NEAR-FUTURE PROSPECTS AT LHCb and Belle II

VINCENZO VAGNONI INFN BOLOGNA

LTS1 2014

NEXT 10 YEARS OF ACCELERATOR-BASED EXPERIMENTS

Setting the scene

- Precision measurements of CP violation and rare decays
- General decomposition in terms of couplings and scales

$$A = A_0 \left[c_{\text{SM}} \frac{1}{M_{\text{W}}^2} + c_{\text{NP}} \frac{1}{\Lambda^2} \right]$$

- If the SM contribution is not negligible, uncertainties on the SM coupling can hide NP effects
 - Need to focus on theoretically clean processes

Setting the scene

- Experiments have shown so far that the quark flavour sector is well described by the CKM mechanism and large sources of flavour symmetry breaking are excluded at the TeV scale
 - the flavour structure of NP (if present) should be very peculiar
- Nevertheless
 - measurable deviations from the SM, although not large as naively hoped some years ago, are still possible
 - need to go to high precision measurements to probe theoretically clean observables
- Let's see the impact of the forthcoming flavour physics programme at LHCb and Belle II

Measurements of UT angles

- Interpretation in terms of CKM matrix elements does not depend on strong theory inputs
 - $-\sigma_{th}(\gamma)$ negligible from tree-level decays
 - Brod and Zupan, JHEP 01 (2014) 051
 - $-\sigma_{th}(\beta)$ small and controllable with data-driven methods
 - Ciuchini et al., PRL 95 (2005) 221804
 - Faller et al., PRD 79 (2009) 014030
 - $\sigma_{th}(\beta_s)$ small and controllable with data-driven methods
 - Faller et al., PRD 79 (2009) 014005
 - $-\sigma_{th}(\alpha) \approx 1^{\circ}$
 - Gronau et al., PRD 60 (1999) 034021
 - Botella et al., PRD 73 (2006) 071501
 - Zupan, Nucl. Phys. Proc. Suppl. 170 (2007) 33

- Measurements can be affected by NP at different levels
 - $-\gamma$ from tree-level is basically unaffected
 - $-\beta (\beta_s)$ can be affected in $B_d (B_s)$ mixing
 - α can be affected both in mixing and decay (loops in penguin diagrams) ⁴

Measurements of UT sides and ϵ_{κ}

- Here theory matters a lot
 - Improvements in lattice QCD are particularly important
 - Can we go below 1% for the relevant hadronic quantities in the next decade?

Hadronic parameter	L.Lellouch ICHEP 2002 [hep-ph/0211359]	FL <i>AG</i> 2013 [1310.8555]	2025 [What Next]
f ₊ ^{Kπ} (0)	- First Lattice result in 2004 [0.9%]	[0.4%]	[0.1%]
₿ _K	[17%]	[1.3%]	[0.1-0.5%]
f_{Bs}	[13%]	[2%]	[0.5%]
f_{Bs}/f_{B}	[6%]	[1.8%]	[0.5%]
B _{Bs}	[9%]	[5%]	[0.5-1%]
B _{Bs} /B _B	[3%]	[10%]	[0.5-1%]
F _{D*} (1)	[3%]	[1.8%]	[0.5%]
$B{ ightarrow}\pi$	[20%]	[10%]	[>1%]

See C. Tarantino in parallel session

How to increase LHCb statistics

Up to LS2

- running at levelled luminosity of 4·10³² cm⁻²s⁻¹
- software trigger running at 1
 MHz after hardware trigger
- record 3-5 kHz

LHCb upgrade

- running at $1-2\cdot10^{33}$ cm⁻²s⁻¹
- replace R/O, RICH photodetectors and tracking detectors
- full software trigger, running at 40 MHz
- record 20 kHz

Large improvements in physics yields due to lower p_T and E_T cuts

- x10 in muonic *B* decays
- x20 in charm and hadronic B decays

LHCb luminosity profile

- The LHCb upgrade aims at integrating a luminosity of 50 fb⁻¹ by 2026
 - x2 at every LHC run
 - can continue to be operational till the end of the HL programme up to O(100) fb⁻¹

From KEKB/Belle to SuperKEKB/Belle-II

- x2 from beam currents, x20 from nano-beams
- Detector specs changed to cope with larger occupancy and higher data rates
- Improved performances (vertexing, PID, hermeticity, ...)

Belle II luminosity profile

- Physics run expected for 2016-2017
- Competitive results starting to be available very early
 - In 2018 will match the size of data sets of BaBar and Belle
- Will start deploying the full potential by 2020
 - Integrating 50 ab⁻¹ in about 6 years

Physics prospects

- Subset of topics
 - Lack of time and focus where future prospects have been studied by the experiments in some detail

```
B_{d,s} \rightarrow \mu\mu

B \rightarrow K^*\mu\mu

Mixing-induced CPV in B_s

Tree-level determination of \gamma
```

(A taste of) CPV in charm decays Determination of $|V_{ub}|$ B \rightarrow Iv and B \rightarrow D^(*) τ v LFV in τ decays

 Will focus on the prospects of LHCb and Belle II, but will also mention ATLAS and CMS where they can provide competitive results

Status of $B_{d,s} \rightarrow \mu^+ \mu^-$

CMS: Phys. Rev. Lett. 111 (2013) 101804, arXiv:1307.5025. LHCb: Phys. Rev. Lett. 111 (2013) 101805, arXiv:1307.5024. Combination: CMS-PAS-BPH-13-007; LHCb-CONF-2013-012

- Theoretical precision at 10%
 - Can be further improved
- Waiting for publication of LHCb and CMS final average
 - Only preliminar combination available
- CMS mass resolution can be improved with upgraded tracking
- $B_d \rightarrow \mu^+ \mu^-$ sensitivity depends on $B \rightarrow h^+ h^-$ misidentification background
 - Calibration of PID is extremely important

Prospects with $B_{d.s} \rightarrow \mu^{+}\mu^{-}$

- The ratio BR($B_d \rightarrow \mu^+ \mu^-$)/ $BR(B_s \rightarrow \mu^+\mu^-)$ is known with better theoretical uncertainty
 - Now 5%, but can be brought down to ≈1%
- Measurement will still be dominated by experimental uncertainty by 2030
 - Now 200%, will be ≈20%

- With increased statistics, the measurement of effective $B_s \rightarrow \mu^+ \mu^-$ lifetime and possibly time-dependent CP violation will become possible
 - New observables sensitive to NP effects in very rare B decays!

Status of B \rightarrow K* $\mu^+\mu^-$

- Observables are q² (dimuon mass squared) and 3 angles
 - distributions are quite precisely predicted in the SM
- LHC experiments have different sensitivities in the various bins
 - But LHCb mostly dominant

Prospects with $B \rightarrow K^* \mu^+ \mu^-$

$$A_{FB} = \frac{\Gamma(\cos\theta_{B\ell^+} > 0) - \Gamma(\cos\theta_{B\ell^+} < 0)}{\Gamma(\cos\theta_{B\ell^+} > 0) + \Gamma(\cos\theta_{B\ell^+} < 0)}$$

- LHCb expects to reach an accuracy of better than 2% in the zero-crossing of the forward- \$\frac{3}{5}\$ From last ECFA HL-LHC workshop backward asymmetry
- Belle II is more limited in statistics, but can compensate with K*e⁺e⁻ and using an inclusive $B \rightarrow X_s l^+ l^-$ analysis

A_{FR} is not necessarily the best variable due to hadronic uncertainties. Phenomenological work ongoing to define observables where hadronic uncertainties are partially cancelled

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$: new observables

Differential decay rate

$$\begin{split} \frac{1}{\mathrm{d}\Gamma/dq^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_K\,\mathrm{d}\phi\,\mathrm{d}q^2} = & \frac{9}{32\pi} \begin{bmatrix} \frac{3}{4}(1-F_\mathrm{L})\sin^2\theta_K + F_\mathrm{L}\cos^2\theta_K + \frac{1}{4}(1-F_\mathrm{L})\sin^2\theta_K\cos2\theta_\ell \\ & - F_\mathrm{L}\cos^2\theta_K\cos2\theta_\ell + S_3\sin^2\theta_K\sin^2\theta_\ell\cos2\phi \\ & + S_4\sin2\theta_K\sin2\theta_\ell\cos\phi + S_5\sin2\theta_K\sin\theta_\ell\cos\phi \\ & + S_6\sin^2\theta_K\cos\theta_\ell + S_7\sin2\theta_K\sin\theta_\ell\sin\phi \\ & + S_8\sin2\theta_K\sin2\theta_\ell\sin\phi + S_9\sin^2\theta_K\sin^2\theta_\ell\sin2\phi \end{bmatrix}, \end{split}$$

$$P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_{\rm L}(1 - F_{\rm L})}}.$$

- Interesting feature in one of the observables (P'₅)
- No definitive conclusion yet
- Additional statistics and theoretical studies are needed

See J. Walsh in parallel session

CP violation induced by B_s mixing

- CP violation due to interference between mixing and decay
- B_s \rightarrow J/ψφ proceeds (mostly) via a b \rightarrow ccs tree diagram
 - NP can show up in the mixing
- B_s→φφ is b→ss̄s penguindominated
 - NP can show up in the mixing and/or in the decay
- P→VV decays
 - Full angular analysis is needed to disentangle C-even and CP-odd amplitude components

LHCb includes also a contribution from $B_s \rightarrow J/\psi f_0(\pi^+\pi^-)$

ATLAS (2011) ϕ_s = 0.12 ± 0.25(stat.) ± 0.11(syst.) rad LHCb(2011) ϕ_s = 0.01 ± 0.07(stat.) ± 0.01(syst.) rad

Relevance of $B_s \rightarrow J/\psi f_0(\pi^+\pi^-)$

 Amplitude analysis just published by LHCb with L=3 fb⁻¹ (arXiv:1405.4140)

- Amazing precision for a measurement that was not even considered till some years ago
- There has been discussion on whether f_0 might be formed of tetraquarks, thus providing spurious contributions to φ_s
- Studies of $B^0 \rightarrow J/\psi \pi^+\pi^-$ decays indicate however that the light scalar mesons are actually regular mesonic states

LHCb E

Perspectives for ϕ_s

- This is the case of an observable with an asymptotic experimental uncertainty comparable with the theoretical uncertainty
 - $\sigma_{th}(\phi\phi) \approx 0.02$
 - $\sigma_{th}(J/\psi\phi) \approx 0.003$

Improvements from theory would be certainly welcome

Tree-level determination of y

γ is the least known angle of the UT

 $\gamma = \arg\left(\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$ Measurements from tree-level decays are assumed to be almost insensitive to NP effects

γ sensitivity comes from the interference / between b→u and b

c transitions

 $\Lambda_b \rightarrow DKp$

LHCb only

LHCb and Belle II

 $B \rightarrow D(K\pi)K$

- Two main paths to γ
 - Time-independent measurements using B→DK decays
 - Time-dependent analyses with B_s decays, e.g. B_s \rightarrow D_sK
- Possible interplay with charmless B decays
 - Also sensitive to γ , but including penguin diagrams, hence NP could show up
 - Much more difficult to control theoretically
- Combining several independent decay modes is the key to achieve the ultimate precision

Experimental status for γ

- Measured by BaBar, Belle and LHCb with comparable precision using ADS, GLW and GGSZ (Dalitz) methods
 - They differ by the final state of the D meson decay
 - GGSZ largely dominating so far
 - LHCb has still room for improvements with present statistics

Prospects for γ

- Comparable precision expected at LHCb and Belle-II
 - Sub-degree level by the end of the experimental programmes
 - Small systematic uncertainties

(Almost) vanishing theoretical uncertainty

Lifetime asymmetry in charm decays

 Measure asymmetry between effective lifetimes of D*-tagged D⁰→K+K⁻ and D⁰→π+π⁻ decays

$$A_{\Gamma} = \frac{\hat{\tau}(\overline{D}^{0}) - \hat{\tau}(D^{0})}{\hat{\tau}(\overline{D}^{0}) + \hat{\tau}(D^{0})}$$

- Differs from zero in case of indirect CPV
 - − SM expects $A_{\Gamma} \approx 10^{-4}$
- No signs of indirect CPV at 0.1%

V_{ub} prospects at Belle II

- Tensions between inclusive and exclusive determinations
 - Not yet clear whether this is coming from problems in theory, experiments, or...
- Belle II can make a good job here
 - ≈1% precision is at reach (systematic-dominated)
 - The large statistics will also allow a systematic study of exclusive modes

Exclusive and inclusive $|V_{ub}|$ differ at ~2.5 σ level

B \rightarrow τν and B \rightarrow D^(*)τν prospects at Belle II

- Tree level decays mediated by a W in the SM
- Can probe extension of the SM with an enlarged Higgs sector
 - BR and kinematics sensitive to H⁺
- $B \rightarrow \tau \nu$
 - Quite clean theoretically, but hard experimentally
 - BR can be measured at Belle II at 3% or better
 - Also B → $\mu\nu$ and B → $e/\mu\nu\gamma$ can be measured if the BR is SM or larger
- $B \rightarrow D^{(*)} \tau \nu$
 - Combination of R(D) and R(D*) currently at 3 σ -ish from the SM

$$R(D^{(*)}) = \frac{\Gamma(\overline{B} \to D^{(*)} \tau \nu)}{\Gamma(\overline{B} \to D^{(*)} \ell \nu)}$$

Extrapolating BaBar results to Belle II

	fb-1	Statistical	Systematic	Total	
R(D)	423	13.0	(9.6, 1.3)	16.5	From 16.5%
	5000	3.8	(2.8, 1.3)	5.2	
	50000	1.2	(0.9, 1.3)	2.5	to 2.5%
R(D*)	423	7.0	(5.5, 1.3)	9.0	From 9% to
	5000	2.1	(1.6, 1.3)	2.9	1.6%
	50000	0.7	(0.5, 1.3)	1.6	1.070

Prospects for LFV in τ decays at Belle II

- Belle II will collect a very large sample of τ decays
- Existing limits will be brought down by 2 orders of magnitude, below 10⁻⁹ for many modes
 - LHCb can also contribute with fully charged modes (e.g. $\tau \rightarrow \mu\mu\mu$)

Summary tables

LHCb-PUB-2013-015

Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
B_s^0 mixing	$\phi_s(B_s^0 \to J/\psi \phi) \text{ (rad)}$	0.05	0.025	0.009	~ 0.003
	$\phi_s(B_s^0 \to J/\psi \ f_0(980)) \ (\text{rad})$	0.09	0.05	0.016	~ 0.01
	$A_{\rm sl}(B_s^0) \ (10^{-3})$	2.8	1.4	0.5	0.03
Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.18	0.12	0.026	0.02
penguin	$\phi_s^{\text{eff}}(B_s^0 \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.029	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K_S^0) \text{ (rad)}$	0.30	0.20	0.04	0.02
Right-handed	$\phi_s^{\text{eff}}(B_s^0 \to \phi \gamma)$	0.20	0.13	0.030	< 0.01
currents	$ au^{ ext{eff}}(B^0_s o\phi\gamma)/ au_{B^0_s}$	5%	3.2%	0.8%	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.04	0.020	0.007	0.02
penguin	$q_0^2 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	10%	5%	1.9%	$\sim 7\%$
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6{\rm GeV^2/c^4})$	0.14	0.07	0.024	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	14%	7%	2.4%	$\sim 10\%$
Higgs	$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) \ (10^{-9})$	1.0	0.5	0.19	0.3
penguin	$\mathcal{B}(B^0 o \mu^+\mu^-)/\mathcal{B}(B^0_s o \mu^+\mu^-)$	220%	110%	40%	$\sim 5\%$
Unitarity	$\gamma(B \to D^{(*)}K^{(*)})$	7°	4°	1.1°	negligible
triangle	$\gamma(B^0_s \to D_s^{\mp} K^{\pm})$	17°	11°	2.4°	negligible
angles	$\beta(B^0 \to J/\psi K_S^0)$	1.7°	0.8°	0.31°	negligible
Charm	$A_{\Gamma}(D^0 \to K^+K^-) \ (10^{-4})$	3.4	2.2	0.5	_
CP violation	$\Delta A_{CP}~(10^{-3})$	0.8	0.5	0.12	_

- Before the upgrade (8 fb⁻¹)
- After the upgrade (50 fb⁻¹)
- Theory uncertainty (as far as we know today)

Summary tables

Observables Belle (2014) Eble H $\sin 2\beta$ $0.667 \pm 0.023 \pm 0.012$ ± 0.012 ± 0.008 α $\pm 14^{\circ}$ $\pm 6^{\circ}$ $\pm 1.5^{\circ}$ $S(B \to \phi K^{0})$ $0.90^{+0.09}_{-0.19}$ ± 0.053 ± 0.018 $S(B \to \eta' K^{0})$ $0.68 \pm 0.07 \pm 0.03$ ± 0.028 ± 0.011 $S(B \to K_{S}^{0}K_{S}^{0}K_{S}^{0})$ $0.30 \pm 0.32 \pm 0.08$ ± 0.100 ± 0.033 $ V_{cb} $ incl. $\pm 2.4\%$ $\pm 1.0\%$ $ V_{cb} $ excl. $\pm 3.6\%$ $\pm 1.8\%$ $\pm 1.4\%$ $ V_{ub} $ incl. $\pm 6.5\%$ $\pm 3.4\%$ $\pm 3.0\%$ $ V_{ub} $ excl. (had. tag.) $\pm 10.8\%$ $\pm 4.7\%$ $\pm 2.4\%$ $ V_{ub} $ excl. (untag.) $\pm 9.4\%$ $\pm 4.2\%$ $\pm 2.2\%$ $B(B \to \tau \nu)$ [10 ⁻⁶] 96 ± 26 $\pm 10\%$ $\pm 3\%$ $B(B \to \mu \nu)$ [10 ⁻⁶] < 1.7 $> 5\sigma$ $> > 5\sigma$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{ c c c c c } \hline V_{cb} & \text{incl.} & \pm 2.4\% & \pm 1.0\% \\ \hline V_{cb} & \text{excl.} & \pm 3.6\% & \pm 1.8\% & \pm 1.4\% \\ \hline V_{ub} & \text{incl.} & \pm 6.5\% & \pm 3.4\% & \pm 3.0\% \\ \hline V_{ub} & \text{excl. (had. tag.)} & \pm 10.8\% & \pm 4.7\% & \pm 2.4\% \\ \hline V_{ub} & \text{excl. (untag.)} & \pm 9.4\% & \pm 4.2\% & \pm 2.2\% \\ \hline B(B \to \tau \nu) & [10^{-6}] & 96 \pm 26 & \pm 10\% & \pm 3\% \\ \hline \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ V_{ub} $ excl. (untag.) $\pm 9.4\%$ $\pm 4.2\%$ $\pm 2.2\%$ $\mathcal{B}(B \to \tau\nu)$ [10 ⁻⁶] 96 ± 26 $\pm 10\%$ $\pm 3\%$
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$ 96 ± 26 $\pm 10\%$ $\pm 3\%$
$\mathcal{B}(B \to \mu\nu) \ [10^{-6}]$ < 1.7 5 σ >> 5 σ
$R(D\tau\nu)$ $\pm 16.5\%$ $\pm 5.2\%$ $\pm 2.5\%$
$R(D^*\tau\nu)$ $\pm 9.0\%$ $\pm 2.9\%$ $\pm 1.6\%$
$\mathcal{B}(B \to K^{*+}\nu\bar{\nu}) \ [10^{-6}]$ < 40 $\pm 30\%$
$\mathcal{B}(B \to K^+ \nu \bar{\nu}) \ [10^{-6}]$ < 55 $\pm 30\%$
$\mathcal{B}(B \to X_s \gamma) \ [10^{-6}]$ $\pm 13\%$ $\pm 7\%$ $\pm 6\%$
$A_{CP}(B \to X_s \gamma) \qquad \qquad \pm 0.005$
$S(B \to K_S^0 \pi^0 \gamma)$ $-0.10 \pm 0.31 \pm 0.07$ ± 0.11 ± 0.035
$\mathcal{B}(B \to X_d \gamma) \ [10^{-6}]$
$S(B \to \rho \gamma)$
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}] \qquad \qquad < 8.7 $
$\mathcal{B}(B_s \to \tau^+ \tau^-) [10^{-3}]$ < 2
$\mathcal{B}(D_s \to \mu\nu)$ $5.31 \times 10^{-3} (1 \pm 0.053 \pm 0.038)$ $\pm 2.9\%$ $\pm (0.9\%-1.3)$
$\mathcal{B}(D_s \to \tau \nu)$ $5.70 \times 10^{-3} (1 \pm 0.037 \pm 0.054) \pm (3.5\% - 4.3\%) \pm (2.3\% - 3.6)$
$y_{CP} [10^{-2}]$
$A_{\Gamma} [10^{-2}]$ $-0.03 \pm 0.20 \pm 0.08$ ± 0.10 $\pm (0.03-0.0)$
$A_{CP}^{K^+K^-}$ [10 ⁻²] $-0.32 \pm 0.21 \pm 0.09$ ± 0.11 ± 0.06
$A_{CP}^{\pi^+\pi^-}$ [10 ⁻²] $0.55 \pm 0.36 \pm 0.09$ ± 0.17 ± 0.06
$A_{CP}^{\phi\gamma} [10^{-2}]$ ± 5.6 ± 2.5 ± 0.8
$\tau \to \mu \gamma \ [10^{-8}]$ < 4.5
$\tau \to e\gamma \ [10^{-8}] \tag{12.0}$
$\tau \to \mu \mu \mu \ [10^{-9}]$ < 21.0 < 4.5 < 0.9

- Soon after startup (5 ab⁻¹)
- By the end of the present programme (50 ab⁻¹)

See e.g. G. De Nardo at IFAE 2014

Conclusions

- Flavour physics has large room for improvements in many key measurements
- LHCb is developing a programme extending over the next 15 years
 - the standard detector will take data till 2017 and the upgraded detector will start taking data in 2019
- Belle II is expected to roll in late 2016 with the first physics run
- Rich complementary between LHCb and Belle II physics programmes
- ATLAS and CMS can also give key contributions in some specific areas

