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A Streaming Multiprocessor (SM) is a parallel 
compute unit that dispatches instructions to warps, 

vectors of 32 lightweight threads (SIMT lanes).
• GPUs have ~16 SMs. 

• Warps are capable of SIMT (Single 
Instruction, Multiple Thread) 
execution: 

• Virtually, each thread has its own 
execution context (registers, 
program counters, …). 

• But serialization occurs if threads 
take different execution paths. 

• SIMT~ SPMD (single program 
multiple data) instruction set, 
vectorized/dispatched by 
hardware to SIMD vector lanes 
(single instruction multiple data)*.

* Using this terminology since you’ve already heard of SIMD and SPMD at this school



SIMD Hardware
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<CUDA Program: SPMD Instructions>



The CUDA programming model is an 
abstraction of the multiprocessor.

• A block is a group of a variable number 
of threads (warps). 

• A streaming multiprocessor is assigned 
a few blocks. 

• Blocks are arranged on a grid. 

• Each thread is identified inside its block 
by the integer triplet threadIdx.{x,y,z} 
and each block with blockIdx.{x,y,z}. 

• Execution of warps (blocks) happens in 
parallel and no order is specified, as 
they are dynamically dispatched.
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The memory hierarchy reflects 
the parallelism model hierarchy. 
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OpenCL vs. CUDA Terminology 
•  Host defines a command queue and associates it with a context 

(devices, kernels, memory, etc). 
•  Host enqueues commands to the command queue 
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Index Space Work items execute together as a work-group. 

Kernel execution 
commands launch 
work-items: i.e. a 
kernel for each point in 
an abstract Index Space 
called an NDRange 
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Third party names are the property of their owners. 

Thanks to Tim Mattson @ Intel for this slide
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Three performance 
questions.



Question: why does this kernel does not 
achieve the GPU bandwidth achieved by 

cudaMemcpy if stride > 1?

Hands on: Compile and run bw.cu



A: Warps should access global 
memory in a coalesced manner.

• For example, on Kepler only 
contiguous chunks of global memory 
(in caching mode, cache lines) can 
be moved from/to the warps. 

• A stride of two (four) would require 
two (four) lines of cache to be 
moved. 

• See this presentation for more details 
http://on-demand.gputechconf.com/
gtc-express/2011/presentations/
cuda_webinars_GlobalMemory.pdf

√

Moved but not used

http://on-demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_GlobalMemory.pdf


Question: why does the 
second kernel achieves 

roughly ~50% of the floating 
point operation throughput 

compared to the first?

• Compile and run diverge.cu 
and fix the performance bug. 

• Exercise: fix the performance 
issue of the second kernel 
while keeping the same result. 

• On Fermi, you should be able 
to see the floating point 
throughput fully utilized:

$ ./divergence 
divergence: time=1.0965s throughput=501.34 GFLOP/s 
no divergence:time=0.5513s throughput=997.16 GFLOP/s 



A: If threads in a warp take different code 
paths then the execution paths are serialized.

• A warp (32 threads) can be seen as a large, flexible SIMD vector 
unit, programmable to take internal branches (virtually, a SPMD) but 
with performance cost (serialization). 

• A single instruction can be  
dispatched only to an entire warp.

• <- Lazy and generally bad solution. 
Homework: a more robust solution. 

• Constants array is stored in the “local” 
memory space (see CUDA 
programming guide) and the load is 
optimized away to happen just once 
per thread, see ptx (nvcc -ptx 
diverge.cu) 

 . . .                              
    ld.local.f32  %f8, [%rd10+0];    
 . . .                                                     



Question: How can we use parallel 
caches to help this kernel loading idata 

just once per grid?

Compile and run stencil.cu

The memory access pattern is fully coalesced, and the 
bandwidth is fully used, yet we can optimize the performance 

avoiding to load data twice using caches.



• Caches on CPUs are used to 
optimize the latencies for a 
single thread. 

• Caches on the GPU are used 
to share data amongst parallel 
units. 

• Shared memory is a 
programmable cache to share 
data amongst the threads in a 
block.

The shared memory cache can be manually programmed 
to share the different values read by threads. 



The shared memory cache can be manually programmed 
to share the different values read by threads. 
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On Kepler, the read-only texture memory cache 
can be used very easily with the __restrict__ 

keyword and the __ldg instruction. 



Final Tips
• Read the CUDA programming guide 

to understand the architecture: 
http://docs.nvidia.com/cuda/cuda-c-
programming-guide/ 

• Learn about how GPUs hide 
latencies by keeping many 
transaction in flight (a very important 
topic not explicitly covered here, but 
covered in Tim’s lecture). 

• Use the NVIDIA visual profiler to 
identify performance issues. 

• In the SIMT paradigm, hardware 
dispatches/vectorizes the code, 
dynamic performance analysis is 
even more important.


