
CUDA and GPU Performance
Tuning Fundamentals:

A hands-on introduction
Francesco Rossi

University of Bologna and INFN

A Streaming Multiprocessor (SM) is a parallel
compute unit that dispatches instructions to warps,

vectors of 32 lightweight threads (SIMT lanes).
• GPUs have ~16 SMs.

• Warps are capable of SIMT (Single
Instruction, Multiple Thread)
execution:

• Virtually, each thread has its own
execution context (registers,
program counters, …).

• But serialization occurs if threads
take different execution paths.

• SIMT~ SPMD (single program
multiple data) instruction set,
vectorized/dispatched by
hardware to SIMD vector lanes
(single instruction multiple data)*.

* Using this terminology since you’ve already heard of SIMD and SPMD at this school

SIMD Hardware

Dispatcher that vectorizess

<CUDA Program: SPMD Instructions>

The CUDA programming model is an
abstraction of the multiprocessor.

• A block is a group of a variable number
of threads (warps).

• A streaming multiprocessor is assigned
a few blocks.

• Blocks are arranged on a grid.

• Each thread is identified inside its block
by the integer triplet threadIdx.{x,y,z}
and each block with blockIdx.{x,y,z}.

• Execution of warps (blocks) happens in
parallel and no order is specified, as
they are dynamically dispatched.

0 32threadIdx.x 8 16 24

blockIdx.x

Warp

40 48 56 0 0
…

32 32

0 1 2

Block

Thread

(BlockDim.x=64, 1D grid)

0 32global 8 16 24 40 48 56 64 12896 160

The memory hierarchy reflects
the parallelism model hierarchy.

Global
memory

Registers

Per block
shared
memory

Latency

Bandwidth

SM

GPU
Size

OpenCL vs. CUDA Terminology
•  Host defines a command queue and associates it with a context

(devices, kernels, memory, etc).
•  Host enqueues commands to the command queue

Gy

Gx

(wx, wy)

(wxSx + sx, wySy + sy)
(sx, sy) = (0,0)

(wxSx + sx, wySy + sy)
(sx, sy) = (Sx-1,0)

(wxSx + sx, wySy + sy)
(sx, sy) = (0, Sy-1)

(wxSx + sx, wySy + sy)
(sx, sy) = (Sx-1, Sy- 1)

Index Space Work items execute together as a work-group.

Kernel execution
commands launch
work-items: i.e. a
kernel for each point in
an abstract Index Space
called an NDRange

A (Gy by Gx)
index space

CUDA Stream

Grid

Threads
Thread Block

Third party names are the property of their owners.

Thanks to Tim Mattson @ Intel for this slide

OpenCL CUDA

Serial Code

Three performance
questions.

Question: why does this kernel does not
achieve the GPU bandwidth achieved by

cudaMemcpy if stride > 1?

Hands on: Compile and run bw.cu

A: Warps should access global
memory in a coalesced manner.

• For example, on Kepler only
contiguous chunks of global memory
(in caching mode, cache lines) can
be moved from/to the warps.

• A stride of two (four) would require
two (four) lines of cache to be
moved.

• See this presentation for more details
http://on-demand.gputechconf.com/
gtc-express/2011/presentations/
cuda_webinars_GlobalMemory.pdf

√

Moved but not used

http://on-demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_GlobalMemory.pdf

Question: why does the
second kernel achieves

roughly ~50% of the floating
point operation throughput

compared to the first?

• Compile and run diverge.cu
and fix the performance bug.

• Exercise: fix the performance
issue of the second kernel
while keeping the same result.

• On Fermi, you should be able
to see the floating point
throughput fully utilized:

$./divergence
divergence: time=1.0965s throughput=501.34 GFLOP/s
no divergence:time=0.5513s throughput=997.16 GFLOP/s

A: If threads in a warp take different code
paths then the execution paths are serialized.

• A warp (32 threads) can be seen as a large, flexible SIMD vector
unit, programmable to take internal branches (virtually, a SPMD) but
with performance cost (serialization).

• A single instruction can be
dispatched only to an entire warp.

• <- Lazy and generally bad solution.
Homework: a more robust solution.

• Constants array is stored in the “local”
memory space (see CUDA
programming guide) and the load is
optimized away to happen just once
per thread, see ptx (nvcc -ptx
diverge.cu)

 . . .
 ld.local.f32 %f8, [%rd10+0];
 . . .

Question: How can we use parallel
caches to help this kernel loading idata

just once per grid?

Compile and run stencil.cu

The memory access pattern is fully coalesced, and the
bandwidth is fully used, yet we can optimize the performance

avoiding to load data twice using caches.

• Caches on CPUs are used to
optimize the latencies for a
single thread.

• Caches on the GPU are used
to share data amongst parallel
units.

• Shared memory is a
programmable cache to share
data amongst the threads in a
block.

The shared memory cache can be manually programmed
to share the different values read by threads.

The shared memory cache can be manually programmed
to share the different values read by threads.

Thread 2

Thread 3

Global memory

Global memory

Shared memory

ld.global
(reads

dispatched
twice)

ld.global/st.shared

ld.shared
(much faster)Thread 2

Thread 3
Make sure that everyone sees
everything in shared memory.

HalosHalos

On Kepler, the read-only texture memory cache
can be used very easily with the __restrict__

keyword and the __ldg instruction.

Final Tips
• Read the CUDA programming guide

to understand the architecture:
http://docs.nvidia.com/cuda/cuda-c-
programming-guide/

• Learn about how GPUs hide
latencies by keeping many
transaction in flight (a very important
topic not explicitly covered here, but
covered in Tim’s lecture).

• Use the NVIDIA visual profiler to
identify performance issues.

• In the SIMT paradigm, hardware
dispatches/vectorizes the code,
dynamic performance analysis is
even more important.

