Fourth INFN International School on Architectures, tools and methodologies for /)
&12 developing efficient large scale scientific computing applications INFN
Ce.U.B. - Bertinoro - Italy, 22 - 27 October 2012 L/

Vincenzo Innocente:
“Optimal floating point computation”

Accuracy, Precision, Speed in scientific computing

= |EEE 754 standard
= EXxpression optimization
= Approximate Math

= X86 64 SIMD instructions
= Vectorization using the GCC compiler

22 October 2012 Vincenzo Innocente 1

‘ Objectives

= Understand precision and accuracy in floating
point calculations

= Manage optimization, trading precision for
speed (or vice-versa!)

= Understand and Exploit vectorization
= Learn how to make the compiler to work for us

22 October 2012 Vincenzo Innocente 2

‘ Prepare tor the excercises

gccd49env

cp -R /export/software/exercises/ .

cd exercises

cd FPOptimization

source compileESC exercises/floatLoop.cpp
floatLoop

ldd ./floatLoop.cpp | grep libstdc
libstdc++.s0.6 => /opt/rh/devtoolset-3/root/usr/lib64/libstdc++.s0.6

22 October 2012 Vincenzo Innocen te

‘ Disclaimer, caveats, references

= Thisis NOT a full overview of IEEE 754
= It applies to x86_64 systems and gcc > 4.7.0

Q

Other compilers have similar behavior, details differ

s General References

Q

o O O 0O O

Wikipedia has excellent documentation on the IEEE 754,
math algorithms and their computational implementations

Handbook of Floating-Point Arithmetic (as google book)
Kahan home page

Jeff Arnold’s (et al) seminar and course at CERN
INTEL doc and white papers

Ulrich Drepper recent talks

22 October 2012 Vincenzo Innocen te 4

‘ Applicability

= It is very (very) different if you deal with
o Video games
o offline analysis of scientific data
o Financial applications (with legal bindings)
o Real time applications
o Human-life

= http://www.heidelberg-laureate-forum.org/blog/video/lecture-
thursday-september-26-william-morton-kahan/

22 October 2012 Vincenzo Innocente

‘ Don’t be afraid to ask questions!

L will use Google before asking dumb questions. 1 will use Google before
asking dumb questions. 1 will use Google before asking dumb questions.
L will use Google before asking dumb questions. 1 will use Google before
asking dumb questions. 1 will use Google before asking Jumb questions.
www.mrourns.nl before asking dumb questions. 1 will use Google before
asking dumb questions. 1 will use Google before asking Jumb questions.
L will use Google before asking dumb questions. 1 will use GooglegzEnre
asking dumb questions. 1 will use Google before asking dumb qu

L will use Google before asking dJumb questions. 1 will use Gooc,

ashmg dumle questions. T will use Google before asking dumb o' wa e

L will use Google before asking dumb questions. 1 will use Googi™

asking dumb questions. 1 will use Google before asking dumb r(c -

22 October 2012 Vincenzo Innocente

‘ Floating behaviour...

void i() {
unsigned int w=0, y=0; -
do {y = w++; } while (w>y); What's going on?

’ i ?
std::cout <<y << "" << w << std::endl; What'’s the difference”
) Can you guess the result?

void f() {
int n=0; float w=1; float y=0; float prev=0;
do {
prev=y;y = w++;
++n;
} while (w>y);
std::cout << n<<" "<<prev<<""<<y<<""<<w<<std:endl

}

4294967295 0
16777216: 1.67772e+07 1.67772e+07 1.67772e+07
Ox1.fffffep+23 0x1p+24 Ox1p+24

ct++ -O2 intLoop.cpp; ./a.out
ct++ -O2 floatLoop.cpp; ./a.out

22 October 2012 Vincenzo Innocente 7

‘ Floating Point Representation

(source Wikipedia)

= floating point describes a system for
representing numbers that would be too large
or too small to be represented as integers.

o The advantage of floating-point representation
over fixed-point (and integer) representation is
that it can support a much wider range of values.

0 int: —2,147,483,648 to +2,147,483,647, -(231)~(231-1)
0 float: 1.4 x 10™%°to 3.4 x 1038

o This has a cost...

22 October 2012 Vincenzo Innocen te

‘ Floating behaviour...

include<cstdio>
int main() {
float tenth=0.1f;
float t=0;
long long n=0;
while(n<1000000) {
t+=0.1f; // nanosleep omitted...
++n;
if (n<21 || N%36000==0) printf("%d %f %a\n",n,t,t);
}

return O;

}

Not a swiss clock...
Why?

cat patriot.cpp

c++ -std=c++1y -O2\
patriot.cpp

Ja.out

22 October 2012 Vincenzo Innocente

Patriot result

10

20

36000
72000

972000

0.
0.

3601.
7204.

98114.

100000
200000

.500000

.000000

.000000

162354
677734

593750

0x1.99999ap-4
0x1.99999ap-3

Oxlp-1
0x1.000002p+0
0x1.000002p+1

0x1.c22532p+11
0x1.c24ad8p+12

0x1.7£4298p+16

22 October 2012

Vincenzo Innocente

10

‘ IEEE 754 representation of single

pf@ClSlOb Implicit 1
sign exponent (8 bits fraction (23 hits)

ofo|1[1{1]1|2[o|o]o|1{o|o|o|o|o|o|o|o]ofofo]olofo]o|ofofo|ofo[o] = 0.15625
31 30 2322 (bit index) 0
n=(=1)°x (m27%%) x 2*71¥
significand | significand non-zero
zero

zero, -0 subnormal numbers (-1)signbits x =126
0.significandbits

01, ..., FE, normalized normalized value (St et A2y
value x 1.significandbits
FF, tinfinity NaN (quiet,signalling)

22 October 2012 Vincenzo Innocente 11

‘ L.ook into a float

void look(float x) {
printf("%a\n”,x);
int e; float r = ::frexpf(x,&e); //0.5<r<1.0 (or 0)
std::cout << x<<"exp " <<e <<"res" <<r<<std:endl

auto ftoi = [](float f)->int { int i; memcpy(&i;&f,4); return i;};

auto bin = ftoi(x);

printf("%e %a %x\n", x, x, bin);

auto log_2 = ((bin >> 23) & 255) - 127; //exponent

bin &= Ox7FFFFF; //mantissa (aka significand)

std::cout << "exp " << log_2 << 7 significand in binary " << std::hex << bin
<< " significand as float " << std::dec << (bin|0x800000)*::pow(2.,-23)
<< std::endl; // or scalbn((bin|0x800000),-23);

}

Use printF.cpp
exercise: count the number of “floats” between two of them...

22 October 2012 Vincenzo Innocente 12

Limits
= Everything you want to know about an
arithmetic type is in

o std::numeric_limits<T>

o see http://www.cplusplus.com/reference/limits/

numeric_limits/

#include <iostream> // std::cout
#include <limits> /[std::numeric_limits

int main () {
std::cout << std::boolalpha;
std::cout << "Minimum value: " << std::numeric_limits<float>::min() << "\n";
std::cout << "Maximum value: " << std::numeric_limits<float>::max() << '\n';
std::cout << "Is signed: " << std::numeric_limits<float>::is_signed << '\n";
std::cout << "Non-sign bits: " << std::numeric_limits<float>::digits << '\n';
std::cout << "has infinity: " << std::numeric_limits<float>::has_infinity << '\n';
return O;

Precision

float a = 100.f+3.1/7 f;
float b = 4.1/7.1; // (in general |a|>|b])

float s =a+b;
float z = s-a;
floatt = b-z;

float w=s;

for (auto i1=0; i<1000000; ++i) w+=t;
w=0;

for (auto i=0; i<1000000; ++i) w+=t;

cat precision.cpp
c++ -0O2 precision.cpp
Ja.out

Sterbenz Lemma:
If y/2 < x £ 2*y then x-y is exact

What's the value of t?
How big is “t” (w.r.t. “s”)?

a=100.429 b=0.571429 s=101 z=0.571426 t=2.20537e-06
a=0x1.91b6dcp+6 b=0x1.24924ap-1
s=0x1.94p+6 z=0x1.2492p-1 t=0x1.28p-19

101 = 0x1.94p+6

nextafterf(s,maxf) = 101 0x1.940002p+6
nextafterf(s,maxf)-s = 7.62939e-06 Ox1p-17
w= 101 0x1.94p+6

N

22 October 2012 Vincenzo Innocente 14

‘ Extending precision (source Handbook of
Floating-Point Arithmetic pag 1206)

void fast2Sum(T a, T b, T& s, T& t) {
if (std::abs(b) > std::abs(a)) std::swap(a,b);
// Don’t allow value-unsafe optimizations
s=a+hb;
Tz=s-a;
t=b-z
return;

}

= s+t = a+b exactly

o (s=a+b rounded to half ulp, t is the part of (a+b) in
such half ulp)

22 October 2012 Vincenzo Innocen te 15

‘Kahan summation algorithm (source
http://en.wikipedia.org/wiki/Kahan_summation_algorithm)

T kahanSum(T const * input, size_t n)
T sum = input[0];

Tt=0.0; I/l A running compensation for lost low-order bits.
for (size_ti=1; il=n; ++i) {
y = input[i] —t; Il so far, so good: tis zero.
s=sum+y; // Alas, sum is big, y small, so low-order digits of y are lost.

t=(s-sum)-y; //(s-sum)recovers the high-order part of y
// subtracting y recovers -(low part of y)

sum =s; //Algebraically, t should always be zero.

// Beware eagerly optimising compilers!
} //Next time around, the lost low part will be added to y in a fresh attempt.
return sum;

Exercise: Apply this algorithm to the patriot.cpp

22 October 2012 Vincenzo Innocente 16

‘ Dekker Multiplication (source Handbook
of Floating-Point Arithmetic pag 135)

template<typename T, int SP> inline void vSplit(T x, T & x_high, T & x_low) __attribute __ ((always_inline));
template<typename T, int SP> inline void vSplit(T x, T & x_high, T & x_low) {
const unsigned intC = (1 << SP) + 1;
Ta=C*x;
Tb=x-a;
x_high=a+b; x_low=x-x_high; // x+y =x_high + x_low exaclty
}
template <typename T> struct SHIFT_POW({};
template <> struct SHIFT_POWSx<float>{ enum {value=12}; /* 24/2 for single precision */ };
template <> struct SHIFT_POW-<double>{ enum {value = 27}; /* 53/2 for double precision */ };

template<typename T> inline void dMultiply(T x, Ty, T & r1, T & r2) __attribute __ ((always_inline));
template<typename T> inline void dMultiply(T x, Ty, T & r1, T & r2) {

T x_high, x_low, y_high, y_low;

vSplit<T,SHIFT_POW<T>::value>(x, x_high, x_low);

vSplit<T,SHIFT_POW<T>::value>(y, y_high, y_low);

r1=x*y; /l rounded

Ta=-r1+x_high*y high;

Tb= a+x_high*y low;

Tc= b+x low *y high;

r2= c+x_low *y low; //x*y=r1+r2exactly

1
J

22 October 2012 Vincenzo Innocente 17

‘ Floating Point Math

= Floating point numbers are NOT real numbers

a They exist in a finite number (~232 for single prec)
0 Exercise: count how many floats exists between given two
o Exist a “next” and a “previous” (std::nextafter)

= Differ of one ULP (Unit in the Last Place or Unit of Least
Precision http://en.wikipedia.org/wiki/Unit_in_the last place)

o Results of Operations are rounded
= Standard conformance requires half-ULP precision.
= X+te—x#¢e (caneasilybe0or«)

o Their algebra is not associative
= (atb)+c# a+(b+c)

= a/b #a*(1/b)
= (atb)*(a-b) # a?-b?

22 October 2012 Vincenzo Innocente 18

Strict IEEE754 vs “Finite” (fast) Math

s Compilers can treat FP math either in “strict
IEEE754 mode” or optimize operations using
“algebra rules for finite real numbers” (as Iin
FORTRAN)

o gcc <= 4.5 —funsafe-math —ffast-math

0 gcc >= 4.6 —Ofast (switch vectorization on as well)

= Caveat: the compiler improves continuously: still it does
not optimize yet all kind of expressions

= https://gcc.gnu.org/wiki/FloatingPointMath

22 October 2012 Vincenzo Innocen te 19

‘ Inspecting generated code

objdump -S -r -C --no-show-raw-insn —w kernel.o | less
(on MacOS: otool -t -v -V —X kernel.o | c++filt | less)
Or use http://gcc.godbolt.org

c++ -S kernel.cc; less kernel.s

-02

float

kernel(float a, float x, float y)

{

return a*x + a*y;

} kernel(float, float, float):

addss %xmm2,%xmm1
-Ofast mulss %xmm0,%xmm1

movaps %xmm1,%xmm0
ret

Exercise: assocMath.cc; compare assembler for O2 and Ofast

20 October 2012 Vincenzo Innocente

‘ Rounding Algorithms

= The standard defines five rounding algorithms.

a

The first two round to a nearest value; the others are called directed
roundings:

= Roundings to nearest

a

Round to nearest, ties to even — rounds to the nearest value; if the
number falls midway it is rounded to the nearest value with an even (zero)
least significant bit, which occurs 50% of the time; this is the default algorithm
for binary floating-point and the recommended default for decimal

Round to nearest, ties away from zero — rounds to the nearest value; if the
number falls midway it is rounded to the nearest value above (for positive

numbers) or below (for negative numbers)

= Directed roundings

a

a

Round toward 0 — directed rounding towards zero (also known as truncation).
Round toward +« — directed rounding towards positive infinity (also known as
rounding up or ceiling).

Round toward —« — directed rounding towards negative infinity (also known
as rounding down or floor).

22 October 2012 Vincenzo Innocente 21

‘ Floating point exceptions

The IEEE floating point standard defines several exceptions that occur when the
result of a floating point operation is unclear or undesirable. Exceptions can be
ignored, in which case some default action is taken, such as returning a
special value. When trapping is enabled for an exception, an error is signalled
whenever that exception occurs. These are the possible floating point
exceptions:

Q

Underflow: This exception occurs when the result of an operation is too small to be represented
as a normalized float in its format. If trapping is enabled, the floating-point-underflow condition is
signalled. Otherwise, the operation results in a denormalized float or zero.

Overflow: This exception occurs when the result of an operation is too large to be represented
as a float in its format. If trapping is enabled, the floating-point-overflow exception is signalled.
Otherwise, the operation results in the appropriate infinity.

Divide-by-zero: This exception occurs when a float is divided by zero. If trapping is enabled, the
divide-by-zero condition is signalled. Otherwise, the appropriate infinity is returned.

Invalid: This exception occurs when the result of an operation is ill-defined, such as (0.0/ 0.0). If
trapping is enabled, the floating-point-invalid condition is signalled. Otherwise, a quiet NaN is
returned.

Inexact: This exception occurs when the result of a floating point operation is not exact, i.e. the
result was rounded. If trapping is enabled, the floating-point-inexact condition is signalled.
Otherwise, the rounded result is returned.

22 October 2012 Vincenzo Innocente

‘ Gradual undertlow (subnormals)

= Subnormals (or denormals) are fp smaller than the smallest
normalized fp: they have leading zeros in the significand

o For single precision they represent the range 10-38to 10-4°

= Subnormals guarantee that additions never underflow

o Any other operation producing a subnormal will raise a underflow exception if also
inexact

= Literature is full of very good reasons why “gradual underflow”
Improves accuracy
o This is why they are part of the IEEE 754 standard
= Hardware is not always able to deal with subnormals
o Software assist is required: SLOW
o To get correct results even the software algorithms need to be specialized
= |tis possible to tell the hardware to flush-to-zero subnormals
o It will raise underflow and inexact exceptions

23 October 2012 Vincenzo Innocente

‘ Cost of operations (in cpu cycles)

ADD,SUB

COMISS
CMP..

CVT..

A
v |

1,&,A AND,OR

- DIV, SQRT
RCP, RSQRT
1.flsgrt

o _nsinsion ssos Jssed Lams Jamd
3 3 3 3

+,-

2,3 2,3 2,3 2,3
3 3 4 4

1 1 1 1

5 5 5 5

10-14 10-22 21-29 21-45

5 7

1,3,... 1,3,... 14,.... 1.4.... =>350from

main memory

22 October 2012

Vincenzo Innocente 24

‘ Approximate reciprocal (sqrt, div)

The major contribution of game industry to SE is the
discovery of the “magic” fast 1/Vx algorithm

float invSqgrt(float x){
int i; memcpy(&i,&x,4);
| = 0x5f3759df — (i >> 1);
float y; memcpy(&y,&i,4);// approximate
returny * (1.5f - 0.5f * x * y * y); // better
}

Compilers use them at Ofast
Accuracy 2ULP
Non standard: Hardware dependent

Real x86_64 code for 1/Vx
_mm_store_ss(&y, _mm_rsqrt_ss(_mm _load _ss(&x)));
returny * (1.5f- 0.5f * x * y * y); // One round of Newton's method

Real x86_64 code for 1/x
_mm_store_ss(&y, mm_rcp_ss(_mm load ss(&x)));
return (y+y) — x*y*y; // One round of Newton's method

22 October 2012 Vincenzo Innocente 25

‘ Cost of functions (in cpu cycles 17sb)

Cephes | Cephes
scalar | autovect

S d| s d d

sin,cos 55 100 30 11 20 12 30 25 45
large x >500 50 30
sincos 70 40 15 22 50
atan2 50 100 30 13 17 52 67 87
exp 650 65 42 55 10 27 12 26 16 36

23
log 50 105 3 42 11 24 12 12 30 27 59

SET_RESTORE_ROUND_NOEXF (FE_TONEAREST);

22 October 2012 Vincenzo Innocente 26

How to speed up math

= Avoid or factorize-out division and sqrt
o if possible compile with “—Ofast”

= Prefer linear algebra to trigonometric functions

s Cache quantities often used
2 No free lunch: at best trading memory for cpu

= Choose precision to match required accuracy
o Square and square-root decrease precision

o Catastrophic precision-loss in the subtraction of
almost-equal large numbers

22 October 2012 Vincenzo Innocen te 27

‘ Example: cut in pt, phi, eta

inline float pt2(float x, float y) {return x*x+y*y;}

inline float pt(float x, float y) {return std::sqrt(pt2(x,y));}

inline float phi(float x, float y) {return std::atan2(y,x);}

inline eta(float x, float y, float z) { float t(z/pt(x,y)); return ::asinhf(t);}
inline float dot(float x1, float y1, float x2, float y2) {return x1*x2+y1*y2;}
Inline float dphi(float p1,float p2) {

auto dp=std::abs(p1-p2); if (dp>float(M_Pl)) dp-=float(2*M_PI);
return std::abs(dp);

It
if (pt(x[i],y[i])>ptcut) ...

if (dphi(phi(x[i],y[i]),phi(x[j],y[]))<phicut)

Exercise in ptcut.cpp

22 October 2012 Vincenzo Innocente

28

‘Formula Translation:
what was the author’s intention?

Il Energy loss and variance according to Bethe and Heitler, see also

/I Comp. Phys. Comm. 79 (1994) 157.

Il

double p = mom.mag();

double normalisedPath = fabs(p/mom.z())*radLen;

double z = exp(-normalisedPath);

double varz = (exp(-normalisedPath*log(3.)/log(2.))- exp(-2*normalisedPath));

double pt = mom.perp();

double j = a_i*(d_x * mom.x() + d_y * mom.y())/(pt*pt);

double r_x = d_x - 2* mom.x()*(d_x*mom.x()+d_y*mom.y())/(pt*pt);
double r_y =d_y - 2* mom.y()*(d_x*mom.x()+d_y*mom.y())/(pt*pt);
double s = 1/(pt*pt*sqrt(1 - j*j));

Exercise: edit Optimizelt.cc to make it “optimal”

check the generated assembly, modity Benchmark.cpp to verity speed gain

29 October 2012 Vincenzo Innocente

‘Formula Translation:
the solution?

s the compiler able to do it 1or us:

30 October 2012 Vincenzo Innocente

PRECISION, ACCURACY,
SPEED

‘ Definitions (mine)

= Precision
o Numerical precision (in bits)
o Can be evaluated using a higher “precision”

= Accuracy
o The error w/r/t the truth
o Can be evaluated comparing different algorithms

= Target Accuracy

o The acceptable tolerance w/r/t the above

o Evaluated, for instance, w/r/t know error on the
truth

22 October 2012 Vincenzo Innocen te

32

Precision, accuracy, speed

Quadratic equation
ax? + bx + ¢c=0

Compare the “formula translated” code with an
optimized one for accuracy (look in wikipedia)

Find the fastest algorithm (for single precision
arguments) covering a given range of a,b,c with
“good-enough” accuracy

Repeat for vector code

22 October 2012 Vincenzo Innocente

33

‘ Example: multiple scattering tormula

double ms(double radLen, double m2, double p2) { Already an
constexpr double amscon = 1.8496e-4; // (13.6 approximation
double e2 =p2 + m2;
double beta2 = p2/e2;

double fact = 1 + 0.038*log(rad . fact *=fact; _ _
double a = fact/(beta2*p2); Material density,
thickness, track angle

return amscon*radlLen*a;
) Known at percent?

float msf(float radLen, float m2, float p2) {
constexpr float amscon = 1.8496e-4; // (13.6MeV)**
floate2 =p2+ m2;

2"d order polynomial

float fact = 1.f + 0.038f*unsafe logf<2>(radLen); fact /= p2;
fact *=fact;

float a = e2*fact;

return amscon*radLen*a;

‘ Anedoct: regression in CMS validation

= 192 events out of 92592 had a different
number of vertices (number of tracks, number
of hits per tracks) for two identical relval

productions

= Running 400 times the same event on the
CERN cluster it was found that the difference
was related to the machine where the job

landed

= Eventually discovered that the discriminant
was AMD vs INTEL

22 October 2012 Vincenzo Innocente 35

7000

6000

5000

4000

3000

2000

1000

138
1.6
1.4
1.2

0.8
0.6
0.4

Evidence

Reconstructed Vertices in Event vixNbr
Entries 92592
s ¢ Mean 15.42
o o RMS 5.403
C StandardRef
- Entries 401786
- Mean 10.2012
- RMS 4.7264
B o Ref 1
— Entries 92592
- Mean 15.4189
— RMS 5.4031
E ° 15
o get the green dots
C 10
- 5
L s el l] 0
3 * \\ 5
E llL tLLL.L[I.L[[[[- >
g V" """""""""" ""'“'HH /
3 .,-0-” 1] -10
= -»*
; **?.....1.. P P M PR N l N 1
0 5 10 15 20 25 30 35 40 45

0.2

Running twice the very same
Release validations
Differences in all bins...

Diff Primary Vertex Collection Size

T

T

T

T

I|III

‘IIII[\I
—
-
—

II\|III

\

[

\J\J‘JJIJlIIIIlIIIIl\I\\I\J\\‘\JJJ‘IJII'IIII'III\

]
0

5 10 15 20 25 30 35 40 45

AMD vs Intel

* Fast reciprocal is not standard
— Easy to reproduce (1/v0.1)

cat onelineRecip.cpp
#include <cmath> AMD

#include<cstdio> c++ -Ofast oneLineRecip.cpp; ./a.out
0x1.9999ap-4 0x1.94c582p+1

int main(int n, char * v[]) {
floatfn=n- 1.1
float k = 0.1f + fn;

INTEL
float q = 1.f/std::sqrt(k); Ja.out # same binary!
printf(*%a %a\n" k,a); 0x1.9999ap-4 0x1.94c58p+1

return O;

SIMD: LOOP VECTORIZATION

‘ Test environment

cd exercises/Mattson/OpenMP/

gcc49cms; c++ -v

c++ -Wall —std=c++1y —O2 pi.c —o pi; time pi
c++ -Wall —std=c++1y —Ofast pi.c —o pi; time pi

22 October 2012 Vincenzo Innocente

39

o~y

What is Stream Computing? CAPS

A similar computation is performed on a collection of
data (stream)

o There is no data dependence between the computation on
different stream elements

 Stream programming is well suited to GPU and vector-cpu!

kernel void Fct (float a<>, float b<>, out float c<>) {

}c = e by A[0] A1l A2 A[B] Al4] A[5] A[6] A7l Al8] A[9]

int main(int argc, char** argv) {
int i, 3J; B[O] B[] B[2] B[3] B[4] B[5] BI[6] B[7] B8] BI[9]

float a<10, 10>, b<10, 10>, c<10, 10>;
float input a[10][10],input b[10][10], input g[10] [j10]; \
for (i=0; i<10; i++) {
for (j=0; 3j<10; j++) { Fot Fot Fo

F F

Fagt Fagt Fao Faot Fc

input_a[i][j] = (float) i; ‘
input b[i] [J] = (float) j;
}
}
streamRead (a, input a); q 11 ciz1l ci31 't cp41 | cis1 | cis) | 71 | ci81 | cl9]

streamRead (b, input_b);

Fct(a, b, ¢);

streamWrite (¢, input c);

Brook+ example

} .
WW.CapPs P >€.CO 5

June 2011

Vincenzo Innocente 22 October 2012

SSE Data types 128 bit word (XMM)

4x floats

" 16x bytes

8x 16-bit shorts

Copyright © Intel Corporation, 2007

Sandy Bridge (2010): Intel® AVX

A 256-bit vector extension to SSE

= |ntel® AVX extends all 16 XMM registers to 256bits
= |ntel® AVX works on either

—The whole 256-bits
—The lower 128-bits(like existing SSE instructions)

— A drop-in replacement for all existing scalar/128-bit SSE instructions
= The new state extends/overlays SSE

= The lower part (bits 0-127) of the YMM registers is mapped onto XMM
registers

512 bits (20XX) 256 bits (2010) 128 bits (1999)

22 October 2012 Vincenzo Innocente 42

‘ Single Instruction Multiple Data

m SLP (Superword Level Parallelism)

0 Direct mapping to underling SIMD machine instruction

0 Usually implemented using array/vector notation

= Loop Vectorization
0 Transform a loop into N streams (N=SIMD-width)
0 Compiler assisted or implemented in a “vector-library”

= [Loop vectorization 1s more efficient than SLP

= Transform your problem in a long loop over simple
guantities

22 October 2012 Vincenzo Innocen te

43

“Vector Extension’™

= SIMD vector can be found implemented as
compiler’'s extension or libraries

o https://gcc.gnu.org/onlinedocs/gcc/Vector-
Extensions.html

o http://clang.llvm.org/docs/
| anqguageExtensions.html#vectors-and-extended-

vectors
o http://www.cilkplus.org/tutorial-array-notation
o http://code.compeng.uni-frankfurt.de/projects/vc

= Here we will experiment with “gcc vectors”

22 October 2012 Vincenzo Innocente

44

‘ (cce Vector extension

typedef T __ attribute ((vector_size(N*sizeof(T)))) VecNT;

Vecd4F a{0,1f,-2f,3f}, b{-1f,-2f,3f,0}, c{0,2.1,4.1,5.1}, zero{0};

Vector of integers:

—_ ., P g
c += 3.14f*b 3/ 0 for false, -1 for true

autoz = (a>0) ?a: -a;
autom = (a>b) ? a: b;

auto t = a/b; t = (x>pi/8.f) ? (t-1.0fY/(t+1.0f) : ¢;
scalar code: if(x>pi/8.f) t= (t-1.0f)/(t+ I'OH~_ aiways computed

22 October 2012 Vincenzo Innocen te 45

How to use SIMD vectors?

= |n place of Vector3D<T>
o Works
o Waste 1/4 of memory if used in storage

o Not useful in code dominated by operations among
elements of the same vector: phi(),perp()...

o Limited to N=4

= |n place of “T” (float, double, int....)

o “Easy” to make any algorithm based on T to work for
VecNT

o Up to the user to split the problem in chunks of size N
= Let the compiler do it for us

22 October 2012 Vincenzo Innocen te 46

“Auto’ vectorization

= The process that transform scalar code in vector
code

= As a compiler pass
0 Issues: detect and manage data dependencies
a Hints from user as macro

= OpenMP4

2 New: implementations still experimental
o icc: “fully supported?”

0 gcc: syntax and code generation ok, vectorization
relies on the corresponding compiler pass

= OpenCL.:

o See Tim’s lectures

22 October 2012 Vincenzo Innocen te

47

‘What 1S vectorization?

v WO 0P
VF =4

VR2 OP(b) VRA1

VR3 OP(c) OP(a,b,c,d)
Vector operation

VR4 OP(d) vectorization

VRS

= Data elements packed into
Vector Registers ve CtO rs

= Vector length -
Vectorization Factor (VF)

Data in Memory:

48 Vincenzo Innocen te 22 October 2012

‘ Vectorization

More at http://gcc.gnu.org/projects/tree-ssa/vectorization.html

© original serial loop: © loop in vector notation:
for(i=0; i<N; i++){ o for (i=0; i<(N-N%VF); i+=VF){
afi] = afi] + b[iJ; vectorization afi:i+VF] = afi:i+VF] + b[i:i+VF];
/ \ ! vectorized loop
© loop in vector notation: for (;i<N;i++){
for (i=0; i<N; i+=VF){ afi] = afi] + b[i];
afi:i+VF] = a[i;i+VF] + b[i:i+VF]; }
} epilog loop

® Loop based vectorization

€ No dependences between iterations

249 October 2012 Vincenzo Innocente

‘ Loop Dependence Tests

_ _ . Subtle issues:
for (i=0; I<N; i++) A may partially overlap
Ali+1] = B[i] + X AR

with X

D[|] = A[I] +Y for (i=0; i<N; i++)

o AT with N
} DI} = Alll+ ¥ The compiler will generate
/\' runtime checks and alternative
for (i=0; i<Ng i++){ for (i=0; i<N; i++) sequential code.
B[i] =A[il] +Y B[ilz\A[i]B; Y To avoid this overhead
\y] = B[i] + X Ali+1] =Bfi] + X use local variable,
) “restrict” keyword or
#pragma GCC ivdep
for (i=0; i< void ignore_vec_dep (int *a, int k, int ¢, int m)
for (j=0/ j<N; j+1) {
Ali+1][] = AL[] + X #pragma GCC ivdep

for (inti=0;i<m;i++)
U ali] = a[i + k] * c;
}

22 October 2012 Vincenzo Innocente 50

‘ Reduction

// pseudo code
float innerProduct() {

: float s[VF]={0};
float innerProduct() { L . :
N
for (int i=0; i'=N; i++) of UINTJ=LL =V, =]
s+= a[i]*b[i; s[j]+=ali+]*b[i+j];
return s: /l horizontal sum;
) float sum=s]0];
for (int j=1;j!=VF;++j)sum+=s[j];
return sum,;
loop in vector notation:)

for (i=0; i<N; i+=VF){
s[0:VF] += afi-i+VF] * bfi:i+VFJ:
/

return hsum(s);

Requires relaxed float-math rules

22 October 2012 Vincenzo Innocente

51

‘ Real code http://goo.0l/3ku9E]

L3:
movss a(%rax), Yoxmm1
addq $4, %rax
mulss b4(%rax), Yoxmm1
addss %xmm1, %xmmO0
float a[1024],b[1024]; int N=1024; cmpg %rdx, %rax
float innerProduct() { jne L3
float s=0;
for (int i=0; i!=N; i++) L4
ST= a[_']*b[']; movaps b(%rsi), Y%oxmm1
return s; addl $1, %edi
i addqg $16, %rsi

mulps a-16(%rsi), Y%oxmm1
addps %xmm1, %xmmO
cmpl %edi, Y%edx

ja L4

haddps %xmm0Q0, %xmmO0
haddps %xmmO, %xmmO
cmpl %ecx, Y%eax

je L15

22 October 2012 Vit

Exercise pi.c

. I — 1 L]
static long num_steps = 100000000; Compile with —O2 or —Ofast

double step;
inc;uma?ns(()ep Move to float (do not forget “f")
{ Modify to keep speed and recover

double x, pi; double sum = 0.0; precision

double start_time, run_time;

step = 1.0/(double) num_steps;

start_time = omp_get_wtime();

for (int i=0; i<num_steps; ++i){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;
run_time = omp_get wtime() - start_time; }

T VUICULLU Lot b 53

‘ Conditional code

void foo() { 5033?338 ?Ode
for (int i=0; i!=N; i++) { for (int i=0; i'=N; i++) {
if (bli>a[i]) clil=alil*bl]; Ilevaluate condition
else cfi]=al[il; int t = b[i]>a[i] ? ~0 : 0;
} /I compute both branches
} float x= a[i]*b[i];
float y=a[i];
// mask and “blend”
cli] = t&x | ~t&y:

loop in vector notation:

for (i=0; I<N; i+=VF){
t[0:VF] = b[i:i+VF] > afi:i+VF];
/l compute both branches }
x[0:VF] = a[i:i+VF] * b[i:i+VF]; }
y[0:VF] = afi:i+VF];
/[mask and “blend”
cli;i+VF] = t&x | t&y;

/

The compiler is able to make the transformation of a condition
in “compute, mask and blend” if code is not too complex

22 October 2012 Vincenzo Innocente

Blends: To Boost Conditionals SIMD flows SSE 4, AVX

/*Integer blend instructions */

_mm_blend_epil6 (__m128ivl, _ m128i v2, const int mask); Only
_mm_blendv_epi8 (__m128ivl, _ m128iv2, _ m128i mask);

/*Float single precision blend instructions */

_mm_blend_ps (__ m128 v1, _m128 v2, const int mask);
_mm_blendv_ps(__m128 v1, _ m128 v2, __m128 v3);

/*Float double precision blend instructions */

_mm_blend_pd (__m128d vl, _ m128d v2, const int mask);
_mm_blendv_pd(_ m128d vl, _ m128d v2, _ _m128d v3);

mask I e eUsed to code conditional SIMD flows
for (i=0; i<N; i++)
if (a[i]l<b[i]) c[i]=a[i]*b[i];
else c[i]=a[i];
Vector code assuming:
for (i=0; i< N; i+=4){
_mm_loadu_ps(&a[i]);
_mm_loadu_ps (&b[i]);
_mm mul ps (A, B);
k = mm cmplt_ps (A, B);
_mm blend ps (C, A, mask);
_mm_storeu_ps (&c[i], C);

A
B
Cc
ma
Cc

result

}

Copyright © Intel Corporation, 2007

‘ Managing “rare” divergences

auto t = a/b; t = (x>pi/8.f) ? (t-1.0f)/(t+1.0f) : ¢;

Q

What about if x is often < pi/8 ?

= OpenCL (and CUDA and Altivec) provides two functions

a

all / any that return true if all elements / at least one of the
element of the vector are/is non zero

in SSE/AVX can be constructed using “movmsk” instruction
In Neon: more involved...

(see NativeVector.h) = 40 |arge = t > 0.4142135623730950f; // * tan pi/8
autoz =t;
Float ret = {0};
/[if all small avoid division and blending...
if (nativeVector::any(large)) {
z = large ? (t-1.0f)/(t+1.0f) : t;
ret = large ? ret+PIlO4F : ret;

}

22 October 2012 Vincenzo Innocente 56

‘ Vectorization of “math function”

= Exploit compiler + vendor libraries
o Requires licensed libs by intel and/or amd

o No change in user code: just recompile
= -mveclibabi=svml —L/.../lib/intel64 -Isvml -lirc
= -mveclibabi=acml —L/.../lib/amd64 -lacml —lamdlibm

= Explot auto-vectorization

o Modified cephes library (or other open source)
= Requires header-file + different function names

o Look into vdt/ (https://svnweb.cern.ch/trac/vdt)
= Project for a student: port vdt to gcc simd-vectors

22 October 2012 Vincenzo Innocen te

57

Exercise 1
= Open SimpleVectorization.cc or pi.cc
o or hitp://goo.gl/SAiici / http://goo.gl/Vwvig3

= Compile it with 03, Ofast, more fancy options

o Analyze the compiler report

= Correlate with code and generated instruction

= |s vectorizing everything?

= (if too complex, comment-out all but one function)

= Add’” -fopt-info-vec”

= Try “-fopt-info-vec-missed -fno-tree-slp-vectorize”
objdump -S -r -C --no-show-raw-insn —w xyz.o | less
build SimpleVectorization vect.s;

' SimpleVectorization_vect.s] |

22 October 2012 Vincenzo Innocente 58

Exercise 2

= The Mandelbrot set is defined to be that set of points c
such that the iteration z = z? + ¢ does not escape to
infinity, with z initialized to O.

= Brute force approach to compute area: sample circle,

count number of point not escaping

o (see
https://www.fractalus.com/kerry/articles/area/mandelbrot-
area.html)

= Take mandel.cpp, vectorize using NativeVector.h

22 October 2012 Vincenzo Innocen te

59

https://github.com/CppCon/CppCon2014/tree/master/
Presentations/Data-Oriented%20Design%20and%20C%2B%2B

DATA ORGANIZATION

22 October 2012 Vincenzo Innocen te

60

‘ Data Organization: AoS vs SoA

Traditional Object organization is an Array of Structure
o Abstraction often used to hide implementation details at object level

Difficult to fit stream computing
Better to use a Structure of Arrays

OO can wrap SoA as the AoS

o Move abstraction higher
o Expose data layout to the compiler

Explicit copy in many cases more efficient
o (notebooks vs whiteboard)

Xy 1%, [X5 [X, [Xs [X |
LY [Y5 [Y5 [Yy [Ys [e |
1z,12, 12, 1Z, |2, |2, |

64 October 2012 Vincenzo Innocente

A simple SOA binding

Vector3D<float> va{-3, 0, 2.}; // standard local vectors
Vector3D<float> vb{1, 2, 3.14};

float x[5]={1.}, y[5]={1.1}, z[5]={1.}; // sort of SOA

Vector3D<float const&> v1(x[0],y[0],z[0]); / right hand
binding
Vector3D<float&> v5(x[4],y[4],z[4]); // left hand binding

vS =v1+vb-va; //just works!

* SOA can be implemented as a hierarchy of std::tuple of
std::vector
* matching the natural data-model hierarchy
* binding through the constructors
« Here we do it “by hand”

17/10/14 VI

\ SOA for Vector3dD

template<typename T> using AVector = std::.vector<T,align_allocator<T,32>>;

template<typename T>

class SOA3D {

public:
using V3D = Vector3D<T>;
using R3D = Vector3D<T&>;
using C3D = Vector3D<T const&>;

SOA3D(){}
explicit SOA3D(unsigned int is) : vx(is),vy(is),vz(is){}
void resize(unsigned int n) { vx.resize(n);vy.resize(n);vz.resize(n);}

R3D operator[](unsigned int i) { return R3D(vx]i],vy[i],vz[i]); }
C3D operator[](unsigned int i) const { return C3D(vx]i],vy[i],vz[i]); }

unsigned int size() const { return vx.size();}
private:
AVector<T> vx,vy,vz;

¥

‘ SoA for Particles

#ifdef USESOA
template<typename T> class Particles {
public:
using Float =T,
using CP = Particle<Float const &>;
using RP = Particle<Float &&>;
using LP = Particle<Float&>;
using Soa = SOA3D<Float>;
using uint = unsigned int;

Particles(){}
explicit Particles(uint n) : m_pos(n), m_vel(n),m_acc(n),m_mass(n), m_charge(n), m_n(n){}

void resize(uint n) { m_pos.resize(n); m_vel.resize(n); m_acc.resize(n); m_mass.resize(n); m_charge.resize(n); m_n=n;}
uint size() const { return m_n;}

CP operator[](uint i) const { return CP(m_massJi],m_pos]i],m_vel[i],m_acc]i]); }

LP operator[](uint i) { return LP(m_massli],m_pos[i],m_vel[i],m_acc]i]); }

private:
Soa m_pos;
Soa m_vel;
Soa m_acc;
AVector<Float> m_mass;
AVector<Float> m_charge;
uint m_n;

I

#Helse

template<typename T> using Particles = AVector<Particle<T>>;
#endif

‘ Don’t stop the stream!

= Vector code is effective as long as

2 We do not go back to memory
= Operate on local registries as long as possible

o We maximize the number of useful operations per
cycle
= Conditional code is a killer!
= Better to compute all branches and then blend

= Algorithms optimized for sequential code are
not necessarily still the fastest in vector
o Often slower (older...) algorithms perform better

22 October 2012 Vincenzo Innocen te 65

'THE EXERCISE: N-Body problem

= N (large!) interacting particle in a Box (cube)
o Simulation using discrete steps in time
o F =ma; ov = adt; ox = vot
o a=F/m; v+=aAt; x+=vAt+aAt?/2
o In 3D! (assume an arrow above F,a,v,x)
= F is Coulomb/Gravity: 1/r?
o Variations: longer/shorter range
o All attractive, all repulsive or mix charges

= Walls: elastic scattering
= Challenge: window..

22 October 2012 Vincenzo Innocen te

66

‘ Numerical 1ssues

= What may limit precision, accuracy?
= What will determine the target accuracy?

= What to “measure”?
= How many free parameters the problem have?

= Challenge:
o Fast and accurate

22 October 2012 Vincenzo Innocen te 67

‘ Stepl

= Force on a single particle
o All other N-1 particle do not move

= What | give you:
a2 A simple Vector3D class
a A Particle class
2 A “main template”
o Feel free to modify them following your needs

22 October 2012 Vincenzo Innocente

68

‘ Result 1/r?

'‘probeTraj txt’ —
005 ¢ :
0
-005 ¢
01 ¢
-0.15 ' . ! .
R -01 -0.05 0 0.05 0.1 0.15

22 October 2012 Vincenzo Innocente 69

‘ Result 1/r

0.001

'probeTraLR1 txt ———

- . 'probeTraLROT txt' ——

0t ' e, ‘probeTraLRO0OT txtt ——
AW p—:f_'jh-‘q“‘ :_‘“\‘ .

-0.001

-0.002

-0.003

-0.004 t

-0.005

-0.006 }

-0.007 - - . - -
0002 -0.001 0 0.001 0.002 0.003 0.004 —

22 October 2012 Vincenzo Innocente 70

‘ Step2

= Bouncing Box

o Add walls of a box and let the particles scatter on
them

o To test: do not apply any force

22 October 2012 Vincenzo Innocen te

71

‘ Step3

= N interacting particles

22 October 2012 Vincenzo Innocente

72

ADVANCED TOPICS

‘ Example: (Gaussian random generator

= The fastest (scalar) method to produce random number
following a normal (Gaussian) distribution is the ziggurat
method by Marsaglia
o split the pdf in rectangles and use a look-up method
o In 2% of the cases it needs more computation (and rejections)

= The traditional algorithm is the Box—Muller method

o that throws two independent random numbers U and V distributed
uniformly on (0,1]. The two following random variables X and Y will be
normal distributed

X =+v-2InU cos(27V),
Y =v-2InU sin(27V).

22 October 2012 Vincenzo Innocente 74

‘ Example: (Gaussian random generator

const result_type mult = std::sqgrt(-2 * std::log(__r2)/ _ r2);

The Polar method, due to Marsaglia, is often used

o In this method U and V are the coordinate of a point inside a
circle of radius 1 obtained drawing them from the uniform (-1,1)
distribution, and then S = U? + \/? js computed. If S is greater or
equal to one then the method starts over, otherwise the following
two quantities, normal distributed, are returned

—2InS Vv —2In S
S S
Code from gcc libstdc++ (bits/random.tcc)
result type x, vy, r2;
do
{
__x=result type(2.0) * __aurng() - 1.0;
__y=result type(2.0) * __aurng() - 1.0;
_r2=_x*_x+_y* v

}
while (__r2>1.0|| __r2 == 0.0); /l rejection 14% of the time

X =U

22 October 2012 Vincenzo Innocente 75

‘ Speed of operations

GHz

MHz

KHz

Hz

i

Floating Point Operations, cache access

Branches, function calls,

Memory access, virtual calls, malloc

malloc, /O, IPC

Services, database,

User
time

4 |System
time

Wait

22 October 2012

Vincenzo Innocente

76

‘ Cash-Karp Runge-Kutta Step

3. A STRATEGY FOR DEALING WITH NONSMOOTH BEHAVIOR

The Runge-Kutta formula derived in the previous section has the special property
that it contains imbedded solutions of all orders less than five. In addition, the
formula has been designed so that the first five ¢; values span the range [0, 1]
with reasonable uniformity, so that we have a very good chance of spotting bad
behavior in f if it occurs. Our aim is to derive an automatic strategy that allows
us to quit early, i.e., before all six function evaluations have been computed on
the current step, if we suspect trouble, and to accept a lower order solution if
appropriate.

We assume that we have computed a numerical solution y,-; at the step point
x,-1 and that for the current step, from x,_, to x, = x,-; + h, all six function
evaluations are computed so that solutions of all orders from 1 to 5 are available.
(We guarantee this situation for the first step with n = 1). We denote the
imbedded solution of order i at x, by y’, 1 < i < 5, and define

ERR(n, i) = [y — y@ 0] for je1, 2, 4. 6)
We exclude the case i = 3 for two reasons. First, following the approach of O_Q*Step/ pow(err/e pS,OZ)

Shampine et al. [15], we allow only a few different orders to be used, and we have
chosen to allow orders 2, 3, or 5. Second, ERR(n, 3) is of no use in predicting
when to quit early since all six ks are required before y* can be computed.

Suppose now that we were to accept the solution of order 5 at x,. We wish to
compute a suitable step length, h4, to be used in integrating from x, to x,,, using
a 5(4) formula. A typical step-choosing strategy would compute h, as

- h ERR(n, 4)
4= En, 4)° where E(n, 4) = —61/5— (N

Here ¢ is the local accuracyrequired (as specified by the user) and SF is a safety
factor often taken to bg 0.9.|Similarly, if we were to accept either the second- or
third-order solution at x,, the steplengths h,, h,, respectively, that would be
selected at the next step by our step-control algorithm would be

= FXh] .
7o SEX where E(n, i)=%, i€l 2. (8)

ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990.

77

‘ Summary of Exercises

s Count the number of “floats” between 100 and 101
= Change rounding (in patriot.cpp)

= Use Kahan summation, measure speed (in patriot.cpp)
o Compare with double precision
o Try to vectorize

= Improve performance of code in slide 29
= Improve performance of pt and phi “cut’

Estimate accuracy required in Energy Loss
o Try to use an approximate exp, log
o Measure speed
= solve quadratic equation in optimal way
o Ask help to wikipedia
o Measure speed and accuracy of various approach
o Vectorize
= Vectorize mandelbrot surface computation

s Compare SoA and AoS approach

22 October 2012 Vincenzo Innocente

