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The gluon - much less known than we wish
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Since EMC (1988, the “spin crisis”) 
we can’t yet explain the proton spin  
in terms of its constituents

1/2  =   1/2 ΔΣ    +   Δg   +    Lq   +    Lg
?

The proton spin budget?

7 Marco Radici
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Since EMC (1988, the “spin crisis”) 
we can’t yet explain the proton spin  
in terms of its constituents

We don’t even know
the gluon helicity
−0.13 ≲ Δg ≲ 1

                   at 90% c.l.
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FIG. 5: 90% C.L. areas in the plane spanned by the truncated
moments of ∆g computed for 0.05 ≤ x ≤ 1 and 0.001 ≤ x ≤
0.05 at Q2 = 10GeV2. Results for DSSV, DSSV*, and our
new analysis, with the symbols corresponding the respective
values of each central fit, are shown.

very limited information on ∆g is also available from
scaling violations of the DIS structure function g1 which
is, of course, fully included in our global QCD analy-
sis. Overall, the constraints on ∆g(x) in, say, the regime
0.001 ≤ x ≤ 0.05 are much weaker than those in the
RHIC region, as can be inferred from Fig. 1. Very little
contribution to ∆G is expected to come from x > 0.2.

Figure 5 shows our estimates for the 90% C.L. area
in the plane spanned by the truncated moments of ∆g
calculated in 0.05 ≤ x ≤ 1 and 0.001 ≤ x ≤ 0.05
for Q2 = 10GeV2. Results are presented both for the
DSSV* and our new fit. The symbols in Fig. 5 denote
the actual values for the best fits in the DSSV, DSSV*,
and the present analyses. We note that for our new cen-
tral fit the combined integral

∫ 1

0.001
dx∆g(x,Q2) accounts

for over 90% of the full ∆G at Q2 = 10GeV2. Not sur-
prisingly, the main improvement in our new analysis is to
shrink the allowed area in the horizontal direction, corre-
sponding to the much better determination of ∆g(x) in
range 0.05 ≤ x ≤ 0.2 by the 2009 RHIC data. Evidently,
the uncertainty in the smaller-x range is still very signif-
icant, and better small-x probes are badly needed. Data
from the 2013 RHIC run at

√
s = 510GeV may help

here a bit. In the future, an Electron Ion Collider would
provide the missing information, thanks to its large kine-
matic reach in x and Q2 [19].

Conclusions and outlook.— We have presented a new
global analysis of helicity parton distributions, taking
into account new and updated experimental results. In
particular, we have investigated the impact of the new
data on ALL in jet and π0 production from RHIC’s 2009
run. For the first time, we find that the jet data clearly

imply a polarization of gluons in the proton at interme-
diate momentum scales, in the region of momentum frac-
tions accessible at RHIC. This constitutes a new ingre-
dient to our picture of the nucleon. While it is too early
to draw any reliable conclusions on the full gluon spin
contribution to the proton spin, our analysis clearly sug-
gests that gluons could contribute significantly after all.
This in turn also sheds a new light on the possible size of
orbital angular momenta of quarks and gluons. We hope
that future experimental studies, as well as lattice-QCD
computations that now appear feasible [20], will provide
further information on ∆g(x) and eventually clarify its
role for the proton spin. We plan to present a full new
global analysis with details on all polarized parton dis-
tributions once the 2009 RHIC data have become final
and additional information on the quark and antiquark
helicity distributions, in particular from final data on W
boson production at RHIC, has become available. Also,
on the theoretical side, a new study of pion and kaon
fragmentation functions should precede the next global
analysis of polarized parton distributions.
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low x

valence

1/2  =   1/2 ΔΣ    +   Δg   +    Lq   +    Lg

De Florian, Sassot, Stratmann, Vogelsang (DSSV), 
arXiv:1404.4293

?

The proton spin budget?
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Quark orbital motion

1/2  =   1/2 ΔΣ    +   Δg   +    Lq   +    Lg

8 Marco Radici
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Quark orbital motion

1/2  =   1/2 ΔΣ    +   Δg   +    Lq   +    Lg
?

~ 0.125 small ? ??

Need to know kT-dependent parton densities

8 Marco Radici
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The 3D structure 
of the nucleon
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ECG 
mono-dim. info 
on heart activity 

Marco Radici

The 3D structure 
of the nucleon
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ECG 
mono-dim. info 
on heart activity 

cardio 
MR 

3-dim. tomography 
of heart activity 

Marco Radici

The 3D structure 
of the nucleon
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q(x,k⊥)  → LHC
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Figure 6. The CSS resummed cross sections in Z boson production at the Tevatron. The curves are

computed in several models for the CSS form factor W (b) at large impact parameters (b > 1 GeV−1):

(a) W (b) at large b is given by extrapolation of its perturbative part from b < 1 GeV−1 (solid); (b) the

same as (a), multiplied by a Gaussian smearing term e−0.8b
2

(short-dashed); (c) a phenomenologicalBLNY

form, which shows good agreement with the Run-1 Z data (dot-dashed) [24]; (d) an updated Ladinsky-

Yuan form, which shows worse agreement with the Run-1 Z data (long-dashed) [24]. Note that the

extrapolationmodel (curves (a) and (b)) must include a Gaussian smearing term e−gb
2

,with g∼ 0.8 GeV2,
in order to be close to the BLNY form (and, hence, to the data).

of the perturbation series cures the instability of the theory at q2T # Q2 by summing

the troublesome qT logarithms through all orders of !s into a soft (Sudakov) form

factor [30]. The validity of such re-arrangement is proved by a factorization theorem

in the method by Collins, Soper, and Sterman (CSS) [31]. The resummation in vec-
tor boson production is a special case of a more general problem, and essentially the

same method applies to hadroproduction in e+e− scattering [32], and semi-inclusive

hadroproduction in deep-inelastic scattering [33, 34, 35]. The CSS formalism automat-

ically preserves the fundamental symmetries (renormalization- and gauge-group invari-

ance, energy-momentum conservation) and is convenient in practice. The qT resumma-

tion can be extended to include effects of particle thresholds [36], heavy quark masses

[37], and hadronic spin [38, 39]. RESBOS [23, 24] is a Monte-Carlo integrator program

that quickly and accurately evaluates the CSS resummed cross sections in Drell-Yan-like

processes.

All small-qT logarithms arise in the CSS method from the form factor W (b) in im-
pact parameter (b) space, composed of the Sudakov exponential and b-dependent parton
distribution functions. The resummed qT distribution is obtained by taking the Fourier-

Bessel transform ofW (b) into qT space (realized numerically in RESBOS). The alterna-
tive approaches evaluate the Fourier-Bessel transform of the leading logarithmic towers

analytically, with the goal to improve transition from the resummed cross section to the

finite-order cross section at intermediate qT [40, 41]. The integration over all b in the

Fourier-Bessel transform introduces sensitivity to the nonperturbative QCD dynamics

P. Nadolski, hep-ph/0412146

impact of TMD on 
Z0 peak → W mass

7.5%

30%

uncertainty

TMDs affect results also 
at high energy!

Marco Radici

q
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Oleg Denisov

At leading order, three PDFs are needed to describe the nucleon in the collinear case.
If one admit a non-zero transverse quark momentum kT  in the nucleon five more PDFs 
(TMD PDFs) are needed.  

Access to angular momentum

Leading order TMD PDFs

12
martedì 27 maggio 2014



Fermilab E-906 (FNAL, USA): data taking will resume in September 2013 and      
will  last for at least 1 year (experiment is approved for 2 years running period). 

Polarised DY at Fermilab – hopefully in a few years from now

FIRT EVER POLARISED DRELL-YAN: COMPASS polarized Drell-Yan 
measurement will be started in the mid of October 2014, with a Pilot Run. 
Physics data taking will take place over the whole 2015.

STAR at RHIC (BNL, USA) > 2016

SPD at NICA Collider (JINR, Dubna, Russia)  > 2020

Oleg Denisov
Andrea Bressan

Drell-Yan experiments
10 years running time
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ELBA 22-24/05/2014 LTS1 2014

   Near Compass future is 
more or less defined

Andrea Bressan

TestoTesto

2018 to be discussed having in hand the 
performances in the previous years
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   More in the future

Andrea Bressan
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For the next 10 years 

• before any collider is available, 
• and complementary to Jlab 12 GeV

COMPASS@CERN can be a major player in QCD 

physics using its unique high energy both:

• hadron beam and 
• positive and negative muon beams

Looking even further…a polarized lepton-

nucleon collider well be a mandatory tool

Andrea Bressan
martedì 27 maggio 2014



Future  facilities
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Current data for Sivers asymmetry:
COMPASS h

±
: PhT < 1.6 GeV,  z > 0.1

HERMES π0,±
, K

±
: PhT < 1 GeV, 0.2 < z < 0.7

JLab Hall-A π±
: PhT < 0.45 GeV,  0.4 < z < 0.6

Planned:

JLab 12
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Figure 2.14: Kinematic coverage in x and Q2 for the EIC compared to the coverage of the
planned JLab12 experiment. The kinematics of the existing experimental measurements are also
shown for comparison.

pected impact of data from the EIC us-
ing the parameterization from Ref. [69] as
an arbitrarily chosen model of the Sivers
function. This parameterization, denoted
theori = F (xi, zi, P i

hT , Q
2
i ;a0) with the M

parameters a0 = {a01, ..., a0M} fitted to exist-
ing data, serves to generate a set of pseudo-
data in each kinematic bin i. In each xi, Q2

i ,
zi and P i

hT bin, the obtained values, valuei,
for the Sivers function are distributed using
a Gaussian smearing with a width σi corre-
sponding to the simulated event rate at the
center-of-mass energy of

√
s = 45 GeV ob-

tained with an integrated luminosity of 10
fb−1. To illustrate the achievable statistical
precision, the event rate for the production
of π± in semi-inclusive DIS was used, see, for
example, Fig. 2.15.

This new set of pseudo-data was then
analysed like the real data in Ref. [69].
Fig. 2.16 shows the result for the extraction
of the Sivers function for the valence and sea
up quarks. Similar results are obtained for
the down quarks as well. The central value
of f⊥u

1T , represented by the red line, follows

by construction the underlying model. The
2-sigma uncertainty of this extraction, valid
for the specifically chosen functional form, is
indicated by the purple band. This precision,
obtainable with an integrated luminosity of
10 fb−1, is compared with the uncertainty
of the extraction from existing data, repre-
sented by the light grey band. It should be
emphasized that our current knowledge is re-
stricted to only a qualitative picture of the
Sivers function and the above analysis did
not take into account the model dependence
and the associated theoretical uncertainties.
With the anticipated large amount of data
(see Fig. 2.15 for a modest integrated lumi-
nosity 10 fb−1), we can clearly see that the
EIC will be a powerful facility enabling ac-
cess to TMDs with unprecedented precision,
and particularly in the currently unexplored
sea quark region. This precision is not only
crucial for the fundamental QCD test of the
sign change between the Sivers asymmetries
in the DIS and Drell-Yan processes, but also
important to investigate the QCD dynamics
in the hard processes in SIDIS, such as the

38
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Figure 2.19: An overview of existing and planned measurements of DVCS in the x,Q2 plane.

A first era of precise parton imaging will

begin with the 12 GeV upgrade at JLab, with

very high statistics and sufficiently high Q2

to probe partons at high-x, including the ef-

fects of polarization. Figure 2.19 gives an

overview of existing and anticipated mea-

surements of DVCS in the x,Q2 plane.

To realize the full physics potential of

parton imaging that we have discussed in the

previous section will require the EIC. Such

a machine will, for the first time, make it

possible to image partons with high statis-

tics and with polarization in a wide range

of small- to moderate-x. At high-x it will

complement the JLab 12 program with mea-

surements at large-Q2, thus opening up the

possibility to extract physics from scaling vi-

olations for high-momentum partons.

Let us finally mention that it is very dif-

ficult to obtain information on GPDs from

exclusive processes in p+p collisions. This is

due to the effect of soft gluon exchange be-

tween spectator partons in the two protons,

which precludes a simple theoretical inter-

pretation of such reactions. Lepton-proton

scattering thus provides a privileged way to

quantify the spatial structure of the pro-

ton via GPDs. On the other hand, the in-

formation gained in lepton-proton scattering

can help to better understand important fea-

tures of proton-proton collisions, in particu-

lar the dynamics of multi-parton interactions

[108, 109].

50

DVCS SIDIS

EIC white paper, arXiv:1212.1701

Rolf Ent18
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Future  facilities

multidim.  analysis :    dσ  in  {x, z, Q2, PhT
2, Φh}  bins

                                   ⇒   high luminosity

                                   ⇒   span larger {x, Q2} phase space
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Figure 2.14: Kinematic coverage in x and Q2 for the EIC compared to the coverage of the
planned JLab12 experiment. The kinematics of the existing experimental measurements are also
shown for comparison.

pected impact of data from the EIC us-
ing the parameterization from Ref. [69] as
an arbitrarily chosen model of the Sivers
function. This parameterization, denoted
theori = F (xi, zi, P i

hT , Q
2
i ;a0) with the M

parameters a0 = {a01, ..., a0M} fitted to exist-
ing data, serves to generate a set of pseudo-
data in each kinematic bin i. In each xi, Q2

i ,
zi and P i

hT bin, the obtained values, valuei,
for the Sivers function are distributed using
a Gaussian smearing with a width σi corre-
sponding to the simulated event rate at the
center-of-mass energy of

√
s = 45 GeV ob-

tained with an integrated luminosity of 10
fb−1. To illustrate the achievable statistical
precision, the event rate for the production
of π± in semi-inclusive DIS was used, see, for
example, Fig. 2.15.

This new set of pseudo-data was then
analysed like the real data in Ref. [69].
Fig. 2.16 shows the result for the extraction
of the Sivers function for the valence and sea
up quarks. Similar results are obtained for
the down quarks as well. The central value
of f⊥u

1T , represented by the red line, follows

by construction the underlying model. The
2-sigma uncertainty of this extraction, valid
for the specifically chosen functional form, is
indicated by the purple band. This precision,
obtainable with an integrated luminosity of
10 fb−1, is compared with the uncertainty
of the extraction from existing data, repre-
sented by the light grey band. It should be
emphasized that our current knowledge is re-
stricted to only a qualitative picture of the
Sivers function and the above analysis did
not take into account the model dependence
and the associated theoretical uncertainties.
With the anticipated large amount of data
(see Fig. 2.15 for a modest integrated lumi-
nosity 10 fb−1), we can clearly see that the
EIC will be a powerful facility enabling ac-
cess to TMDs with unprecedented precision,
and particularly in the currently unexplored
sea quark region. This precision is not only
crucial for the fundamental QCD test of the
sign change between the Sivers asymmetries
in the DIS and Drell-Yan processes, but also
important to investigate the QCD dynamics
in the hard processes in SIDIS, such as the
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Figure 2.19: An overview of existing and planned measurements of DVCS in the x,Q2 plane.

A first era of precise parton imaging will

begin with the 12 GeV upgrade at JLab, with

very high statistics and sufficiently high Q2

to probe partons at high-x, including the ef-

fects of polarization. Figure 2.19 gives an

overview of existing and anticipated mea-

surements of DVCS in the x,Q2 plane.

To realize the full physics potential of

parton imaging that we have discussed in the

previous section will require the EIC. Such

a machine will, for the first time, make it

possible to image partons with high statis-

tics and with polarization in a wide range

of small- to moderate-x. At high-x it will

complement the JLab 12 program with mea-

surements at large-Q2, thus opening up the

possibility to extract physics from scaling vi-

olations for high-momentum partons.

Let us finally mention that it is very dif-

ficult to obtain information on GPDs from

exclusive processes in p+p collisions. This is

due to the effect of soft gluon exchange be-

tween spectator partons in the two protons,

which precludes a simple theoretical inter-

pretation of such reactions. Lepton-proton

scattering thus provides a privileged way to

quantify the spatial structure of the pro-

ton via GPDs. On the other hand, the in-

formation gained in lepton-proton scattering

can help to better understand important fea-

tures of proton-proton collisions, in particu-

lar the dynamics of multi-parton interactions

[108, 109].
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Figure 2.14: Kinematic coverage in x and Q2 for the EIC compared to the coverage of the
planned JLab12 experiment. The kinematics of the existing experimental measurements are also
shown for comparison.

pected impact of data from the EIC us-
ing the parameterization from Ref. [69] as
an arbitrarily chosen model of the Sivers
function. This parameterization, denoted
theori = F (xi, zi, P i

hT , Q
2
i ;a0) with the M

parameters a0 = {a01, ..., a0M} fitted to exist-
ing data, serves to generate a set of pseudo-
data in each kinematic bin i. In each xi, Q2

i ,
zi and P i

hT bin, the obtained values, valuei,
for the Sivers function are distributed using
a Gaussian smearing with a width σi corre-
sponding to the simulated event rate at the
center-of-mass energy of

√
s = 45 GeV ob-

tained with an integrated luminosity of 10
fb−1. To illustrate the achievable statistical
precision, the event rate for the production
of π± in semi-inclusive DIS was used, see, for
example, Fig. 2.15.

This new set of pseudo-data was then
analysed like the real data in Ref. [69].
Fig. 2.16 shows the result for the extraction
of the Sivers function for the valence and sea
up quarks. Similar results are obtained for
the down quarks as well. The central value
of f⊥u

1T , represented by the red line, follows

by construction the underlying model. The
2-sigma uncertainty of this extraction, valid
for the specifically chosen functional form, is
indicated by the purple band. This precision,
obtainable with an integrated luminosity of
10 fb−1, is compared with the uncertainty
of the extraction from existing data, repre-
sented by the light grey band. It should be
emphasized that our current knowledge is re-
stricted to only a qualitative picture of the
Sivers function and the above analysis did
not take into account the model dependence
and the associated theoretical uncertainties.
With the anticipated large amount of data
(see Fig. 2.15 for a modest integrated lumi-
nosity 10 fb−1), we can clearly see that the
EIC will be a powerful facility enabling ac-
cess to TMDs with unprecedented precision,
and particularly in the currently unexplored
sea quark region. This precision is not only
crucial for the fundamental QCD test of the
sign change between the Sivers asymmetries
in the DIS and Drell-Yan processes, but also
important to investigate the QCD dynamics
in the hard processes in SIDIS, such as the
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Figure 2.19: An overview of existing and planned measurements of DVCS in the x,Q2 plane.

A first era of precise parton imaging will

begin with the 12 GeV upgrade at JLab, with

very high statistics and sufficiently high Q2

to probe partons at high-x, including the ef-

fects of polarization. Figure 2.19 gives an

overview of existing and anticipated mea-

surements of DVCS in the x,Q2 plane.

To realize the full physics potential of

parton imaging that we have discussed in the

previous section will require the EIC. Such

a machine will, for the first time, make it

possible to image partons with high statis-

tics and with polarization in a wide range

of small- to moderate-x. At high-x it will

complement the JLab 12 program with mea-

surements at large-Q2, thus opening up the

possibility to extract physics from scaling vi-

olations for high-momentum partons.

Let us finally mention that it is very dif-

ficult to obtain information on GPDs from

exclusive processes in p+p collisions. This is

due to the effect of soft gluon exchange be-

tween spectator partons in the two protons,

which precludes a simple theoretical inter-

pretation of such reactions. Lepton-proton

scattering thus provides a privileged way to

quantify the spatial structure of the pro-

ton via GPDs. On the other hand, the in-

formation gained in lepton-proton scattering

can help to better understand important fea-

tures of proton-proton collisions, in particu-

lar the dynamics of multi-parton interactions

[108, 109].
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Figure 2.14: Kinematic coverage in x and Q2 for the EIC compared to the coverage of the
planned JLab12 experiment. The kinematics of the existing experimental measurements are also
shown for comparison.

pected impact of data from the EIC us-
ing the parameterization from Ref. [69] as
an arbitrarily chosen model of the Sivers
function. This parameterization, denoted
theori = F (xi, zi, P i

hT , Q
2
i ;a0) with the M

parameters a0 = {a01, ..., a0M} fitted to exist-
ing data, serves to generate a set of pseudo-
data in each kinematic bin i. In each xi, Q2

i ,
zi and P i

hT bin, the obtained values, valuei,
for the Sivers function are distributed using
a Gaussian smearing with a width σi corre-
sponding to the simulated event rate at the
center-of-mass energy of

√
s = 45 GeV ob-

tained with an integrated luminosity of 10
fb−1. To illustrate the achievable statistical
precision, the event rate for the production
of π± in semi-inclusive DIS was used, see, for
example, Fig. 2.15.

This new set of pseudo-data was then
analysed like the real data in Ref. [69].
Fig. 2.16 shows the result for the extraction
of the Sivers function for the valence and sea
up quarks. Similar results are obtained for
the down quarks as well. The central value
of f⊥u

1T , represented by the red line, follows

by construction the underlying model. The
2-sigma uncertainty of this extraction, valid
for the specifically chosen functional form, is
indicated by the purple band. This precision,
obtainable with an integrated luminosity of
10 fb−1, is compared with the uncertainty
of the extraction from existing data, repre-
sented by the light grey band. It should be
emphasized that our current knowledge is re-
stricted to only a qualitative picture of the
Sivers function and the above analysis did
not take into account the model dependence
and the associated theoretical uncertainties.
With the anticipated large amount of data
(see Fig. 2.15 for a modest integrated lumi-
nosity 10 fb−1), we can clearly see that the
EIC will be a powerful facility enabling ac-
cess to TMDs with unprecedented precision,
and particularly in the currently unexplored
sea quark region. This precision is not only
crucial for the fundamental QCD test of the
sign change between the Sivers asymmetries
in the DIS and Drell-Yan processes, but also
important to investigate the QCD dynamics
in the hard processes in SIDIS, such as the
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Figure 2.19: An overview of existing and planned measurements of DVCS in the x,Q2 plane.

A first era of precise parton imaging will

begin with the 12 GeV upgrade at JLab, with

very high statistics and sufficiently high Q2

to probe partons at high-x, including the ef-

fects of polarization. Figure 2.19 gives an

overview of existing and anticipated mea-

surements of DVCS in the x,Q2 plane.

To realize the full physics potential of

parton imaging that we have discussed in the

previous section will require the EIC. Such

a machine will, for the first time, make it

possible to image partons with high statis-

tics and with polarization in a wide range

of small- to moderate-x. At high-x it will

complement the JLab 12 program with mea-

surements at large-Q2, thus opening up the

possibility to extract physics from scaling vi-

olations for high-momentum partons.

Let us finally mention that it is very dif-

ficult to obtain information on GPDs from

exclusive processes in p+p collisions. This is

due to the effect of soft gluon exchange be-

tween spectator partons in the two protons,

which precludes a simple theoretical inter-

pretation of such reactions. Lepton-proton

scattering thus provides a privileged way to

quantify the spatial structure of the pro-

ton via GPDs. On the other hand, the in-

formation gained in lepton-proton scattering

can help to better understand important fea-

tures of proton-proton collisions, in particu-

lar the dynamics of multi-parton interactions

[108, 109].
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Figure 2.14: Kinematic coverage in x and Q2 for the EIC compared to the coverage of the
planned JLab12 experiment. The kinematics of the existing experimental measurements are also
shown for comparison.

pected impact of data from the EIC us-
ing the parameterization from Ref. [69] as
an arbitrarily chosen model of the Sivers
function. This parameterization, denoted
theori = F (xi, zi, P i

hT , Q
2
i ;a0) with the M

parameters a0 = {a01, ..., a0M} fitted to exist-
ing data, serves to generate a set of pseudo-
data in each kinematic bin i. In each xi, Q2

i ,
zi and P i

hT bin, the obtained values, valuei,
for the Sivers function are distributed using
a Gaussian smearing with a width σi corre-
sponding to the simulated event rate at the
center-of-mass energy of

√
s = 45 GeV ob-

tained with an integrated luminosity of 10
fb−1. To illustrate the achievable statistical
precision, the event rate for the production
of π± in semi-inclusive DIS was used, see, for
example, Fig. 2.15.

This new set of pseudo-data was then
analysed like the real data in Ref. [69].
Fig. 2.16 shows the result for the extraction
of the Sivers function for the valence and sea
up quarks. Similar results are obtained for
the down quarks as well. The central value
of f⊥u

1T , represented by the red line, follows

by construction the underlying model. The
2-sigma uncertainty of this extraction, valid
for the specifically chosen functional form, is
indicated by the purple band. This precision,
obtainable with an integrated luminosity of
10 fb−1, is compared with the uncertainty
of the extraction from existing data, repre-
sented by the light grey band. It should be
emphasized that our current knowledge is re-
stricted to only a qualitative picture of the
Sivers function and the above analysis did
not take into account the model dependence
and the associated theoretical uncertainties.
With the anticipated large amount of data
(see Fig. 2.15 for a modest integrated lumi-
nosity 10 fb−1), we can clearly see that the
EIC will be a powerful facility enabling ac-
cess to TMDs with unprecedented precision,
and particularly in the currently unexplored
sea quark region. This precision is not only
crucial for the fundamental QCD test of the
sign change between the Sivers asymmetries
in the DIS and Drell-Yan processes, but also
important to investigate the QCD dynamics
in the hard processes in SIDIS, such as the
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Figure 2.19: An overview of existing and planned measurements of DVCS in the x,Q2 plane.

A first era of precise parton imaging will

begin with the 12 GeV upgrade at JLab, with

very high statistics and sufficiently high Q2

to probe partons at high-x, including the ef-

fects of polarization. Figure 2.19 gives an

overview of existing and anticipated mea-

surements of DVCS in the x,Q2 plane.

To realize the full physics potential of

parton imaging that we have discussed in the

previous section will require the EIC. Such

a machine will, for the first time, make it

possible to image partons with high statis-

tics and with polarization in a wide range

of small- to moderate-x. At high-x it will

complement the JLab 12 program with mea-

surements at large-Q2, thus opening up the

possibility to extract physics from scaling vi-

olations for high-momentum partons.

Let us finally mention that it is very dif-

ficult to obtain information on GPDs from

exclusive processes in p+p collisions. This is

due to the effect of soft gluon exchange be-

tween spectator partons in the two protons,

which precludes a simple theoretical inter-

pretation of such reactions. Lepton-proton

scattering thus provides a privileged way to

quantify the spatial structure of the pro-

ton via GPDs. On the other hand, the in-

formation gained in lepton-proton scattering

can help to better understand important fea-

tures of proton-proton collisions, in particu-

lar the dynamics of multi-parton interactions

[108, 109].
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Nucleon-light ion collisions needed (e.g. p-N/O)
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  single diffractive (SD)

  double diffractive (DD)

non diffractive (ND)   central diffractive (CD)

IPIP exchanges γγ interactions γIP fusion

About diffractive...

...and exclusive reactions
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Central exclusive production
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Leading Track-Jet 
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Multiple Parton Interactions have been introduced to solve the unitarity problem 
generated by the fast raise of the inclusive hard pp cross sections at small x
 
Turns out to be highly predictive on hadronic final states:
Several indication of MPI in pp collision. A characterization is needed

Why ? MPI helps in 1) probe proton matter distribution 2) understanding the collision dynamics and 
3) define at the best background to new physics search

How ? soft dynamic with Underlying Event and hard with Double Hard Scattering
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Soft MPI - The transverse region

3.3
√

s dependence 9

It is not a surprise that in the region dominated by relatively soft physics, with leading track-jet228

pT >3 GeV/c (upper plots in Fig. 3.), the description of the data is not so good. In this domain,229

all tunes overestimate the contributions of events with very low multiplicity and ∑ pT (Nch ∼<4,230

∑ pT ∼<4 GeV/c); the discrepancies are largest for D6T. For larger values of the observables, the231

predictions of Z1, Z2 and PYTHIA-8 are reasonably close to the data, the weak points being the232

description by Z1 of multiplicities between 10 and 20, and the description by all tunes of the233

pT spectrum in the region 3 − 8 GeV/c. For D6T, as well as for DW and CW, the descriptions of234

the ∑ pT distribution and of the particle pT spectrum are poor.235
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Figure 5: Fully corrected measurements of charged particles with pT > 0.5 GeV/c and |η|< 2

in the transverse region, 60
◦ < |∆φ| < 120

◦
: (left plots) average multiplicity, and (right plots)

average scalar ∑ pT, per unit of pseudorapidity and per radian, as a function of the leading

track-jet pT, for (upper row) data at
√

s = 0.9 TeV and
√

s = 7 TeV; (lower row) ratio of the

average values at 7 TeV to the average values at 0.9 TeV. The inner error bars indicate the statis-

tical uncertainties affecting the measurements; the outer error bars represent the statistical and

systematic uncertainties added in quadrature; for the ratio plots in the lower row, the system-

atic uncertainties at 0.9 and 7 TeV were conservatively combined quadratically, thus neglecting

cancellation effects; statistical errors dominate at large values of the scale. Predictions of three

PYTHIA tunes are compared to the data.

The centre-of-mass energy dependence of the hadronic activity in the transverse region is pre-237

sented in Fig. 5 (upper plots) as a function of the leading track-jet pT, for
√

s = 0.9 and 7 TeV.238

The large increase with
√

s of the hadronic activity in the transverse region and its scale depen-239

dence is shown in the lower plots of Fig. 5, in the form of the ratio of the 7 TeV to the 0.9 TeV240

results. The ratios, which are close to 1 for leading track-jet pT = 1.5 GeV/c, reach a factor 2 for241

pT ∼>6 − 8 GeV/c.242

1) Fast rise - peripheral collisions 
increase of the MPI 

2) Plateau region - central 
collisions with ~constant charged 
density  and increasing pT_sum 
(radiation)

3) Increase of the activity with √S 
→ more MPI

4) DY events have a smaller particle 
density with a harder pT due to the 
presence of only ISR initiated by 
quarks

7 TeV
900 GeV

7 TeV
900 GeV

JHEP09 (2011) 109
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34

 Hard MPI - Double Parton Scattering

On multiparton distributions:

1 Uncorrelated Poissonian distribution.

Γ(x1, b1, . . . , xn, bn) =
1

n!
D(x1, b1) . . . D(xn, bn) exp

�
−

�
D(x, b)dxd2b

�

If : D(x, b) = g(x)f(b) with

�
f(b)d2b = 1 and F (β) =

�
d2bf(b) f(b− β)

σeff =
1�

d2βF 2(β)
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prediction based on theoretical 
calculation and soft MPI tune: 
expected σeff ≈ 20÷60 mb

measured σeff ≈ 10÷20 mb  
?

Which role for Double Parton Correlations ?
[in actual model dPDF are factorized in 2 single PDF]!!

Korotkikh and Snigirev (2004), Gaunt and Stirling (2010), Diehl and 
Schafer (2011), Snigirev (2011), Blok et al. (2012), Schweitzer, 
Strikman and Weiss (2013), S. Scopetta et al. (2013),...

FUTURE

DPS measurement don’t provide yet a crystal clear DPS evidence. 

What should be considered to be the most striking evidence of MPI via DPS? 

To what extent we can trust the general-purpose soft-MPI models? 

Explore scaling properties: observables in pp, pPb and PbPb driven by charged multiplicity?

Higher Energies...higher luminosities...

DPS/SPS Heavy Flavors production is expected to increase with √S 

Rare productions with top and heavy bosons, unavoidable BGs to new physics searches

With p-N DPS is enhanced, longitudinal and transverse correlations can be factorized
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