Generalised form factors and charges from lattice

QCD

S. Collins
University of Regensburg

CD
R%ﬁ: Gunnar S. Bali, Benjamin GlaBle, Meinulf Géckeler, Johannes Najjar,
Rudolf H. R&dl, Andreas Schéfer, Rainer W. Schiel, Wolfgang Séldner,
André Sternbeck.

@ RO

HiX 2014, Frascati, Nov. 17th, 2014.




Outline

Introduction: what do we calculate?

Aspects of lattice calculations - recent progress.
Iso-vector quark momentum fraction: (x),_g.
Axial charge: gj"*d.

Strangeness contribution to the spin of the nucleon As + AS.

Outlook
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What do we calculate?

Matrix elements of local operators (N, p+ q,s'|O|N, p, s):
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Lorentz decomposition gives generalised form factors. t = >
Unpolarised : (N, p+ q|O4*|N, p) = n [’y‘“Am(t) + ﬁo"”aanm(t)] un
- 1 -
Polarised :(N, p + q, s/|(9§2|N,p, s) =1y [7“175/410(1“) + ﬂq‘”%Bm(t)} un
Oéulln} — A20(t), Bzo(t), Cgo(t), OEE;LUQ} — 12\20(1_'), Bzo(t), 620(1’), etc.
A1 = F1, Bio = F> and Ay = Fa, Big = Fp

Also transition matrix elements, meson matrix elements.



Generalised form factors are moments of generalised parton distributions:
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Similarly /:Iq(x,f, t), Eq(x,f, t) and gluon distributions.
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High moments are dominated by high x.

Difficulty in calculating higher moments

» Statistics: higher n require matrix elements of operators with more
derivatives. Signal/noise is low, at present n = 1,2 calculated.

» Renormalisation: mixing of operators under renormalisation due to
reduced symmetry on the lattice (rotational sym.— hypercubic).
Worse for higher n.

Nonetheless wide variety of quantities can be calculated

momentum fractions (x)q + (x)g = 1.
decomposition of spin contributions 3 = JAY + Lg + Jg.

vector, axial form factors and charges (Q* = 0).

similar quantities for other baryons and mesons (pion and p).

>
>

>

> estimate charge radii nn and r.

>

» nucleon and pion distribution amplitudes.
>

scalar, pseudoscalar, tensor form factors — new physics processes.

Very active field: 45 talks/posters at Lattice 2014 conference.



Ideally calculate parton distributions from first principles on the lattice:

Az ptr a1y ]
q(xw):/ge {pla(=32)7"a(32)Ip)|
> Ji [1305.1539] calculate spatial (quasi) parton distributions
§(x, u, p;) where N has momentum p,, which — g(x, ) as p, — o0
when properly renormalised.

Exploratory studies by Lin et al. [1402.1462] and ETMC
[1411.0891]. Talk by F. Steffens

» Transverse momentum distributions, talk by M. Engelhardt.



Lattice QCD
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Input: Locp = — 52— FF + Gr(P+ m¢)qr

T 167,

h
mEt=m™ — a

latt latt __ ,_phys phys —
m2* /myt = mP™s /my — my = my

Output: hadron masses, matrix elements, decay constants, etc...

Required:
» Large enough volume: ideally use several volumes. FSE suppressed
with exp(—Lm;), want Lm, > 4.

» Extrapolation to physical quark masses: typically quark masses
such that m; > 200 MeV, requiring (chiral) extrapolation of results.

» Continuum extrapolation: need results for several a (> 3) in order
to perform a — 0.

. fixed Lm,

cost X ————
aZb mZ-5



additional systematic uncertainties . ..

» Sea quarks: present simulations with N¢ =2 (u/d),
Ne=2+1(u/d+s), Ne=2+1+1 (u/d+s+c).

» Excited state contamination: all states with same QNs are
created.

» Renormalisation constants: needed to relate lattice matrix
elements to continuum results in the MS scheme.

However, balance between statistical and systematic error, for some
quantities (stat.)>(sys.).



Landscape of recent lattice simulations
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Precision calculations now possible

Huge progress in algorithms as well as hardware.

Durr et al.[0906.3599], Nf =2+ 1 Borsanyi et al. [1406.4088], Nf =1+1+1+1
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Iso-vector /Iso-scalar matrix elements

Unpolarised, (N, p + q|O|N, p) or polarised, (N,s’, p+ q|O|N, s, p)
matrix elements

o=qlq ;

connected disconnected
I" contains combinations of y-matrices and D,,.

Disconnected terms computationally very expensive to calculate - need to
solve matrix equations with M = 12V x 12V and V ~ 107 (all-to-all
propagators).

Previously isovector operators considered: al'u — dT'd.

Progress using stochastic methods: 12V x Ngocp. Now, iso-scalar
quantities also computed.



Iso-vector quark momentum fraction: (x)M5 (2 GeV)

RQCD [arXiv:1408.6850] Ny = 2
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Results near the physical point.

Improvement on earlier calculations which suffered from excited state
contamination (x)M5 (2GeV) ~ 0.25.

More work needs to be done - lattice spacing dependence.



Excited state contributions: AMS(t)

Ground state dominates in the limit of large time separations (source-sink,

source-operator).
al'q

N,p N, p+q

Reduce excited state contamination by optimising Or.
VIIL, a ~ 0.07 fm, m, ~ 150 MeV, Lm, = 3.49
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If Oxr not optimised then significant excited state contributions also for larger

time separations.
Excited state analysis performed in forward limit, to be repeated for Q® > 0.



Bgo(t)

a~ 0.07 fm, m, = 150 MeV, Lm, = 3.49

Bi(1)
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(x >MS (2GeV): summary of recent lattice results
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Consistency from different actions, Ny, volumes, lattice spacings - different
systematics.

Several collaborations with near physical point results.
Big improvements but precision calculation requires more work.

ETMC [arXiv:1410.8761] disconnected contributions small = predictions for
(x)N13(2GeV) soon = (x),.



Iso-vector quark spin contribution

ga = Au— Ad = Afy(0) — Afy(0) = F£(0) — F{(0)
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With optimised Oxs excited states are under control.

Significant dependence on V and m,.



Finite volume effects similar between g4 and 7 (seen from chiral pert.
theory). Cancellation in the ratio. QCDSF [1302.2233]
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Extrapolation to physical point: ga/F. = 13.88(29) GeV ' f.
Expt= 13.797(34) GeV .

Using F(Expt) = 92.21 MeV we obtain ga = 1.280(27)(35) cf.
Expt= 1.2670(35).



ga: summary of recent lattice results
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Spin content of the nucleon

Spin of the nucleon:

11
5= ST Lo+ U

2
where
AY = Z Ag, and Aq:AfO(O):FX(O)
g=u,d,s
1
h o= 5 D (A%(0)+ B5(0))
q=u,d,s
Ly, = Jg—AX

Notation: Ag contains both the spin of the quarks g and of the
antiquarks g.

AY ~ 0.30, individual Ag not well known.
As: model fits to DIS and SIDIS data not well constrained.



As

QCDSF [1112.3354] Ny = 2, m, = 289 MeV
ga underestimated by 13% and therefore allow for 20% systematic errors.
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TComparison with DSSV fits to
1DIS and SIDIS: de Florian et al.
1[0904.3821]

Au+AT  Ad+Ad  As+AS AL =3

1 dxgf"(x, @) = %(as + 3a5) Cus + 4aCs].

as =

ga=Au—Ad, ag = Au+ Ad —2As, a(Q?) = Au+ Ad + As = AY

Significant difference if xmi» = 0.001 or 0, as from neutron 3 decay, ag from
hyperon 3 decay + SU(3) flavour symmetry.



Comparison of recent lattice calculations
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Consistency between different determinations, small As 4+ AS favoured.

ETMC result shows statistical accuracy that can now be achieved.
Systematics!



Jo = 5 (A%(0) + B3(0))
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Figure taken from Lattice 2014 review by M. Constantinou [1411.0078]

LHPC N = 2 + 1 [1111.0718], QCDSF/UKQCD Nf = 2 [1203.6579], ETMC
Nr = 2 [1104.1600,Lattice2014] and N = 2 + 1 + 1 [1303.5979].



Outlook

» Enormous progress in lattice calculations in last 10 years.
» Nucleon structure is a very active area.

» Moving towards precision lattice calculations of iso-vector n < 2
generalised form factors.

Results with near physical m,.
Improvements in (x),_q4 but requires more work.

ga sensitive to finite size effects.

vV v . vy

Techniques have been developed to determine iso-scalar quantities -
strangeness in the nucleon, As. More results likely soon.

v

Future studies of SU(3) flavour symmetry breaking.

» Exploratory studies of new approach to directly extract parton
distribution functions.
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