WG1 - considerazioni teoriche

Andrea Romanino - SISSA

Theoretical framework for the WG program

Assume new dofs exist at M » m_H

Gravity

(who knows)

Unification

(maybe an accident)

Neutrino masses

(maybe Dirac or vMSM)

and other SM puzzles

(who cares)

(→ further work?)

Theoretical framework for the WG program

THEN

• The sensitivity of m_H to M is suppressed by a structural change at a scale m_{NP} related to m_H (the Higgs is composite, a supersymmetry is restored)

(so far)

• OR

• The cancellation takes place and is explained by a different principle (environmental selection, an unknown dynamical principle)

This case faces the known tension

(long live the CMSSM)

The weakly interacting way - supersymmetry

Where does FT comes from?

$$m_Z^2 \approx -2m_{H_u}^2 - 2|\mu|^2$$
 susy messengers
$$\delta m_{H_u}^2 \sim -12\frac{\lambda_t^2}{(4\pi)^2}\tilde{m}_t^2\log\frac{M}{\tilde{m}_t}$$

$$\delta \tilde{m}_t^2 = \frac{32}{3}\frac{g_3^2}{(4\pi)^2}M_3^2\log\frac{M}{M_3}$$

- Lower M
- Relatively light stop

Ways out

- Enhancement of Higgs mass
- Dirac gluinos
- Give up E_T-miss signature

simple plausible preserve virtues

complete model in which they coexist and full analysis

Lower M: how low?

Lower M: how low?

Relatively light stop: how light?

(see Lari)

Enhancement of Higgs mass: how?

- NMSSM: MSSM + Ŝ
 - harmless (unification OK)
 - minimal λSH_uH_d (symmetries forbid μH_uH_d)
 - welcome $(\mu = \lambda < S > \approx \text{susy scale})$
- Extra tree level contribution $m_h^2 = M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \text{loops}$
- Moreover:
 - Higgs spectrum: $h H \rightarrow h_1 h_2 h_3$, $A \rightarrow A_1 A_2$ (scalar components of S)
 - Neutralino spectrum: $N_1...N_4 \rightarrow N_0 N_1...N_4$ (fermion component of S)

Highly preliminary collection of results

Natural ranges

Highly preliminary collection of results

- Natural ranges
- Longer decay chains, richer final state, smaller mET → slightly weaker limits
- Higgs sector: new scalar S=s+ia h_{126} is mainly $h=s_\beta \ h_u + c_\beta \ h_d$, with up to 30% s implications for Higgs couplings and invisible channels?

Figure 1. Current and foreseen LHC reaches for $\lambda = 0.8$ (left) and $\lambda = 1.4$ (right). The colored regions are excluded at 95% C.L.; the dashed lines are the expected limits.

The strongly interacting option

→ Matsedonskyi, Panizzo

- · Higgs as a composite pseudo-Goldstone boson
 - explicitly broken SO(5) → approximate SO(4)
 - partial compositeness
 larger for heavier masses

massless SM fields $t_L \ t_R$

$$egin{array}{c} oldsymbol{\Delta_L} \, ar{t}_L \, T \ oldsymbol{\Delta_R} \, ar{t}_R \, \widetilde{T} \end{array}$$

composite resonances

$$T$$
 \widetilde{T} H

Matsedonskyi

Composite partners of top: light Higgs needs light top partners

The strongly interacting option

 Tuning > 10% if light top partners do not require tuning

$$\Delta \sim \left(\frac{m_T}{0.5 \, {\rm TeV}/\sqrt{\log}}\right)^2 \quad \log \equiv \log(\Lambda/m_T)^2$$

Addressing model dependence in connection of theory and experiment

Take into account single production of top partners

Experimental analyses