach to directly extract parton distribution functions.