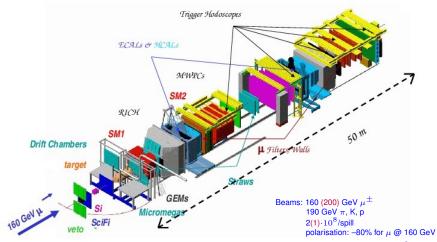
Recent results from COMPASS

Barbara Badelek University of Warsaw

4th International Workshop on Nucleon Structure at Large Bjorken x
HiX2014

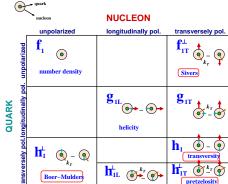

111/12014

Frascati, November 17 - 21, 2014

COMPASS Spectrometer (2002–2012)

muon runs: Nucl. Instr. Meth. A577 (2007) 455

Two stages, \sim 350 planes Particle identification (RICH, calos, μ filters)



Targets: large, solid state, polarised ⁶LiD (NH₃)

polarisation: ±50% (85%)

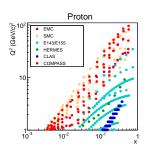
Partonic structure of the nucleon; distribution functions

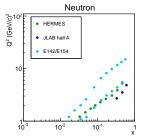
- In LT and considering $k_{\rm T}$, 8 PDF describe the nucleon
- QCD-TMD approach valid $k_{\rm T} \ll \sqrt{Q^2}$
- After integrating over k_T only 3 survive: f_1, g_1, h_1
- TMD accessed in SIDIS and DY by measuring azimuthal asymmetries
- SIDIS: e.g. A_{Sivers} ∝ PDF ⊗FF
- DY: e.g. $A_{\rm Sivers} \propto {\sf PDF}^{\rm beam} \otimes {\sf PDF}^{\rm target}$

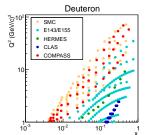
OBS! Boer-Mulders and Sivers PDF are T-odd, i.e. process dependent

$$h_1^{\perp}(SIDIS) = -h_1^{\perp}(DY)$$

$$f_{1T}^{\perp}(SIDIS) = -f_{1T}^{\perp}(DY)$$

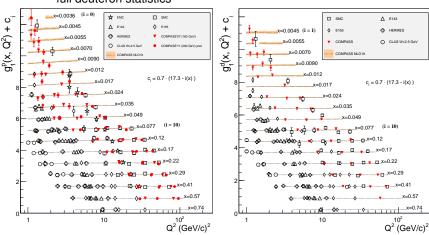

- OBS! transversity PDF is chiral-odd (may only be measured with another chiral-odd) partner, e.g. fragmentation function.
- Boer-Mulders, Sivers and transversity $(h_1^{\perp}, f_{1T}^{\perp}, h_1)$ will be measured in COMPASS II


Outline


- Double longitudinal asymmetries
- Charged hadron multiplicities
- Measurements on a transversely polarised target
- 4 COMPASS II
 - Drell-Yan @ COMPASS
 - GPD @ COMPASS

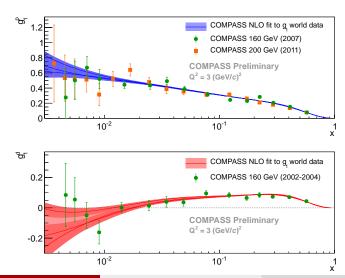
Acceptance of spin experiments: different targets

$$Q^2 > 1 \; (\text{GeV}/c)^2$$



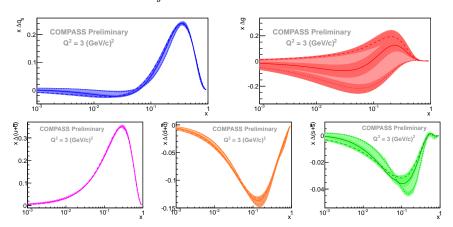
Measurements of $g_1^p(x)$ and $g_1^d(x)$

COMPASS p data 2007 @ 160 GeV + NEW: p data 2011 @ 200 GeV (prelim.); full deuteron statistics



COMPASS measurements at high Q^2 important for the QCD analysis! but little sensitive to Δg

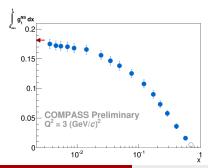
6/45

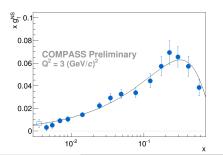

COMPASS NLO fit to g_1 world data; $Q^2 = 3 (\text{GeV}/c)^2$

Fitted: $\Delta q_{\rm SI}, \Delta q_3, \Delta q_8, \Delta g$ at $Q_0^2 = 1$ (GeV/c)²; 679 points, 28 params; $\overline{\rm MS}$ scheme

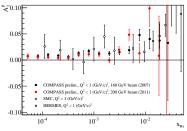
COMPASS NLO fit to g_1 world data... cont'd

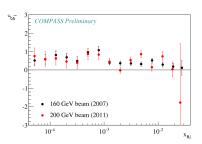
- Little sensitive to gluon polarisation
- ullet Quark polarisation: $\Delta\Sigma=\int\Delta q_{\mathrm{SI}}(x)dx\sim$ 0.3

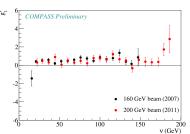

Update on Bjorken Sum Rule test


$$\bullet \quad \int_0^1 g_1^{\rm NS}(x,Q^2) dx = \int_0^1 g_1^{\rm P}(x,Q^2) dx - \int_0^1 g_1^n(x,Q^2) dx = \frac{1}{6} \left| \frac{g_A}{g_V} \right| C_1^{\rm NS}(Q^2)$$

• $\left| \frac{g_A}{g_V} \right| = 1.2694 \pm 0.0028$ (neutron β decay)


 $C_1^{
m NS}$ known to $lpha_s^3$


- g_1^{NS} from COMPASS data only
- COMPASS: $|g_A/g_V| = 1.219 \pm 0.052 \pm 0.095$ (8% verification)



g_1^p and g_1^d measurements; $Q^2 < 1$ (GeV/c)² region

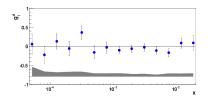
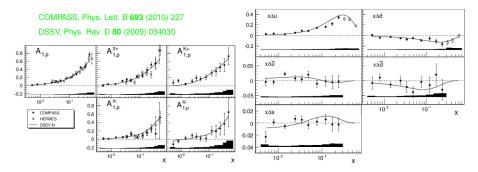



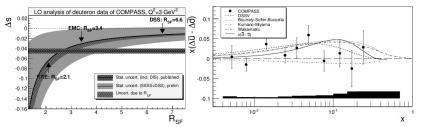
Figure above is from Phys.Lett. B647 (2007) 330

A.S.Nunes, DIS2014

Semi-inclusive asymmetries and parton distributions

- Measured on both proton and deuteron targets
- for identified, positive and negative pions and (for the first time) kaons

- LO DSS fragmentation functions and LO unpolarised MRST pdf assumed here.
- NLO parameterisation of DSSV describes the data well.



Polarisation of quark sea

 \bullet Δs puzzle. Strange quark polarisation:

$$2\Delta S=\int_0^1(\Delta s(x)+\Delta\bar s(x))dx=-0.09\pm0.01\pm0.02 \text{ from incl. asymmetries} + {\rm SU}_3,$$
 while from semi-inclusive asymmetries it is compatible with zero

but depends upon chosen fragmentation functions. Most critical: $R_{SF} = \frac{\int D_{\bar{s}}^{K^+}(z)dz}{\int D_{u}^{K^+}(z)dz}$ \Longrightarrow plan to extract it from COMPASS data on multiplicities.

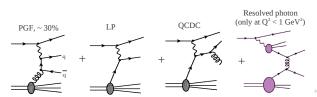
• The sea is not unsymmetric: COMPASS, Phys. Lett. B, 680 (2009) 217; ibid., 693 (2010) 227.

$$\int_{0.004}^{0.3} \left[\Delta \bar{u}(x,Q^2) - \Delta \bar{d}(x,Q^2) \right] dx = 0.06 \pm 0.04 \pm 0.02 \ @ \ Q^2 = 3 \ (\text{GeV/}c)^2$$

Thus the data disfavour models predicting $\Delta \bar{u} - \Delta \bar{d} \gg \bar{d} - \bar{u}$

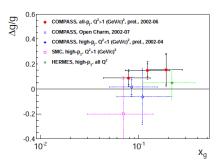
Direct measurements of $\Delta g(x)$

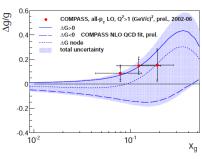
Direct measurements – *via* the cross section asymmetry for the photon–gluon fusion (PGF) with subsequent fragmentation into:



 charm mesons, q≡c, (max. @ low Q², perturbative scale: e.g. m_c): low statistics, few theoretical assumptions;

$$A_{meas} = p_B \ p_T \ f \ a_{LL} \ \frac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_{BGD}} \frac{\Delta g}{g} + A_{BGD}$$


• a pair of hadrons of large p_T , $q\equiv u$, d, s, separately for low- and high Q^2 (perturbative scale: e.g. p_T): high statistics, several quantities from MC. At LO, for both 2-hadron and inclusive samples:


$$A_{meas} = p_B \ p_T \ f \left[R_{PGF} \cdot a_{LL}^{PGF} \cdot \frac{\Delta g}{g} + R_{LP} \cdot D \cdot A_1^{LO} + R_{QCDC} \cdot a_{LL}^{QCDC} \cdot A_1^{LO} \right]$$

New determination of $\Delta g(x)$ at LO: all- p_T method

- lacktriangle New approach (as compared to Phys.Lett. B718 (2013)922): hadrons with all p_T values are accepted
- A_1^{LO} and $\Delta g/g$ are extracted simultaneously from the same data set certain systematic uncertainties are reduced and consistences checked
- $\Delta g/g = 0.113 \pm 0.038 \pm 0.035$ at $\langle Q^2 \rangle = 3 \text{ (GeV/c)}^2$, $\langle x_g \rangle = 0.10$ (cf. with $0.125 \pm 0.060 \pm 0.063$ in the old approach)

Summary of double longitudinal results

- Measurements of g_1^p at x > 0.0036 for $Q^2 > 1$ (GeV/c)²; large statistical improvement compared to SMC
- NLO QCD fit to the g_1 world data with a detail analysis od systematics; 0.26 $< \Delta \Sigma <$ 0.34 @ 3 (GeV/c) 2 ; gluons poorly constrained
- Bjorken Sum Rule verified to 8% (p and d data)
- $g_1^{\rm p}$ in nonperturbative ($Q^2 < 1$ (GeV/c) 2) region clearly positive
- The Δs puzzle needs precise FF determination
- New determination of $\Delta g/g$ (all- p_T method) gives a positive value around $x_q \sim 0.1$
- Soon: new semi-inclusive asymmetries and helicity flavour separation

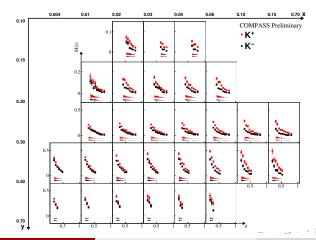
Outline

- Double longitudinal asymmetries
- Charged hadron multiplicities
- Measurements on a transversely polarised target
- 4 COMPASS II
 - Drell-Yan @ COMPASS
 - GPD @ COMPASS

Charged (single-) hadron multiplicities,

• Studied to measure fragmentation functions (FF), $D_a^h(z,Q^2)$ (\Longrightarrow cf. Δs). At LO:

$$M^h(x,z,Q^2) = \frac{\frac{d\sigma_{\mathrm{SIDIS}}}{dxdzdQ^2}}{\frac{d\sigma_{\mathrm{DIS}}}{dxdzdQ^2}} = \frac{\Sigma_q e_q^2 \left[q(x,Q^2)D_q^h(z,Q^2) + \bar{q}(x,Q^2)D_{\bar{q}}^h(z,Q^2)\right]}{\Sigma_q e_q^2 \left[q(x,Q^2) + \bar{q}(x,Q^2)\right]} \underbrace{\ell'}_{D_q^h(z)}$$

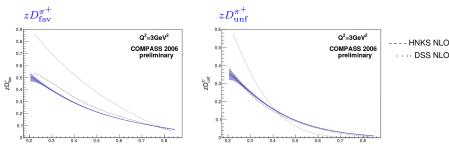

$$\bullet \quad \text{Until now:}$$

- - High precision Single Inclusive e^+e^- Annihilation data do not separate q and \bar{q} and only access charge sum of FF for a hadron h.
 - Measurements at a fixed, large ($\sim M_Z$), scale, except BELLE ($Q^2 \sim 10 \text{ GeV}^2$).
 - Inclusive single hadron production by RHIC

 improve constraints on gluon FF.
 - Lepton-nucleon DIS: lower values and wide range of scales, sensitivity to parton flavour and hadron charge (\Longrightarrow new data of HERMES).
 - Global NLO analyses, e.g.: DSS, Phys. Rev. D 75 (2007) 114010.
- New COMPASS results obtained on an isoscalar (d in ⁶LiD) target (nuclear effects in ⁶LiD small)...
- ...with K and π identification and measured x,y,z dependence; $\langle Q^2 \rangle$ in each bin.

Charged (single-) hadron multiplicities; identified kaons

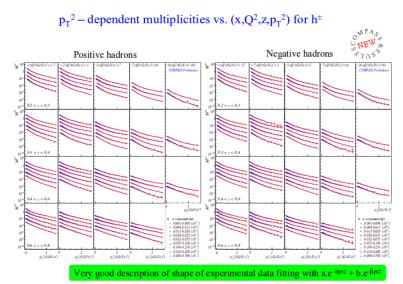
- 2006 data (25% of sample); ⁶LiD target.
- $\begin{array}{lll} \bullet \ Q^2 > 1 \ ({\rm GeV/c})^2, & 0.1 < y < \! 0.7, & 0.004 < x < \! 0.07 \\ 0.2 < z < 0.85, & 10 < p_h < 40 \ {\rm GeV/c} & ({\rm coverage \ in} \ W : 5 17 \ {\rm GeV}). \end{array}$


N_Makke,_DIS2013

Charged (single-) hadron multiplicities; identified pions

Assume isospin and charge symmetry:

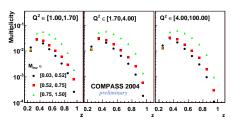
$$\begin{split} D_{\text{fav}}^{\pi^+} &= D_u^{\pi^+} = D_{\bar{d}}^{\pi^+} = D_d^{\pi^-} = D_{\bar{u}}^{\pi^-}, \qquad D_{\text{unf}}^{\pi^+} = D_d^{\pi^+} = D_{\bar{u}}^{\pi^+} = D_u^{\pi^-} = D_{\bar{d}}^{\pi^-} \\ \text{and } D_s^{\pi^+} &= D_s^{\pi^-} = D_{\text{unf}}^{\pi^+} \end{split}$$

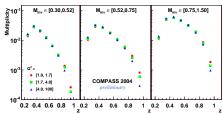

lacktriangle Assume a functional form of a FF \Longrightarrow fit e.g. π^\pm multiplicities (DGLAP) \Longrightarrow extract 2 FFs

- lacktriangle Analysis continues with K^\pm multiplicites/FFs and with proton data
- 2016-2017 proton data will be taken parallely to GPD programme and upgraded RICH

N. du Fresne von Hohenesche, DIS2014, O

Charged (single-) hadron multiplicities; p_T dependence




Recent results from COMPASS

√ ○ ○ ○
20 / 45

Charged (double-) hadron multiplicities

- \bullet Studied to measure $D_q^{h^+,h^-}(z^+,z^-,Q^2)=D_q^h(z,M_h^2,Q^2)$
- Needed in extracting asymmetries in SIDIS, e.g.: $A_{UT}^{\sin(\phi_R+\phi_S)}(z,M_h^2,Q^2)$
- Measured by COMPASS on d from ⁶LiD in bins of (z, M_h^2, Q^2) .

N.Makke, SPIN2014

Summary of multiplicity results

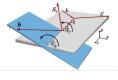
- Measurement of h⁺, h⁻, π^+ , π^- , K⁺, K⁻ in bins of (x,y,z), 5 < W < 17 GeV.
- LO determination of FFs into pions $(D_{\mathrm{fav}}^{\pi}, D_{\mathrm{unfav}}^{\pi}(z, Q^2))$ from 2006 d data
- Soon: improved analysis and FFs into kaons; analysis 2012 p data
- New determination of $p_{\rm T}^2$ -dependent multiplicities in (x,z,Q^2) bins for h⁺ and h⁻ (2006 d data); visible h⁺/h⁻ differences @ large x and large z.
- Hadron pair multiplicities in $(z,Q^2,M_{\rm inv})$ bins, 2004 d data. Soon: $p_{\rm T}^2$ -dependent multiplicities for pions and hadron pair multiplicities (2006 data)
- 2016 2017 measurements planned (parallely to DVCS) on p target and with improved RICH.

Outline

- Double longitudinal asymmetries
- Charged hadron multiplicities
- Measurements on a transversely polarised target
- 4 COMPASS II
 - Drell-Yan @ COMPASS
 - GPD @ COMPASS

Measurements on a transversely polarised target

Properties of transversity $\Delta_T q(x)$:

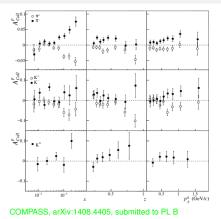

- is chiral-odd \Longrightarrow hadron(s) in final state needed to be observed
- simple QCD evolution since no gluons involved
- related to GPD
- sum rule for transverse spin
- first moment gives "tensor charge" (now being studied on the lattice)

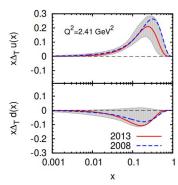
Transversity measured *e.g.* via the Collins asymmetry: \bot polarised $q \Longrightarrow$ unpolarised h (asymmetry in the distribution of hadrons):

$$N_h^{\pm}(\phi_c) = N_h^0 \left[1 \pm p_T D_{NN} A_{Coll} \sin \phi_c \right]$$

$$\phi_C = \phi_h + \phi_S$$

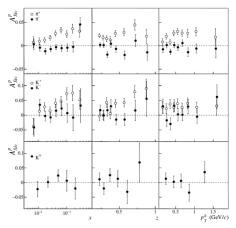
$$A_{Coll} \sim \frac{\sum_{q} e_{q}^{2} \cdot \textcolor{red}{\Delta_{T} q} \cdot \textcolor{blue}{\Delta_{T}^{0} D_{q}^{h}}}{\sum_{q} e_{q}^{2} \cdot q \cdot D_{q}^{h}}$$


But transverse fragmentation functions $\Delta_T^0 D_q^h$ (universal!) needed to extract $\Delta_T q(x)$ from the Collins assymmetry! Recently those FF measured by BELLE and BaBar.


Sivers process $(\phi_S = \phi_h - \phi_S)$, correlation of \perp nucleon spin with k_T of unpolarised q):

related to L_q in the proton. Fundamental!

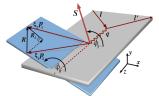
Results for the Collins asymmetry for protons



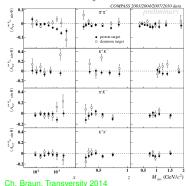
M. Anselmino et al., Phys.Rev. D87 (2013) 094019

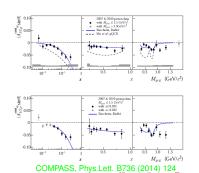
- Collins asymmetries for proton measured for +/- unidentified and identified hadrons...
- ullet ...are large at $x\gtrsim 0.03$ and consistent with HERMES (in spite of different Q^2 !)
- but negligible for the deuteron
- COMPASS + HERMES data on p,d + BELLE on e^+e^- : $\Longrightarrow \Delta_T u, \ \Delta_T d$
- Transversity also obtained from 2-hadron asymmetries (and "Interference Fragmentation Function")

Results for the Sivers asymmetry for protons

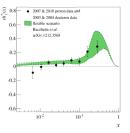


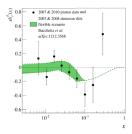
COMPASS, arXiv:1408.4405, submitted to PL B

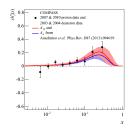

- Sivers asymmetries for proton measured for +/- identified hadrons are large for π^+ , K^+ ...
- ...and even larger at smaller Q^2 (HERMES)
- COMPASS deuteron data show very small asymmetry

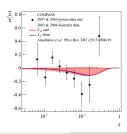


Di-hadron ($lN^{\uparrow} \rightarrow l'h_1h_2X$) asymmetries, p and d

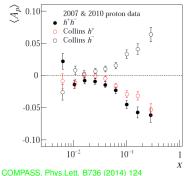

- ullet Fragmentation of $q\uparrow$ into unpolarised h_1h_2
- Di-hadron asymmetry: $A_{UT}^{\sin\phi_{RS}}$ $(\phi_{RS} = \phi_R + \phi_S \pi)$
- ullet measured from $N_{2h}(x,y,z,M_{inv}^2, heta,\phi_{RS})$
- ullet gives access to transversity $\Delta_T q$
- ullet ...and to a corresponding FF, $H_1^{\angle q}$

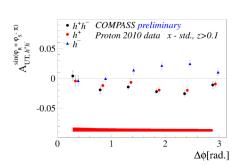



Transversity, $\Delta_T q (\equiv h_1)$, from 2h; p and d targets


Comparison with a global fit (Bacchetta et al. JHEP 03 (2013) 119)

...and with a global fit of 1h Collins asymmetry (Anselmino et al. Phys.Rev. D87 (2013) 094019)

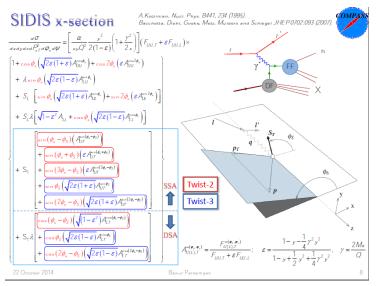




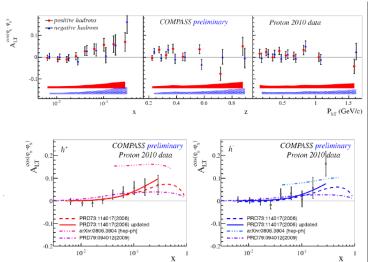
Two-hadron vs Collins asymmetries

Interesting observations:

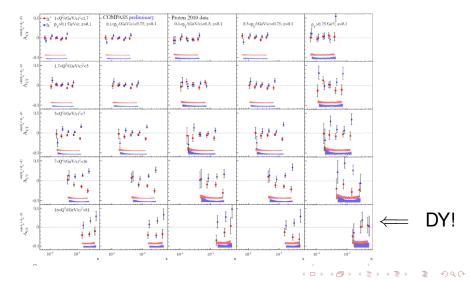
- Shape and strength of 2h and Collins h⁺ asymmetries almost identical as functions of x and $\Delta\Phi = |\phi_{h^+} \phi_{h^-}|$
- Expected within the string fragmentation model and consistent with 2h asymmetries at low M_{inv}^2
- Work is going on



50WIFA55, FTIYS.Lett. B750 (2014) 124


29 / 45

Other azimuthal asymmetries



Other TSAs: e.g. $A_{LT}^{\cos\phi_h-\phi_s}$ sensitive to g_{1T}^q

• g_{1T}^q : the only T-even, chiral-even, off-diagonal, twist-2 TMD

Multidimensional analyses: Collins asym. 3D (Q^2, p_T, x), z > 0.1

Summary of measurements on a transversely polarised target

- Collins and Sivers: completed analysis of combined 2007/2010 proton identified pions and kaons data (arXiv:1408.4405).
 Collins exhibits a non-zero signal for pions; Sivers: positive for π⁺, K⁺ (zero otherwise).
- Di-hadrons: combined 2007/2010 proton h^+h^- data (Phys. Lett.B736 (2014) 124). Preliminary 2003/2004 d and 2007/2010 p identified 2h
- Di-hadrons: $\pi^+\pi^-$ asymm. with unified analysis (cuts, binning,...) for p and d
- $\Delta_T u^v$ and $\Delta_T d^v$ extracted bin-by-bin from final COMPASS data according to method of Bacchetta *et al.*.
- A transversity signal at large $\Delta \phi$.
- Multidimensional (2D, 3D, 4D) analysis of unidentified h⁺/h⁻ hadrons
- Correlation between Collins for di-hadrons and 1 hadron is being investigated

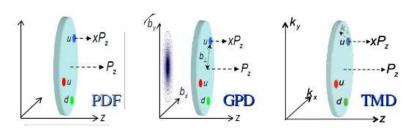
Outline

- Double longitudinal asymmetries
- Charged hadron multiplicities
- Measurements on a transversely polarised target
- COMPASS II
 - Drell-Yan @ COMPASS
 - GPD @ COMPASS

COMPASS II Proposal

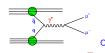
- CERN-SPSC-2010-014 (SPSC-P-340) of May 17, 2010
 wwwcompass.cern.ch/compass/proposal/compass-II_proposal/compass-II_proposal.pdf
- Approved in December 2010 initially 3 years data taking (Phase 1)
- Flavour separation and fragmentation in spin-averaged SIDIS (strange sector!)
- Focus on transverse structure of the nucleon
 - T-odd TMD (Sivers, Boer-Mulders distributions)

 - GPD, transverse size and parton orbital angular momentum
- π/K polarisabilities and tests of ChPT in the Compton scattering via Primakoff reaction.
- Addendum foreseen (spin-dependent GPD), Phase 2.



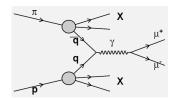
Outline

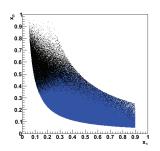
- Double longitudinal asymmetries
- Charged hadron multiplicities
- Measurements on a transversely polarised target
- COMPASS II
 - Drell-Yan @ COMPASS
 - GPD @ COMPASS

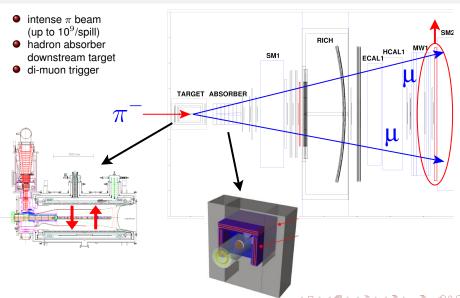


Transverse Momentum Dependent (TMD) distributions

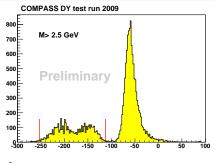
- parton intrinsic $k_{\rm T}$ taken into account
- related to quark angular momentum, L!
- at COMPASS studied in 2 ways:
 - semi-inclusive DIS (polarised muons on unpolarised/transversely polarised target)
 - Drell-Yan process (π beam on unpolarised/transversely polarised tgt.)

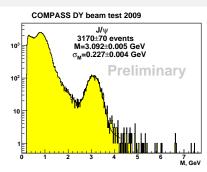

Drell-Yan process: $\pi^- p^{\uparrow} \rightarrow \mu^+ \mu^- X$

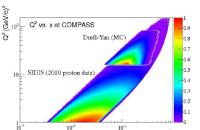

$$\pi^- p^\uparrow \to \mu^+ \mu^- X$$


@ COMPASS

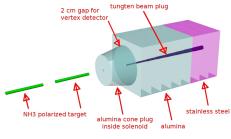
- Clean partonic process
- No fragmentation functions involved!
- Convolution of two Parton Distribution Functions $\sigma^{\mathrm{DY}} \propto f_{\bar{u}|\pi^{-}} \otimes f'_{u|\mathrm{D}}, \quad \sigma^{\mathrm{DY}} = \sigma^{\mathrm{DY}}(x_{\pi}, x_{\mathrm{D}})$
- Gives an access to azimuthal modulations of 4 PDF: transversity, pretzelosity, Boer-Mulders and Sivers.
- Ideal: p̄p; good compromise: π⁻p
- Here dominated by annihilation of valence \bar{u} from π^- and valence u from p
- COMPASS has large acceptance in the valence region of p and π (large SSA expected). Example of covered kinematics (in blue): π^- beam, 190 GeV/c, NH₃ target, \perp polarised dimuon mass range: $M_{\mu\mu}$: 4 – 9 GeV/ c^2 (low bckg.)
- QCD TMD approach justified by: $M_{\mu\mu}\gg p_{\mathrm{T}}^{\mu\mu}\approx$ 1 GeV

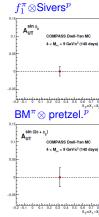


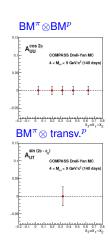



Drell-Yan @ COMPASS: experimental requirements

Drell-Yan @ COMPASS: Results from 2009 beam test





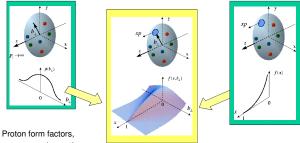

DY & SIDIS have overlapping acceptance!

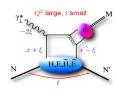
Drell—Yan @ COMPASS: Projections for azimuthal asymmetries

- ullet projections for 4 GeV/ $c^2 < M_{\mu\mu} <$ 9 GeV/ c^2
- 2014 test; 2015 140 days of data taking
 200 kevents expected
- 10⁸ pions /9.6 s spill; 33.6 s cycle
- 1.1 m long, polarised NH₃ target

Goals: change of sign between DIS and SIDIS in h_1^{\perp} , J/Ψ production mechanism,...

Drell-Yan measurement: status

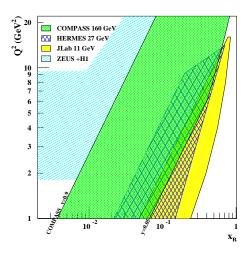

- (Transversely) Polarised DY COMPASS just started taking the test data (~ until end of 2014);
 In 2015, 140 days of TMD dedicated DY data taking.
 Possible continuation in 2018?
- Simultaneously the relevant azimuthal asymmetries will be extracted in the region $4 < M_{\mu\mu} < 9 \text{ GeV}/c^2$.
- Expected $\delta A_{\rm Sivers} \sim$ 1% after 1 year of running
- Parallely: unpolarised DY on nuclear targets for studies of EMC effect (flavour dependence)


Outline

- Double longitudinal asymmetries
- Charged hadron multiplicities
- Measurements on a transversely polarised target
- COMPASS II
 - Drell-Yan @ COMPASS
 - GPD @ COMPASS

3D picturing of the proton *via* GPD

- D. Mueller, X. Ji, A. Radyushkin, A. Belitsky, ...
- M. Burkardt, ... Interpretation in impact parameter space


transverse charge & current densities

Correlated quark momentum and helicity distributions in transverse space - GPDs

Structure functions. quark longitudinal momentum & helicity distributions

- Four GDPs $(H, E, \widetilde{H}, \widetilde{E})$ for each flavour and for gluons All depend on 3 variables: x, ξ, t ; DIS @ $\xi = t = 0$
 - H, \widetilde{H} conserve nucleon helicity; E, \widetilde{E} flip nucleon helicity
 - H, E refer to unpolarised distributions; $\widetilde{H}, \widetilde{E}$ refer to polarised distr.

GPD at COMPASS: data taking in 2016-17

- CERN high energy muon beam
 - 100 190 GeV
 - 80% polarisation
 - $-\mu^{+\leftarrow}$ and $\mu^{-\rightarrow}$ beams
- Kinematic range
 - between HERA and HERMES/JLab12
- intermediate x (sea and valence)
- Separation
 - pure B-H @ low $x_{\rm B}$
 - predominant DVCS @ high x_{B}
- Plans
 - DVCS
 - DVMP
- Goals
 - from unpolarised target: H (Phase 1)
 - from \perp polarised target: E (Phase 2)

Test runs: 2008-9 and 2012; DVCS signal seen, full setup evaluated

