Total, elastic \& diffractive cross-sections

```
    K. Österberg,
Department of Physics, University of \(\mathcal{H e}\) lsinki
    \& Helsinki Institute of Physics
```

```
IN\mathcal{NNN}LS1 ELGa 23.5.2014
```

- elastic scattering $]$ TOTEM (\& ATLAS ALFA)
- total cross-section \int TOTEM (α ATLAS ALFA)
- diffraction: HERA, Tevatron, ALICE, CMS (\&) TOTEM
- central exclusive production: CDF, DO, LHCb, ALICE, CM S(\&TOTEM)...in future CM S-TOTEM PPS, ATLAS AFP, LHCb Herschel

$$
0(100 \mathrm{mb}) \leftrightarrow 0 \text { (fb) }
$$

NPQCD \& QED \leftrightarrow search for BSM physics

Classification of soft pp events

Non-Diffractive process (ND) $\approx 60 \mathrm{mb} @ \sqrt{ } \mathrm{~s}=7-8 \mathrm{TeV}$
Elastic Scattering (ES), $\approx 25 \mathrm{mb}$

TOTEM experimental setup @ IP5

Roman Pots: elastic \& diffractive protons (di-proton trigger)

IP5

TOTEM experimental setup @ IP5

Roman Pots: diffractive protons (di-proton trigger)

IP5

Elastic pp scattering cross-section: status I

Elastic pp: Coulomb, hadronic \& their interference

$d \sigma / d t \propto\left|A^{C+H}\right|^{2}=$ Coulomb + hadronic + "interference" +

$+$

$+$

- hadronic modulus constrained by measurement of $\mathrm{e}^{-B(t)}$
$B(t)=b_{1} t+b_{2} t^{2}+\ldots$
$\mathrm{N}_{\mathrm{b}}=$ \#parameters in exp.
- interference formulae [1,2]
(not applicable to all A ${ }^{H}$)
- phase of A^{H} : central or peripheral
\Rightarrow accessible via interference with A !

2 [1] G. B. West and D. R. Jennie, Phys. Rev. 172 (1968)1413.
[2] V. Kundrát and M. Lokajıcek, Z Phys. C63 (1994) 619.

Elastic pp scattering cross-section: status II

$$
\begin{array}{ll}
\text { At } \sqrt{ } \mathbf{s}=\mathbf{8 ~ T e V} & \beta^{*}=\mathbf{1} \mathbf{~ k m}:|\mathrm{t}|_{\min } \approx 6 \cdot 10^{-4} \mathrm{GeV}^{2}, \text { statistics: } 0.3 \\
& \beta^{*}=\mathbf{9 0} \mathbf{~ m}:|\mathrm{t}|_{\min } \approx 2 \cdot 10^{-3} \mathrm{GeV}^{2} \text {, statistics: } 7 \mathrm{M}
\end{array}
$$

Fits: $d \sigma / d t \sim \exp \left(b_{1} t+b_{2} t^{2}+\ldots\right), N_{b}$ parameters in exponent

\Rightarrow purely exponential fit excluded at $>7 \sigma$ significance for A^{H} for low $|t|$!
First observation in pp, previously only in np (NA6, Nucl. Phys. B234 (1984) 365)
Q1: pure exponential behavior of $A^{H} \leftrightarrow$ superposition of diagrams? or coherent effects between fermions and interaction mediators? Q2: (hadronic phase of) elastic scattering: central or periheral

Total pp cross-section: methods \& results

$$
\begin{aligned}
& \sigma_{\text {tot }}^{2}=\frac{16 \pi}{\left(1+\rho^{2}\right)} \frac{1}{\mathcal{L}}\left(\frac{d N_{e l}}{d t}\right)_{t=0} \begin{array}{l}
\text { based on elastic } \\
\text { scattering } \Rightarrow \text { low } \\
\begin{array}{l}
\text { mass diffraction } \\
\text { independent }
\end{array}
\end{array} \\
& \sigma_{t o t}=\sigma_{e l}+\sigma_{\text {inel }} \\
& \left.\sigma_{t o t}=\frac{16 \pi}{\left(1+\rho^{2}\right)} \frac{\left(d N_{e l} / d t\right)_{t=0}}{\left(N_{e l}+N_{\text {inel }}\right)} \quad \mathrm{L} \text { independent } \quad \begin{array}{cc}
\sigma_{\text {total }}=98.1 \mathrm{mb} \pm 2.4 \mathrm{mb} \\
\text { PL101 (2013) } 21004
\end{array}\right)
\end{aligned}
$$

Q: Is optical theorem (OT) valid for hadron-hadron scattering?
OT derived for pointlike long-range interaction (γ).
Still valid for short-range interactions of composite objects ?
\Rightarrow valid at least to 3.5 \% level ($\sigma_{\text {tot }}$ with \& without OT)
Tests only improved by reduced L \& low mass diffraction uncertainties (improvements ofL determination ?)

Low mass diffraction/ disassocation

Diffractive interactions resulting only in final state particles at high | η | (beyond detector acceptance): largest (in mb) of the unknowns @ LHC Exist data (fixed target, ISR \& SppS) but comprehensive picture missing e.g. N^{*} contribution \Rightarrow severe limitation for all rapidity gap based measurements

TOTEM low mass diffraction (7 TeV):
$\sigma_{\text {inelastic, },}^{\ln \mid>6.5}=$
$\sigma_{\text {total }}-\sigma_{\text {elastic }}-\sigma_{\text {inelastic, }}|\eta|<6.5$
$=2.62 \pm 2.17 \mathrm{mb}$
$\sigma_{\text {inelastic, }}|\eta|>6.5 \leq 6.3 \mathrm{mb}$ @ $95 \% \mathrm{CL}$
ERL101 (2013) 21003

Need combined p (RPs), n (ZDC's, LHCf) \& FSC's \Rightarrow sofar no success Probably need fullfledged forward spectrometer at hadron collider !!

$\sqrt{ } \mathrm{s}$ behaviour of total \& inelastic pp cross-section

Also important input to cosmic air shower modeling (together with multiplicity, forward particle flows, ...)

Cosmic air shower connection

21311 m
T. Pierog, QCD \& forward physics at the LHC

- Longitudinal Development

\rightarrow number of particles vs depth

$$
X=\int_{h}^{\infty} d z \rho(z)
$$

\rightarrow Larger number of particles at $X_{\text {max }}$
For many showers
\rightarrow mean : < $X_{\text {max }}>$
\rightarrow fluctuations : RMS $\mathrm{X}_{\text {max }}$

Extrapolation to $\mathrm{Np}(\mathrm{NFe})$ still limit predictions $\Rightarrow \mathrm{pN}(\mathrm{pO})$ collisions@ LHC Cosmic ray generators better for soft pp interactions than HEP generators !!

Open questions: total, elastic and diffractive cross-section

1. Understanding of low-t behaviour of $\sigma_{\text {elastic }}$:ppre exponential behavior of hadronic amplitude? \leftrightarrow Interference Coulomb-hadronic interference \& coherent effects, hadronic phase of elastic scattering: central or periheral
2. Validity of optical theorem for hadron-hadron interactions?
3. Comprehensive picture of low mass diffraction
4. High energy behaviour of $\sigma_{\text {total }}{ }^{\text {pp }} / \sigma_{\text {inelastic }}{ }^{\text {pp }}$? (\leftrightarrow cosmic rays)

Hard diffraction: present \& future

F. Ceccopieri, LTS1

- Impressive knowledge on hard diffraction accumulated by HERA and Tevatron
- This knowledge is quantitative thanks to factorisation theorem: dPDFs NLO pQCD fits of DIS data are available.
- Assume hard scattering factorization : use HERA dPDFs to predict
\star dijet in DIS: data/NLO $\simeq 1$
\star dijet in PHP: debated data/NLO $\simeq 0.5-1$
\star dijet or $W^{ \pm}$in $p \bar{p}$ at Tevatron: data/NLO $\simeq 0.1$
- The way hard scattering factorisation fails opens windows on NP physics
- Present and near future : discovery-like program at hadron collider:
- how factorisation is broken : use diffractive DY as clean benchmark process
- Can we recover approximate predictivity (just K-factor or more complex scenarios)?
- Distant future : precision-like program in future ep machines:
- Solve the puzzle in diff.PHP and Improve in the DIS low $1<Q^{2}<10 \mathrm{GeV}^{2}$ regime
- Study the interplays of hard diffraction with saturation and low- x physics

Q: Understanding factorization breaking in hard diffraction (Ith $\leftrightarrow \mathbf{h h}$)

Central exclusive production (CEP)

$\mathrm{p}_{2}\left(\xi_{2}\right)$

$$
y_{\mathbf{x}}=\frac{1}{2} \ln \frac{\xi_{1}}{\xi_{2}}
$$

also $\gamma \gamma$ fusion \& photoproduction
exchange of colour singlets with vacuum quantum numbers \Rightarrow Selection rules for system $X: J^{\mathrm{PC}}=0^{++}, 2^{++}$ $X=0^{++} \& 2^{++}$(light $\left.q, c \& b\right)$ resonances, jets,?....

$$
\left\{\begin{array}{l}
M=m_{\pi \pi}-\sim 1 \mathrm{TeV} \\
\sigma=0(\mu \mathrm{~b})-0(\mathrm{fb})
\end{array}\right.
$$

With proton tagging:
Normal LHC runs: M (pp) acceptance $>350 \mathrm{GeV}$
\Rightarrow ${ }^{\prime}$ s small (fb), need high lumi, only accessible with CT PPS \& AFP
Special runs: all M (pp), $\mu \sim 0.05-0.5 \Rightarrow 0$ (0.1-10 $\mathrm{pb}^{-1} /$ day $)$
CM S \& TOTEM common runs: if $\mu \sim 0.5$ need timing in vertical TOTEM RPs
With rapidity gaps (also ALICE, ATLAS \& CM S):
LHCb in normal LHC runs, σ 's ($\geq \mathrm{fb}$), improved with Herschel.

(CMS-)TOTEM RP system consolidation \& upgrade

Mechanics / infrastructure in 2014 (LS1), timing sensors / Si pixel detectors later (during short technical stops)

LHCb Herschel

High rapidity shower counters for LHCb

- Increase rapidity gap with scintillators in forward region
- Use existing electronics

LHC-b
R. McNulty, QCD \& forward physics at the LHC

Installed during LS1

```
Left
1. z ~ -7.5 m (after MBXW)
2. z ~ -19m (before MBXWS)
3. z~-114m (after BRANS)
```


Right

1. $z \sim 19 \mathrm{~m}$ (close to MBXWS)
2. $z \sim 114 m$ (after BRANS)

First simulations suggest veto region for charged and neutral particles can be extended to include $5<|n|<8$

CEP low mass states \& glueballs

LHC an excellent place to study CEP low mass states:

- small $\mathrm{p}_{\mathrm{T}}{ }^{\prime} \mathrm{s} \Rightarrow \Delta \mathrm{m} \sim 10 \mathrm{MeV}$ from tracking (CM S-TOTEM \& LHCb)
- excellent angular coverage (CM S-TOTEM \& LHCb)
- proton tagging in special runs (CM S-TOTEM)

Pomeron = virtual glue ball $? \Rightarrow$ likely to produce glue balls in Pomeron fusion

CEP jets

cross-sections, $3 \mathbf{j} / 2 \mathrm{j}$ ratio, gluon jet studies
CDF Observed $\mathrm{X}=\mathrm{JJ}$ at $\mathrm{Vs}=1.96 \mathrm{TeV}$ to $\mathrm{E}_{\mathrm{T}}=30 \mathrm{GeV}$
At LEP: $\mathrm{e}+\mathrm{e}-\boldsymbol{\rightarrow} \mathrm{Z} \rightarrow 2$ jets (q-qbar) or 3 jets (q-qbar-g)

Durham group (KHARYS MC)

g

Democratic so $1 / 5$ each quark type: 20\% b-bbar 20\% c-cbar, ...

Subtle QCD effects:
No gluon radiation (Sudakov)
No other parton collisions
Test spin rule $\mathrm{Jz}=0$
Interplay of pQCD and npQCD
Distant relation to elastic scattering
Standard LHC runs: M (pp) acceptance >350 GeV $\Rightarrow \sigma$'s small (fb), need high lumi, only accessible with CT PPS \& AFP

Special runs: all M (pp), $\mu \sim 0.5 \& 1 \mathrm{k}$ bunches $\Rightarrow \mathrm{O}\left(10 \mathrm{pb}^{-1}\right)$
$\sigma(\mathrm{M}(\mathrm{pp})>75 \mathrm{GeV})=\sim 100 \mathrm{pb}$ @ $\mathrm{s}=13 \mathrm{TeV}$ (KHARYS)
only accessible with timing detectors in vertical TOTEM RPs

Anomalous Quartic Gauge couplings

Search for BSM physics: sensitivity better by order(s) of magnitude with protons

Open questions: Diffraction \& central exclusive production (CEP)

1. Understanding factorisation breaking in hard diffraction?
2. Existence of glueballs (or gluon rich-resonances) \& their hierarchy?
3. $\quad \gamma \gamma$ fusion as probe for beyond SM physics?

Summary

Total, elastic and diffractive cross-sections:

- Wide physics range
- M any open issues
- Instrumental upgrades of LHC detectors crucial for exploitation of diffractive potential especially CEP processes

Backup

Performances: diffractive protons measurements

Raw hit distribution of leading protons Optics $\beta^{*}=90 \mathrm{~m}$; Run July 2012 (CMS+TOTEM run)
$|t|>0.02 \mathrm{GeV}^{2}\left(R P\right.$ at $\left.10 \sigma_{y, \text { beam }}\right)$, all ξ
Acceptance: soft CD (2 protons tagged) ~ 25%
$s(\xi) \sim 0.8 \%$ (0.3% with CMS vertex)
$\mathrm{s}(\mathrm{M}) \sim 50 \mathrm{GeV}$ (20 GeV with CMS vertex)

Simulated hit distribution of leading protons at low β^{*}
$\xi>0.03$ (RP at $15 \sigma_{x, \text { beam }}$), all t
Acceptance: soft CD (2 protons tagged) ~ 2%
$\mathrm{s}(\xi) \sim 0.1-0.2 \%$
$s(M) \sim(0.02-0.03) M$

Elastic pp scattering: selection \& data sets

Selected based on topology, low | $\xi \mid$, collinearity, \& vertex

Key issues: RP alignment \& optics

Data sets at different conditions to measure elastics over wide t-range including very low $|\mathrm{t}|$

- $\beta^{*}=90 \mathrm{~m}$ \& low lumi: $\mathrm{N}_{\mathrm{b}} \leq 156, \mathrm{~N}_{\mathrm{p}} / \mathrm{b} \sim(0.5-0.7) \cdot 10^{11}$ (no xangle) 0.05-0.1, L~1030 $\mathrm{cm}^{-2} \mathrm{~s}^{-1}, \sim 0.1-0.2 \mathrm{pb}^{-1} /$ day
- total cross-section, elastic scattering, soft diffraction, charged multiplicity, SD jets (low p_{T})...
- $\beta^{*}=90 \mathrm{~m} \&$ medium lumi: $\mathrm{N}_{\mathrm{b}} \approx 1000, \mathrm{~N}_{\mathrm{p}} / \mathrm{b} \sim 1.5 \cdot 10^{11}$ (100 $\mu \mathrm{rad} \quad$ xangle) $\Rightarrow \mu \sim 0.5, \mathrm{~L} \sim 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}, \sim 5 \mathrm{pb}^{-1} /$ day
- CD \& CEP jets (low p_{T}), CD missing mass topology, CD exclusive low mass resonances/meson pairs, CEP $\gamma \gamma$, SD J/ ψ, SD jets (medium p_{T})...
need precise timing in vertical RPs
- Low β^{*} \& high lumi: $\mathrm{N}_{\mathrm{b}} \approx 2500-2800, \mathrm{~N}_{\mathrm{p}} / \mathrm{b} \sim(1.2-1.5) \cdot 10^{11}$ (290 $\mu \mathrm{rad}$ xangle) \Rightarrow $\mu \sim 30-50, L \sim(1-2) \cdot 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}, \sim 1-1.5 \mathrm{fb}^{-1} /$ day
- CEP jets (high p_{T} and $M_{\text {diff }}$), vector boson (W, Z) pairs and search for anomalous couplings, CD missing mass topology(?)..
need precise timing + Si pixel in horizontal RPs \Rightarrow CMS/ TOTEM PPS

Elastic pp scattering: implications

$$
\mathrm{d} \sigma / \mathrm{dt} \sim \mathrm{e}^{-\mathrm{B}|t|}
$$

Increase of B slope with collision energy

LHC Optics \& proton acceptance

$t \approx-p^{2} \Theta^{* 2}$: four-momentum transfer squared; $\xi=\Delta p / p$: fractional momentum loss

