Total, elastic & diffractive cross-sections

K. Österberg, Department of Physics, University of Helsinki & Helsinki Institute of Physics

INFN LS1 Elba 23.5.2014

- elastic scatteringtotal cross-sectionTOTEM (& ATLAS ALFA)

- diffraction: HERA, Tevatron, ALICE, CMS (&) TOTEM
- central exclusive production: CDF, D0, LHCb, ALICE, CMS(&TOTEM)...in future CMS-TOTEM PPS, ATLAS AFP, LHCb Herschel

 $O(100 \text{ mb}) \leftrightarrow O(\text{fb})$ NPQCD & QED ↔ search for BSM physics

Classification of soft pp events

TOTEM experimental setup @ IP5

Roman Pots: elastic & diffractive protons (di-proton trigger)

TOTEM experimental setup @ IP5

Roman Pots: diffractive protons (di-proton trigger)

Elastic pp scattering cross-section: status I

Similar |t|
dependence as at ISR
(& SppS / Tevatron)
with expected changes
(smaller |t|_{dip},
larger B ...)

 \Rightarrow extract $\sigma_{elastic'}$ $d\sigma_{elastic}/dt$ at t=0 (used to determine σ_{total} via optical theorem)

assuming pure hadronic interaction (data not sensitive)!

Elastic pp: Coulomb, hadronic & their interference

 $d\sigma/dt \propto |A^{C+H}|^2 = Coulomb + hadronic + "interference" +$

– hadronic modulus constrained by measurement of $e^{-B(t)}$

$$B(t) = b_1 t + b_2 t^2 + \dots$$

 N_b = # parameters in exp.

- interference formulae [1,2]
 (not applicable to all A^H)
- phase of A^H: central or peripheral
- \Rightarrow accessible via interference with A^C!

0.02 [1] G. B. West and D. R. Jennie, Phys. Rev. 172 (1968)1413. [2] V. Kundrát and M. Lokajıcek, Z. Phys. C 63 (1994) 619.

Elastic pp scattering cross-section: status II

At
$$\sqrt{s} = 8$$
 TeV $\beta^* = 1$ km: $|t|_{min} \approx 6 \cdot 10^{-4}$ GeV², statistics: 0.3 $\beta^* = 90$ m: $|t|_{min} \approx 2 \cdot 10^{-3}$ GeV², statistics: 7 M

Fits: $d\sigma/dt \sim \exp(b_1t + b_2t^2 + ...)$, N_b parameters in exponent

\Rightarrow purely exponential fit excluded at > 7σ significance for A^H for low |t|!

First observation in pp, previously only in np (NA6, Nucl. Phys. B234 (1984) 365)

.
Better theoretical
understanding needed Q1: pure exponential behavior of $A^H \leftrightarrow$ superposition of diagrams? or coherent effects between fermions and interaction mediators?

Q2: (hadronic phase of) elastic scattering: central or periheral

Total pp cross-section: methods & results

$$\sigma_{tot}^2 = \frac{16\pi}{(1+\rho^2)} \frac{1}{\mathcal{L}} \left(\frac{dN_{el}}{dt}\right)_{t=0} \quad \begin{array}{l} \text{based of relastic} \\ \text{scattering} \Rightarrow \text{low} \\ \text{mass diffraction} \end{array}$$

based on elastic independent

 σ_{total} = 98.3 mb ± 2.0 mb EPL 96 (2011) 21002

 σ_{total} = 98.6 mb ± 2.3 mb EPL 101 (2013) 21002

$$\sigma_{tot} = \sigma_{el} + \sigma_{inel}$$

optical theorem & ρ independent

 σ_{total} = 99.1 mb ± 4.3 mb EPL 101 (2013) 21004

$$\sigma_{tot} = \frac{16\pi}{(1+\rho^2)} \frac{(dN_{el}/dt)_{t=0}}{(N_{el}+N_{inel})} \quad \text{L independent}$$

 σ_{total} = 98.1 mb ± 2.4 mb EPL 101 (2013) 21004

Q: Is optical theorem (OT) valid for hadron-hadron scattering?

OT derived for pointlike long-range interaction (γ). Still valid for short-range interactions of composite objects? \Rightarrow valid at least to 3.5 % level (σ_{tot} with & without OT)

Tests only improved by reduced L & low mass diffraction uncertainties (improvements of L determination?)

TOTEM

@ 7 TeV

Low mass diffraction/disassocation

Diffractive interactions resulting only in final state particles at high $|\eta|$ (beyond detector acceptance): largest (in mb) of the unknowns @ LHC

Exist data (fixed target, ISR & SppS) but comprehensive picture missing e.g. N^* contribution \Rightarrow severe limitation for all rapidity gap based measurements

TOTEM low mass diffraction (7 TeV):

$$σ_{\text{inelastic}}$$
, $|η| > 6.5$ =
 $σ_{\text{total}} - σ_{\text{elastic}} - σ_{\text{inelastic}}$, $|η| < 6.5$ = 2.62 ± 2.17 mb
 $σ_{\text{inelastic}}$, $|η| > 6.5 \le 6.3$ mb @ 95 % CL
 $EPL\ 101\ (2013)\ 21003$

Need combined p (RPs), n (ZDC's, LHCf) & FSC's \Rightarrow sofar no success Probably need fullfledged forward spectrometer at hadron collider!!

√s behaviour of total & inelastic pp cross-section

Also important input to cosmic air shower modeling (together with multiplicity, forward particle flows, ...)

Cosmic air shower connection

Extrapolation to Np(NFe) still limit predictions \Rightarrow pN (pO) collisions@ LHC Cosmic ray generators better for soft pp interactions than HEP generators!!

Open questions: total, elastic and diffractive cross-section

- 1. Understanding of low-t behaviour of σ_{elastic}^{pp}: pure exponential behavior of hadronic amplitude? ↔ Interference Coulomb-hadronic interference & coherent effects, hadronic phase of elastic scattering: central or periheral
- 2. Validity of optical theorem for hadron-hadron interactions?
- 3. Comprehensive picture of low mass diffraction
- 4. High energy behaviour of $\sigma_{\text{total}}^{\text{pp}} / \sigma_{\text{inelastic}}^{\text{pp}}$? (\leftrightarrow cosmic rays)

Hard diffraction: present & future

F. Ceccopieri, LTS1

- Impressive knowledge on hard diffraction accumulated by HERA and Tevatron
- This knowledge is quantitative thanks to factorisation theorem: dPDFs NLO pQCD fits of DIS data are available.
- Assume hard scattering factorization : use HERA dPDFs to predict

```
\star dijet in DIS: data/NLO \simeq 1 
 \star dijet in PHP: debated data/NLO \simeq 0.5-1 
 \star dijet or W^{\pm} in p\bar{p} at Tevatron: data/NLO \simeq 0.1
```

- The way hard scattering factorisation fails opens windows on NP physics
- Present and near future: discovery-like program at hadron collider:
 - how factorisation is broken: use diffractive DY as clean benchmark process
 - Can we recover approximate predictivity (just K-factor or more complex scenarios)?
- ullet Distant future : precision-like program in future ep machines:
 - Solve the puzzle in diff.PHP and Improve in the DIS low $1 < Q^2 < 10 \; {\rm GeV}^2$ regime
 - Study the interplays of hard diffraction with saturation and low-x physics

Q: Understanding factorization breaking in hard diffraction ($I^{\pm}h \leftrightarrow hh$)

Central exclusive production (CEP)

$$M^2 = \xi_1 \xi_2 s$$

also γγ fusion & photoproduction

X at rapidity y_x

$$p_2 (\xi_2)$$

$$y_{\mathbf{X}} = \frac{1}{2} \ln \frac{\xi_1}{\xi_2}$$

exchange of colour singlets with vacuum quantum numbers \Rightarrow Selection rules for system X: $J^{PC} = 0^{++}, 2^{++}$

 $X = 0^{++} \& 2^{++}$ (light q, c & b) resonances, jets,?...

M=
$$m_{\pi\pi}$$
 - ~ 1 TeV
 σ = O(μ b) - O(fb)

gg collider!

With proton tagging:

Normal LHC runs: M(pp) acceptance > 350 GeV

 \Rightarrow σ 's small (fb), need high lumi, only accessible with CT PPS & AFP

Special runs: all M(pp), $\mu \sim 0.05 - 0.5 \implies O(0.1-10 \text{ pb}^{-1}/\text{day})$

CMS & TOTEM common runs: if $\mu \sim 0.5$ need timing in vertical TOTEM RPs

With rapidity gaps (also ALICE, ATLAS & CMS):

LHCb in normal LHC runs, σ 's (\geq fb), improved with Herschel.

(CMS-)TOTEM RP system consolidation & upgrade

Mechanics / infrastructure in 2014 (LS1), timing sensors / Si pixel detectors later (during short technical stops)

- RP system made of 4 RP units/arm, each with 2 vert. + 1 horiz. RP with μstrip detectors
- CT PPS: existing μ strip detectors in horizontal RPs replaced by silicon pixel trackers + addition of 2 new cylindrical horizontal RP with timing sensors (~10 ps) for high luminosity running
- Timing in TOTEM vertical RP's: solid state timing sensors (~50 ps) for special runs with μ ~ 0.5

Deviation from pure power-law. i.e. NLO required or only power-law for W>W₀

LHCb Herschel

High rapidity shower counters for LHCb

- Increase rapidity gap with scintillators in forward region
- Use existing electronics

LHC-b

R. McNulty, QCD & forward physics at the LHC

Installed during LS1

Left

- 1. $z \sim -7.5$ m (after MBXW)
- 2. $z \sim -19m$ (before MBXWS)
- 3. z ~ -114m (after BRANS)

Right

- 1. $z \sim 19$ m (close to MBXWS)
- 2. z ~ 114m (after BRANS)

First simulations suggest veto region for charged and neutral particles can be extended to include $5<|\eta|<8$

CEP low mass states & glueballs

LHC an excellent place to study CEP low mass states:

- small p_T 's $\Rightarrow \Delta m \sim 10$ MeV from tracking (CMS-TOTEM & LHCb)
- excellent angular coverage (CMS-TOTEM & LHCb)
- proton tagging in special runs (CMS-TOTEM)

Pomeron = virtual glue ball ? ⇒ likely to produce glue balls in Pomeron fusion

Durham group (KHARYS MC) cross-sections, 3j/2j ratio, gluon jet studies CDF Observed X = JJ at \sqrt{s} = 1.96 TeV to E_T = 30 GeV At LEP: $e+e- \rightarrow Z \rightarrow 2$ jets (q-qbar) or 3 jets (q-qbar-g) (a) At LHC: IP + IP → 2 jets (g-g) or 3 jets (q-qbar-g) OR (g-g-g) Different kinematics 99% of exclusive dijets are g-g (unique) 1% are b-bbar → uu, dd, ss, cc suppressed by [m(q)/m(JJ)]² (Durham theory gp) Subtle QCD effects: No gluon radiation (Sudakov) Democratic so 1/5 each quark type: No other parton collisions 20% b-bbar 20% c-cbar, ... Test spin rule Jz = 0Interplay of pQCD and npQCD Standard LHC runs: M(pp) acceptance > 350 GeV Distant relation to elastic scattering

 \Rightarrow σ 's small (fb), need high lumi, only accessible with CT PPS & AFP

Special runs: all M(pp), $\mu \sim 0.5$ & 1k bunches \Rightarrow O(10 pb⁻¹) $\sigma(M(pp) > 75 \text{ GeV}) = ~100 \text{ pb } @ \text{ s} = 13 \text{ TeV (KHARYS)}$ only accessible with timing detectors in vertical TOTEM RPs

Anomalous Quartic Gauge couplings

Search for BSM physics: sensitivity better by order(s) of magnitude with protons

Open questions: Diffraction & central exclusive production (CEP)

- Understanding factorisation breaking in hard diffraction?
- 2. Existence of glueballs (or gluon rich-resonances) & their hierarchy?
- 3. $\gamma\gamma$ fusion as probe for beyond SM physics?

Summary

Total, elastic and diffractive cross-sections:

- Wide physics range
- Many open issues
- Instrumental upgrades of LHC detectors crucial for exploitation of diffractive potential especially CEP processes

Backup

Performances: diffractive protons measurements

Raw hit distribution of leading protons Optics β^* = 90m; Run July 2012 (CMS+TOTEM run)

$$|t|$$
> 0.02 GeV² (RP at $10\sigma_{y, beam}$), all ξ

Acceptance: soft CD (2 protons tagged) ~ 25 %

 $s(\xi) \sim 0.8\%$ (0.3% with CMS vertex)

s(M) ~ 50 GeV (20 GeV with CMS vertex)

Simulated hit distribution of leading protons at low β^*

$$\xi > 0.03$$
 (RP at $15\sigma_{x, beam}$), all t

Acceptance: soft CD (2 protons tagged) ~ 2 %

$$s(\xi) \sim 0.1-0.2\%$$

 $s(M) \sim (0.02-0.03)M$

Elastic pp scattering: selection & data sets

Selected based on topology, low $|\xi|$, collinearity, & vertex

Data sets at different conditions to measure elastics over wide t-range including very low |t|

Run scenarios

- $\beta^* = 90 \text{ m \& low lumi: } N_b \le 156, N_p/b \sim (0.5-0.7) \cdot 10^{11} \text{ (no xangle)}$ 0.05-0.1, L $\sim 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$, ~ 0.1 -0.2 pb⁻¹/day
 - total cross-section, elastic scattering, soft diffraction, charged multiplicity, SD jets (low p_T)...
- $\beta^* = 90 \text{ m \& medium lumi: } N_b \approx 1000, N_p/b \sim 1.5 \cdot 10^{11} \text{ (100 } \mu\text{rad}$ xangle) $\Rightarrow \mu \sim 0.5, L \sim 10^{32} \text{ cm}^{-2} \text{ s}^{-1}, \sim 5 \text{ pb}^{-1}/\text{day}$
 - CD & CEP jets (low p_T), CD missing mass topology, CD exclusive low mass resonances/meson pairs, CEP $\gamma\gamma$, SD J/ ψ , SD jets (medium p_T)... need precise timing in vertical RPs
- Low β^* & high lumi: $N_b \approx 2500-2800$, $N_p/b \sim (1.2-1.5)\cdot 10^{11}$ (290 μ rad xangle) $\Rightarrow \mu \sim 30-50$, $L \sim (1-2)\cdot 10^{34}$ cm⁻² s⁻¹, $\sim 1-1.5$ fb⁻¹/day
 - CEP jets (high p_T and M_{diff}), vector boson (W, Z) pairs and search for anomalous couplings, CD missing mass topology(?)...
 - need precise timing + Si pixel in horizontal RPs ⇒ CMS/TOTEM PPS

Elastic pp scattering: implications

LHC Optics & proton acceptance

 $t \approx -p^2 \Theta^{*2}$: four-momentum transfer squared; $\xi = \Delta p/p$: fractional momentum loss

 ξ > ~0.03, low cross-section processes (hard diffraction) Elastic scattering: large |t|

Diffraction: all ξ if |t| > ~ 10^{-2} GeV², soft & semi-hard diffraction Elastic scattering: low to mid |t| Total cross-Section

Elastic scattering:
very low |t|,
Coulomb-Nuclear
Interference
Total cross-Section