Probing the Spin Structure of the Neutron:

New Experimental Results on d₂ and g₂ for the Neutron from JLab

Brad Sawatzky Jefferson Lab

E06-014, E12-06-121, and Hall A Collaborations

HiX 2014 Conference November 17–21, 2013

Thomas Jefferson National Accelerator Facility HiX 2014 • Nov 19, 2013

SSF Measurements at JLab

- \boldsymbol{g}_1 measured in all halls
 - NH₃, ND₃ in all Halls
 - ³He in Hall A
- \boldsymbol{g}_2 in C and A
- Duality in g_1
- Transverse structures A_2 and g_T
- Moments and twist-3
- Sum Rules: GDH, B-C, Bjorken
- n SSF's from ³He and from d p

Inclusive Program at 6 GeV									
Experiment	Hall	Target	Measured quantity	Kinematics $Q^2 \text{ GeV}^2$					
94-010	Α	³He	A∥, A⊥	Resonances 0.1 - 0.9					
CLAS eg1a-b	В	p, d	All	DIS , Resonances 0.2 - 3.5					
97–103	Α	³He	A⊥	DIS 0.6 - 1.4					
97–110	Α	³He	A∥, A⊥	Elastic, Resonances 0.02 - 0.5					
99–117	Α	³He	A∥, A⊥	DIS 2.7, 3.5, 4.8					
01-006 (RSS)	С	p, d	A∥, A⊥	Resonances 1.3					
01-012	Α	³He	A∥, A⊥	Resonances 1 - 4					
CLAS eg4	В	p	All	Elastic, Resonances 0.01 - 0.5					
07-003 (SANE)	С	p	A∥, A⊥	DIS , Resonances 1.6 - 6					
06-014	Α	³ He	A∥, A⊥	DIS <3>					
08-027 (g2p)	Α	р	A∥, A⊥	Resonances 0.03 - 0.3					

SSF Measurements at JLab

- \boldsymbol{g}_1 measured in all halls
 - NH₃, ND₃ in all Halls
 - ³He in Hall A
- \boldsymbol{g}_2 in C and A
- **Duality in** g_1
- Transverse structures A_2 and g_T
- Moments and twist-3
- Sum Rules: GDH, B-C, Bjorken
- n SSF's from ³He and from d p

Inclusive Program at 6 GeV										
Experiment	Hall	Target	Measured quantity	Kinematics <i>Q</i> ² GeV ²						
94-010	Α	³He	A∥, A⊥	Resonances 0.1 - 0.9						
CLAS eg1a-b	В	p, d	All	DIS , Resonances 0.2 - 3.5						
97–103	Α	³ He	A⊥	DIS 0.6 - 1.4						
97–110	Α	³ He	A∥, A⊥	Elastic, Resonances 0.02 - 0.5						
99–117	Α	³He	A∥, A⊥	DIS 2.7, 3.5, 4.8						
01-006 (RSS)	С	p, d	A∥, A⊥	Resonances 1.3						
01-012	Α	³He	A∥, A⊥	Resonances 1 - 4						
CLAS eg4	В	p	All	Elastic, Resonances 0.01 - 0.5						
07-003 (SANE)	С	p	A∥, A⊥	DIS , Resonances 1.6 - 6						
06-014	A	³ He	A∥, A⊥	DIS <3>						
08-027 (g2p)	А	р	A∥, A⊥	Resonances 0.03 - 0.3						

Polarized DIS cross sections

$$\frac{d^{2}\sigma}{dE'd\Omega}(\downarrow \uparrow -\uparrow \uparrow) = \frac{4\alpha^{2}}{MQ^{2}}\frac{E'}{\nu E}\left[(E+E'\cos\theta)g_{1}(x,Q^{2}) - \frac{Q^{2}}{\nu}g_{2}(x,Q^{2})\right] = \Delta\sigma_{\parallel}$$

$$\frac{d^{2}\sigma}{dE'd\Omega}(\downarrow \Rightarrow -\uparrow \Rightarrow) = \frac{4\alpha^{2}\sin\theta}{MQ^{2}}\frac{E'^{2}}{\nu^{2}E}\left[\nu g_{1}(x,Q^{2}) + 2Eg_{2}(x,Q^{2})\right] = \Delta\sigma_{\perp}$$

$$Q^{2} = 4 \text{-momentum transfer squared of the virtual photon.}$$

$$\nu = \text{energy transfer.}$$

$$\theta = \text{scattering angle.}$$

$$x = \frac{Q^{2}}{2M\nu} \text{ fraction of nucleon momentum carried by the struck quark.}$$

What are g_1 and g_2 ?

• The "g's" play a role analogous to the "F's" in the unpolarized cross section

$$\frac{d^{2}\sigma}{d\Omega dE'} = \frac{\alpha^{2}}{4E^{2}\sin^{4}\frac{\theta}{2}} \left(\frac{2}{M}F_{1}(x,Q^{2})\sin^{2}\frac{\theta}{2} + \frac{1}{\nu}F_{2}(x,Q^{2})\cos^{2}\frac{\theta}{2}\right)$$

- F encodes information about the momentum structure of the nucleon
- **g**₁ and **g**₂ encode information about the spin structure of the target nucleon

• The Parton Model

→ g₁ is a measure of the spin distribution among the individual constituent quarks (ie. aligned parallel and anti-parallel to the nucleon spin)
 → g₂ ???

g₂ and Quark-Gluon Correlations

QCD allows the helicity exchange to occur in two principle ways

Carry one unit of orbital angular momentum

Couple to a gluon

$$g_2(x,Q^2) = g_2^{WW}(x,Q^2) + \bar{g}_2(x,Q^2)$$

a twist-2 term (Wandzura & Wilczek, 1977):

$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int_x^1 g_1(y,Q^2) \frac{dy}{y}$$

a twist-3 term with a suppressed twist-2 piece (Cortes, Pire & Ralston, 92):

$$\overline{g}_{2}(x,Q^{2}) = -\int_{x}^{1} \frac{\partial}{\partial y} \left(\frac{m_{q}}{M} h_{T}(y,Q^{2}) + \xi(y,Q^{2}) \right) \frac{dy}{y}$$

transversity quark-gluon correlation

d₂: A clean probe of quark-gluon correlations

$$d_2(Q^2) = \int_0^1 x^2 [2g_1(x, Q^2) + 3g_2(x, Q^2)] dx = 3 \int_0^1 x^2 \bar{g_2}(x, Q^2) dx$$

- *d*₂ is a clean probe of quark-gluon correlations / higher twist effects
 - \rightarrow d₂ is the 2nd moment of a sum of the spin structure functions
 - \rightarrow matrix element in the Operator Product Expansion $\frac{1}{2}$
 - » it is cleanly computable using Lattice QCD
- Connected to the *color Lorentz* (*transverse*) *force* acting on the struck quark (Burkardt)
 - \rightarrow same underlying physics as in SIDIS k_{\perp} studies

Thomas Jefferson National Accelerator Facility

HiX 2014 • Nov 19, 2013

E06-014: The Neutron d₂ (Hall A)

- A measurement of the neutron d_2
 - \rightarrow Polarized ³He target
 - \rightarrow Large acceptance detector to measure asyms (BigBite)
 - \rightarrow High-precision device to measure unpol. x-sec (HRS)
 - \rightarrow Focus: d₂, g₂ on the neutron
 - » extracted A_1, g_1 as well

Thomas Jefferson National Accelerator Facility HiX 2014 • Nov 19, 2013

The Experiment

- A 4.75 and 5.9 GeV polarized electron beam scattering off a polarized ³He target
- Measure unpolarized cross section for ${}^{3}\vec{\mathrm{He}}(\vec{e},e')$ reaction $\sigma_{0}^{{}^{3}}\mathbf{\mathrm{He}}$ in conjunction with the transverse asymmetry $A_{\perp}^{{}^{3}}\mathbf{\mathrm{He}}$ and the parallel asymmetry $A_{\parallel}^{{}^{3}}\mathbf{\mathrm{He}}$ for 0.23 < x < 0.65 with 2 < Q² < 5 GeV².
 - → Asymmetries measured by BigBite
 - \rightarrow Absolute cross sections measured by L-HRS
- Determine d_2^n using the relation

$$\tilde{d}_2(x,Q^2) = x^2 [2g_1(x,Q^2) + 3g_2(x,Q^2)]$$

$$= \frac{MQ^2}{4\alpha^2} \frac{x^2 y^2}{(1-y)(2-y)} \sigma_0 \left[\left(3\frac{1+(1-y)\cos\theta}{(1-y)\sin\theta} + \frac{4}{y}\tan\frac{\theta}{2} \right) A_{\perp} + \left(\frac{4}{y} - 3\right) A_{\parallel} \right]$$

where,

$$A_{\perp} = \frac{\sigma^{\downarrow \Rightarrow} - \sigma^{\uparrow \Rightarrow}}{2\sigma_{0}} \qquad \qquad A_{\parallel} = \frac{\sigma^{\downarrow \uparrow} - \sigma^{\uparrow \uparrow}}{2\sigma_{0}}$$
$$A_{\perp}^{^{3}He} = \frac{\Delta_{\perp}}{P_{b}P_{t}\cos\phi} \qquad \qquad A_{\parallel}^{^{3}He} = \frac{\Delta_{\parallel}}{P_{b}P_{t}}$$
$$\Delta_{\perp} = \frac{(N^{\uparrow \Rightarrow} - N^{\uparrow \Rightarrow})}{(N^{\uparrow \Rightarrow} + N^{\uparrow \Rightarrow})} \qquad \qquad \Delta_{\parallel} = \frac{(N^{\downarrow \uparrow} - N^{\uparrow \uparrow})}{(N^{\downarrow \uparrow} + N^{\uparrow \uparrow})}$$

Thomas Jefferson National Accelerator Facility

HiX 2014 • Nov 19, 2013

Floor configuration for d_2^n

BigBite Electron Stack

• **BigBite detector package:**

- \rightarrow 3 Multi-wire drift chambers (MWDC)
- \rightarrow Scintillator plane
- → Pb-glass Calorimeter (Pre-shower + Shower)
- \rightarrow Gas Cherenkov

Tracking Timing Energy/PID PID

Kinematics of the measurement

Thomas Jefferson National Accelerator Facility

x^2g_1 for ³He

Thomas Jefferson National Accelerator Facility

HiX 2014 • Nov 19, 2013

x^2g_1 for the Neutron

3He → neutron extraction done using effective polarization model (*very preliminary*)
 → more sophisticated deconvolution method in progress (Melnitchouk, *et al*)

x²g, for the Neutron

³He \rightarrow neutron extraction done using effective polarization model (*very preliminary*)

 \rightarrow more sophisticated deconvolution method in progress (Melnitchouk, *et al*)

Thomas Jefferson National Accelerator Facility HiX 2014 • Nov 19, 2013

d₂ for the Neutron

Archival paper in progress (David Flay ~ Temple U.)

- Our results are consistent with Lattice QCD prediction
 - d2n extracted at $\rightarrow \langle Q^2 \rangle \sim 3.3 \text{ GeV}^2$ (E=4.7 GeV data)
 - $\rightarrow \langle Q^2 \rangle \sim 4.3 \text{ GeV}^2$ (E=5.9 GeV data)
- Shaded boxes in inset are systematic uncertainties
- Low-x contribution (0.02 < x < 0.25) is provided by fits to world data (small impact)
- ³He \rightarrow neutron correction using eff. polarization method applied to d₂
 - $\rightarrow (Bissey et al. Phys Rev C, 65:064137, 2002)$

Thomas Jefferson National Accelerator Facility HiX 2014 • Nov 19, 2013

Moments of Structure Functions

Moments of Structure Functions

$$\Gamma_{1}(Q^{2}) \equiv \int_{0}^{1} g_{1}(x, Q^{2}) dx$$

$$= \mu_{2} + \frac{M^{2}}{9Q^{2}} \left(\frac{a_{2} + 4d_{2} + 4f_{2}}{\text{Moments of } g_{1} \text{ and } g_{2}!} + \frac{\mu_{6}}{Q^{4}} + \dots \right)$$

$$a_{2} = \int_{0}^{1} x^{2} g_{1} dx$$

$$Twist-2 \text{ matrix element connected to target mass corrections.}$$

$$a_{2} = \int_{0}^{1} x^{2} g_{1} dx$$

$$a_{3} = \int_{0}^{1} x^{2} g_{1} dx$$

$$a_{2} = \int_{0}^{1} x^{2} g_{1} dx$$

$$a_{2} = \int_{0}^{1} x^{2} g_{1} dx$$

$$a_{3} = \int_{0}^{1} x^{2} g_{1} dx$$

$$a_{4} = \int_{0}^{1} x^{2} g_{1} dx$$

$$a_{2} = \int_{0}^{1} x^{2} g_{1} dx$$

$$a_{2} = \int_{0}^{1} x^{2} g_{1} dx$$

$$a_{3} = \int_{0}^{1} x^{2} g_{1} dx$$

$$a_{4} = \int_{0}^{1} x^{2} g_{1} dx$$

$$a_{2} = \int_{0}^{1} x^{2} g_{1} dx$$

$$a_{2} = \int_{0}^{1} x^{2} g_{1} dx$$

$$a_{3} = \int_{0}^{1} x^{2} g_{1} dx$$

$$a_{4} = \int_{0}^{1} x^{2} g_{1} dx$$

HiX 2014 • Nov 19, 2013

Moments of Structure Functions

Color Electric and Magnetic Forces

 $-\frac{M_n^2}{2}(2d_2^n+f_2^n)$ F_E^n • d_{2} and f_{2} are twist-3 and twist-4 matrix elements; both connected to quark- $(4d_2^n - f_2^n)$ gluon correlations 200 Instanton Model [Balla et al., Lee et al.] $(Q^2 = 0.40 \text{ GeV}^2)$ $\bullet F_{\rm F}^{\rm n}$ QCD Sum Rules [Stein et al.] $(Q^2 = 1 \text{ GeV}^2)$ Together, they give $\circ F_{R}^{n}$ QCD Sum Rules [Balitsky et al.] $(Q^2 = 1 \text{ GeV}^2)$ 150 information on the Color Force (MeV/fm) This Work ($<Q^2 > = 3.21 \text{ GeV}^2$) This Work ($<Q^2 > = 4.32 \text{ GeV}^2$) Color Lorentz 100 Electric and Magnetic forces 50 Burkardt, PRD 88 114502 (2013) -50 Theory **Experiment** 30

Thomas Jefferson National Accelerator Facility

HiX 2014 • Nov 19, 2013

Summary for E06-014

- "d2n" (E06-014) Neutron, ³He at 6 GeV
 - \rightarrow A₁(³He and neutron) in good agreement with world data
 - $\rightarrow d_2^n$ is small, negative, and consistent with LQCD prediction at $Q_2 = 5 (\text{GeV/c})^2$
 - \rightarrow g₁ and g₂ in agreement with world data for both ³He
 - \rightarrow *Color* Electric and Magnetic Forces on struck quark extracted
 - » roughly equal and opposite
- The "Future"
 - \rightarrow Major JLab upgrades
 - » 12 GeV beam, major new detector apparatus in Hall C (SHMS)
 - \rightarrow 12 GeV dedicated d₂ⁿ, g₂ⁿ (and A1n) measurements are approved in both Halls A and C (tentatively scheduled to be in first "non-commissioning" run group)
 - » focus on high-x and Q_2 evolution
 - E06-014 Special thanks to:
 - → D. Flay, M. Posik, D. Parno, ZE Meziani, G. Franklin

[This work is supported in part by DOE Award from Temple University #DE-FG02-94ER40844.]

Thomas Jefferson National Accelerator Facility HiX 2014 • Nov 19, 2013

Hall C after 12 GeV Upgrade

- Beam Energy: 2 11 GeV/c
- Super High Momentum Spectrometer (SHMS)
 - Horizontal Bender, 3 Quads, Dipole
 - P \rightarrow 11 GeV/c
 - dP/P 0.5-1.0 x10⁻³
 - Acceptance: 5msr, 30%
 - $-5.5^{\circ} < \theta < 40^{\circ}$
- High Momentum Spectrometer (HMS)
 - P \rightarrow 7.5 GeV/c
 - dP/P 0.5 1.0x10⁻³
 - Acceptance: 6.5msr, 18%
 - $-10.5^{\circ} < \theta < 90^{\circ}$
- Minimum opening angle: 17°
- Well shielded detector huts

- Ideal facility for:
 - Rosenbluth (L/T) separations
 - Exclusive reactions
 - Low cross sections (neutrino level)

E12-06-121: d_2^n , g_2^n

- Directly measure the Q² dependence of the neutron d₂ⁿ(Q²) at Q² ≈ 3, 4, 5, 6 GeV² with the new polarized ³He target.
 → The new Hall C SHMS is ideally suited to this task!
- Doubles number of precision data points for $g_2^{n}(x, Q^2)$ in DIS region.

 $\rightarrow Q^2$ evolution of g_2^n over (0.23 < x < 0.85)

- d_2 is a clean probe of quark-gluon correlations / higher twist effects
- Connected to the *color Lorentz force* acting on the struck quark (Burkardt)
 - \rightarrow same underlying physics as in SIDIS k_{\perp} studies
- Investigate the present discrepancy between data and theories.
 - → Theory calcs consistent but have wrong sign, wrong value.
- Spokespeople: T. Averett, W. Korsch, Z.E. Meziani, B. Sawatzky

Thomas Jefferson National Accelerator Facility HiX 2014 • Nov 19, 2013

E12-06-121: d_2^n , g_2^n

- <u>Hall C: SHMS + HMS</u>
- One beam energy $\rightarrow 11 \text{ GeV}$
- Each arm measures a total cross section independent of the other arm.
- Experiment split into four pairs of 125 hour runs with spectrometer

• SHMS collects data at $\Theta = 11^{\circ}$, 13.3°, 15.5° and 18.0° for 125 hrs each

 \rightarrow data from each setting divided into 4 bins

• HMS collects data at $\Theta = 13.5^{\circ}$, 16.4°, 20.0° and 25.0° for 125 hrs each

Thomas Jefferson National Accelerator Facility

HiX 2014 • Nov 19, 2013

Projected results for E12-06-121

Thomas Jefferson National Accelerator Facility HiX 2014 • Nov 19, 2013

The E06-014 Collaboration (Hall A)

_					_
	K. Allada	G. B. Franklin	W. Korsch	J. C. Peng	H. Yao
	W. Armstrong	M. Friend	G. Kumbartzki	M. Posik	Y. Ye
	T. Averett	H. Gao	J. J. LeRose	X. Qian	Z. Ye
	F. Benmokhtar	F. Garibaldi	R. Lindgren	Y. Qiang	L. Yuan
	W. Bertozzi	S. Gilad	N. Liyanage	A. Rakhman	X. Zhan
	A. Camsonne	R. Gilman	E. Long	R. D. Ransome	Y. Zhang
	M. Canan	O. Glamazdin	A. Lukhanin	S. Riordan	YW. Zhang
	G. D. Cates	S. Golge	V. Mamyan	A. Saha	B. Zhao
	C. Chen	J. Gomez	D. McNulty	B. Sawatzky	X. Zheng
	JP. Chen	L. Guo	ZE. Meziani	M. H. Shabestari	
	S. Choi	O. Hansen	R. Michaels	A. Shahinyan	
	E. Chudakov	D. W. Higinbotham	M. Mihovilovič	S. Širca	
	F. Cusanno	T. Holmstrom	B. Moffit	P. Solvignon	
	M. M. Dalton	J. Huang	N. Muangma	R. Subedi	
	W. Deconinck	C. Hyde	S. Nanda	V. Sulkosky	
	C. W. de Jager	H. F. Ibrahim	A. Narayan	A. Tobias	
	X. Deng	X. Jiang	V. Nelyubin	W. Troth	
	A. Deur	G. Jin	B. Norum	D. Wang	
	C. Dutta	J. Katich	Nuruzzaman	Y. Wang	
	L. El Fassi	A. Kelleher	Y. Oh	B. Wojtsekhowski	
	D. Flay	A. Kolarkar	D. S. Parno	X. Yan	

Co-spokesperson

PhD (complete)

Thomas Jefferson National Accelerator Facility

HiX 2014 • Nov 19, 2013

BACKUP

Other Interesting Observables

- Often experimentally simpler to measure Asymmetries
 - → target polarized parallel to beam polarization
 - → target polarized transverse to beam polarization
- Asymmetry is formed by measuring the difference in yields when you flip polarization of the beam
- Virtual photon asymmetries A₁ and A₂ can be expressed in terms of these experimental asymmetries
 - \rightarrow these are also connected to g_1, g_2 , of course

Jefferson Lab

 $= \frac{N^{\uparrow\Downarrow} - N^{\downarrow\Downarrow}}{N^{\uparrow\Downarrow} + N^{\downarrow\Downarrow}}$

 $= \frac{N^{\uparrow \Rightarrow} - N^{\downarrow \Rightarrow}}{N^{\uparrow \Rightarrow} + N^{\downarrow \Rightarrow}}$

Virtual Photon Asymmetries

$$A_{1} = \frac{1}{(E+E')D'} \left((E-E'\cos\theta)A_{\parallel} - \frac{E'\sin\theta}{\cos\phi}A_{\perp} \right)$$

$$A_{2} = \frac{\sqrt{Q^{2}}}{2ED'} \left(A_{\parallel} + \frac{E-E'\cos\theta}{E'\sin\theta\cos\phi}A_{\perp} \right)$$

$$A_{1} = \frac{1}{F_{1}} \left(g_{1} - \frac{(2Mx)^{2}}{Q^{2}}g_{2} \right)$$

$$= \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} \xrightarrow{\text{Poton spin Nucleon spin}}{\rho_{\text{arallel spins: }\sigma_{3/2}}} \xrightarrow{\text{Poton spin Nucleon spin}}{\rho_{\text{arallel spins: }\sigma_{3/2}}} \xrightarrow{\text{Poton spin}}{\rho_{\text{arallel spins: }\sigma_{3/2}}}$$

$$A_{2} = \frac{\sqrt{Q^{2}}}{\nu} \frac{g_{T}}{F_{1}} \xrightarrow{g_{T}}{\sigma_{T}}}{\rho_{T}} \xrightarrow{g_{T}} = g_{1} + g_{2}}{\sigma_{T} + g_{2}}$$

$$\bullet g_{T} \text{ measures spin distribution normal to the virtual photon}}$$

$$Potential Definition National Accelerator Facility = MX 2013 \xrightarrow{q_{3}}{\rho_{1}}} \xrightarrow{q_{3}} \xrightarrow{q_{3}}{\rho_{1}}$$

HiX 2014 • Nov 19, 2013

A₁ for Neutron

Thomas Jefferson National Accelerator Facility

HiX 2014 • Nov 19, 2013

$(\Delta u + \Delta u)/(u + u)$ and $(\Delta d + \Delta d)/(d + d)$

Thomas Jefferson National Accelerator Facility HiX 2014 • Nov 19, 2013

A₁ⁿ vs. CQM Theory

Figure 2.9: Predictions of A_1^n from constituent quark model, compared to world data. The dashed line on the x-axis marks $A_1^n = 0$, the prediction from unbroken SU(6) symmetry. The shaded red band shows the range of A_1^n values allowed in a model where SU(6) symmetry is broken by hyperfine interactions between quarks [70]. We have made use of parameterizations compiled by X. Zheng [71].

Thomas Jefferson National Accelerator Facility HiX 2014 • Nov 19, 2013

Systematic Error Contributions to g_2^n and d_2^n

Item description	Subitem description	Relative uncertainty	
Target polarization		3 %	
Beam polarization		1.5%	
Asymmetry (raw)			
	 Target spin direction (0.1°) Beam charge asymmetry 	$< 5 \times 10^{-4}$	
Cross section (raw)	• Deam charge asymmetry	< 00 ppm	
	• PID efficiency	< 1 %	
	 Background Rejection efficiency 	≈ 1 %	
	• Beam charge	< 1 %	
	 Beam position 	< 1 %	
	• Acceptance cut	2-3 %	
	 Target density 	< 2%	
	Nitrogen dilution	< 1%	
	• Dead time	<1%	
	• Finite Acceptance cut	<1%	
Radiative corrections		\leq 5 %	
From ³ He to Neutron correction		5 %	
Total systematic uncertainty (for both $g_2^n(x,Q^2)$	and $d_2(Q^2)$)	\leq 10 %	
Estimate of contributions to <i>d</i> ₂ from unmeasured region	$\int_{0.003}^{0.23} \tilde{d}_2^n dx$	$4.8 imes 10^{-4}$	
Projected absolute statistical uncertainty on d_2		$\Delta d_2 pprox 5 imes 10^{-4}$	
Projected absolute systematic uncertainty on d_2 (assuming $d_2 = 5 \times 10^{-3}$)		$\Delta d_2 pprox 5 imes 10^{-4}$	

 Radiative correction uncertainty cross-checked with E01-012 (Spin Duality) experiment
 Worst case: 4.4%

 Pion rejection ratio of ~10⁴:1 should be achievable with standard SHMS/HMS detectors (~10³:1 would be adequate)

e+/e- Ratios extracted from data (E06-014)

Thomas Jefferson National Accelerator Facility

HiX 2014 • Nov 19, 2013

Data reduction (E06-014)

- BigBite data shown
- Negligible pion contamination
- Errors associated
 with momentum
 reconstruction
 (tracking) form
 highest backgrounds

Thomas Jefferson National Accelerator Facility

HiX 2014 • Nov 19, 2013

Courtesy of D. Parno

E12-06-121 Updated Kinematics

Table 3: Kinematic bins and expected rates for the SHMS. The uncertainties for A_{\parallel} and A_{\perp} are *statistical* only.

SHMS	E' _{bin}	Q ²	X	W	e ⁻ rate	π^- rate	t _{ll}	t⊥	ΔA_{\parallel}	ΔA_{\perp}
Setting	[GeV]	$[GeV^2]$		[GeV]	[Hz]	[Hz]	[hrs]	[hrs]	$[\cdot 10^{-4}]$	$[\cdot 10^{-4}]$
$\theta_0 = 11^\circ$	7.112	2.875	0.394	2.305	1058	11	12	113	2.0	0.5
	7.709	3.116	0.504	1.988	708	3.1	12	113	2.3	0.7
$E'_{cent} = 7.5$	8.304	3.357	0.663	1.610	259	0.83	12	113	3.7	0.1
GeV	8.900	3.597	0.912	1.109	2.7	0.21	12	113	36	10
$\theta_0 = 13.3^{\circ}$	6.647	3.922	0.480	2.267	268	3.1	12	113	3.5	1.0
	7.203	4.250	0.596	1.941	139	0.8	12	113	4.8	1.5
$E'_{cent} = 7.0$	7.758	4.578	0.752	1.548	31.6	0.16	12	113	10	3.1
GeV	8.314	4.906	0.972	1.012	0.10	0.033	12	113	173	55
$\theta_0 = 15.5^{\circ}$	5.997	4.798	0.511	2.342	96	1.9	12	113	5.7	1.8
	6.496	5.197	0.614	2.037	49	0.47	12	113	7.8	2.5
$E'_{cent} = 6.3$	6.995	5.597	0.744	1.677	13.5	0.11	12	113	15	4.7
GeV	7.494	5.996	0.911	1.215	0.29	0.025	12	113	98	33
$\theta_0 = 18.0^{\circ}$	5.348	5.756	0.542	2.397	35	1.1	12	113	9.5	3.1
	5.790	6.235	0.637	2.106	17	0.25	12	113	13	4.4
$E'_{cent} = 5.6$	6.233	6.711	0.749	1.769	5.1	0.05	12	113	24	8.1
GeV	6.675	7.187	0.885	1.350	0.38	0.01	12	113	87	30

Table 4: Expected rates for the three HMS settings. The uncertainties for A_{\parallel} and A_{\perp} are *statistical* only.

θ_0	E'_{cent}	Q^2	х	W	e ⁻ rate	π^- rate	t	t⊥	ΔA_{\parallel}	ΔA_{\perp}
[0]	[GeV]	[GeV ²]		[GeV]	[Hz]	[Hz]	[hrs]	[hrs]	$[\cdot 10^{-4}]$	$[\cdot 10^{-4}]$
13.5	4.305	2.617	0.208	3.293	954	765	8	117	2.0	0.6
16.4	5.088	4.555	0.410	2.727	218	15	12	113	3.9	1.2
20.0	4.000	5.31	0.404	2.951	76	66	10	115	6.0	1.8
25.0	2.500	5.15	0.323	3.417	20	84	13	112	10.7	3.1

Updated Kinematics

