Efficient C++ Coding

From Pointers to Values

Francesco Giacomini — INFN-CNAF

ESC'14, 2013-10-21

Outline

An evolving language
- C++ Standard timeline
- C++11 feels like a new language

Why pointers?
- Typical uses
- |ssues with pointers

Smart pointers
- How they work
- How to use them

Move semantics

Error management

Putting it all together

F. Giacomini From pointers to values

Hands-on instructions

* gcc49env
- compile with -std=c++11 or -std=c++1y

* To check generated assembler with different compilers
http://gcc.godbolt.org

* To compile and run with different compilers
http://coliru.stacked-crooked.com/

* C++reference
http://en.cppreference.com/

F. Giacomini From pointers to values

http://gcc.godbolt.org/
http://coliru.stacked-crooked.com/
http://en.cppreference.com/

Outline

* An evolving language
- C++ Standard timeline

F. Giacomini From pointers to values

C++ Standard timeline

Invented in 1979 (“C with classes”), standardized in 1998

C++98 C++03 C++11 C++14 C++17
(major) (TC, bug fixes only) (major) (minor) (major)

L "

98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14

|

15 16 17 18
4

f L™
| o. L4
File System TS Jde®i,°
L I []
Lib Fundamentals TS + more (modules, ...)

Library TR (aka TS)

Performance TR

Networking TS=

= Tx Memory TS

Concepts TS=
Array Exts. TS=

= Concurrency TS

= Parallelism TS

F. Giacomini From pointers to values

Outline

* An evolving language

- C++11 feels like a new language

F. Giacomini From pointers to values

auto

In C++ 98 we are used to write:

std::map<std::string, int> m;
::map<std::string, int>::iterator iter = begin(m);

But, why should we tell the compiler what the type of it is? it
must know!

std::map<std::string, int> m;
auto iter = begin(m);

The auto type specifier signifies that the type of a variable
being declared shall be deduced from its initializer

Quto a; // error, no initializer
auto 1 = 0; // 1 has type int

auto d = 0.; // d has type double
auto f = 0.f; // f has type float

auto c = "hello"; // ¢ has type char const
Quto p = new auto(1); has type int*

F. Giacomini From pointers to values 7

auto

e autois never deduced to be a reference. If needed, &
must be added explicitly

auto g = d; // g has type double (g is a copy of d)
auto& h = e; // h has type double& (h and e are aliases)
auto k = h; // k has type double (not double&)

auto const& n = e; // n has type double const&
auto const 1 = h; // 1 has type int const

auto& m = li f(m has type int const&

* Trick to inspect the deduced type

template<typename T>
struct TD;

TD<decltype(m)>; the compiler error will show the type

F. Giacomini From pointers to values

Initializer lists

In C++98 initializing data
structures is often
burdensome

std: :vector<int> v;
v.push_back(1);

v.push_back(2);
v.push_back(3);
v.push_back(4);
v.push_back(5);

std: :map<int, std::string> ids;

ids.insert(std: :make_pair(23, "Andrea"));
ids.insert(std: :make_pair(49, "Camilla"));
ids.insert(std: :make_pair(96,

"Ugo"));
"Elsa"));

ids.insert(std::

In C++11 the operation is
much simpler

std::vector<int> const v = {1, 2, 3, 4, 5};

:string> const ids = {

std: :map<int, std:
{23, "Andrea"},
{49, "Camilla"},
{96, "Ugo"},
{72, "Elsa"}

FQvVor const-correctness
— thread-safety

F. Giacomini

From pointers to values 9

%

Uniform initialization syntax

e Use braces {} for all kinds of initializations
- initializer lists

// calls vector<int>::vector(initializer_list<int>)
idem

complex<double> c(1.0, 2.0); // calls complex<double>::complex(double, double);
complex<double> c {1.0, 2.0};

struct X {
int 1., j_;

F. Giacomini From pointers to values 10

Uniform initialization syntax

Additional advantage: prevention of narrowing

int c(1.5); // ok, but truncation, c == 1

int ¢ = 1.5; // idem

int c{1.5}; // error

int c{1.}; // error, floating - integer is always considered narrowing

char c(7); // ok, c == 7
char c(256); // ok, but c == 0@ (assuming a char has 8 bits)
char c{256}; the bit representation of 256 doesn't

i1t in a cha

Beware: initializer-list constructors are favored over other
constructors

vector<int> v{2}; // calls vector<int>::vector(initializer_list<int>)

// v.size() == 1, v[O] == 2

vector<int> v(2); // calls vector<int>::vector(size t)

F. Giacomini From pointers to values 11

range for

std::vector<Particle> v { .. };

for (std::vector<Particle>::const_iterator b = begin(v), e = end(v); b != e; ++b) {
print(*b);

i

for (std::vector<Particle>::iterator b = begin(v), e = end(v); b != e; ++b) {
update(*b);

std::vector<Particle> v { .. };
> for (Particle p: v) { // or, rather, Particle consté&
print(p);
}
C++11: S|mpl|f|ed Syntax Lo |[for (auto p: v) { // or, rather, auto const&
° 3 t ;
iterate on a sequence | PR
for (auto& p: v) {
update(p);
+
for

F. Giacomini From pointers to values 12

range for

* Arange can be:

- an array
e e.g.inta[10];
- aclass C (typically a container) such that C::begin() and
C::end() exist
* e.g.std::vector<int>, std::string
- aclass C such that begin(C) and end(C) exist
 Instead of an explicit for loop consider the use of an

algorithm (such as for_each or find _if), possibly with a
lambda function (see later)

for_each(begin(v), end(v), print);

for each(begin(v), end(v update);

F. Giacomini From pointers to values

13

What Is a function object?

* A function object (aka
functor) is an instance of a

class that has overloaded
operator()

* A function object can then
be used as if it were a
function

* A function object, being
an instance of a class, can
have state

struct Incrementer

{

int operator()(int 1) const
{ return ++i; }

g

Incrementer 1inc;
auto r = inc(3); // int r ==

class Add_n {
int n_;
public:
explicit Add_n(int n): n_(n) {}
int operator()(int i) const
{ return n_ + 1; }

s

Add_n s{5};

auto r = s(3); // int r == 8

F. Giacomini From pointers to values

14

L1011}

« Lamba functions

* A concise way to create simple anonymous function
objects

« Useful to pass actions/callbacks to algorithms, threads,
frameworks, ...

vector<int> v = {-2, -3, 4, 1};
sort(v.begin(), v.end()); // default sort, v == {-3, -2, 1, 4}

struct abs_compare

{

%
sort(v.begin(), v.end(), abs compare()); // C++98, v == {1, -2, -3, 4}

bool operator()(int 1, int r) const { return abs(l) < abs(r); }

sort(v.begin(), v.end(), [](int 1, int r) { return abs(l) < abs(r); }); // C++11

F. Giacomini From pointers to values

Lambda functions

* The evaluation of a lambda expression produces a
closure, which consists of:

- the code of the body of the lambda

- the environment in which the lambda is defined

* the variables that are referenced in the body need to be
captured and are stored in the generated function object

double min_salary = ..;
find_1if(
begin(employees),
end(employees),
[=](Employee const& e) { return e.salary() < min_salary; }

// capture nothing

// capture all by reference

// capture all by value
capture all b

F. Giacomini From pointers to values

16

Hands-on

 Fill a vector with random integers between 0 and N
- std::random
- std::generate n
* Sort the vector
- in ascending order
- in descending order
* Erase from the vector the multiples of 3 or 7
- std::remove _if
— vector:erase

F. Giacomini From pointers to values

17

Outline

Why pointers?
- Typical uses

F. Giacomini

From pointers to values

18

Deal with large objects

 Function parameter

void modify(LargeObject* o) { void modify(LargeObject& o) {
0->f(); 0.f();

} |

void use(LargeObject const* o) { void use(LargeObject const& o) {
o->f(); // f must be const o.f(); // f must be const

(unless the parameter is optional)

 Function return value

LargeObject* make_large object() {
return new LargeObject;

F. Giacomini From pointers to values 19

Dynamic polymorphism

 Dynamic polymorphism requires access through a pointer
(or reference)

struct Base {
virtual ~Base() = default;
virtual void f() const {}

)2

struct Derived: public Base {
~Derived() = default;
void f() const override {}

)2

Base* b = new Derived;
b->f(); // call Derived::f()
delete b; call Derived::~Derived

F. Giacomini From pointers to values 20

pimpl idiom

* Pointer to implementation

// in E.hh

class E {
class Impl;
Impl* impl_;

public:

EQ);

~E();

/] ..

3

 Compilation Firewall

// in E.cc

class E::Impl {
// actual data members

}

E::E(): impl_(new Impl) {
/] .
}

E::~E() {
delete impl_;

- achange in the private data members does not require a

recompilation of the clients of E

F. Giacomini

From pointers to values

21

Keep a link to an object

template<typename Containers>
class back _insert_iterator: public ..
{
Container* container;
public:
explicit back_insert_1iterator(Container& x): container(&x) { }
/] ..
e

back_insert_iterator iti(v);
auto 1t2 = it1; // copy constructor
it2 = 1t1; assignment

* Pointers are copyable, references are not
- the copy assignment wouldn't work with

Container& contatiner;
* The link is non-owning, it's just to “visit” the pointee
- thisis fine

F. Giacomini From pointers to values

22

Direct memory manipulation

* Implementation of high-level data structures (vector,
string, etc.)

class string

- owning-pointer {

char* data_;

size t size_;

size_t capacity_;

public:

string(..): data_(new char[..]) { .. }
~string() { delete [] data_; }

* Access to hardware registers

static const unsigned int address = Oxfffe0000;

reinterpret_cast<volatile uint8_ t>(address) = 42;

F. Giacomini From pointers to values

23

Interface to legacy code

* Typically, but not necessarily, C

DIR *opendir(const char *name);
int closedir(DIR *dirp);

auto dir = opendir(*“/home/giaco/my_file.txt”);
closedir(dir);

void *malloc(size t size);
void free(void *ptr);

auto p = static_cast<int*>(malloc(sizeof(int))); // void* - T* not implicit
free T* - void* implicit

« Often functions come in pairs
- acquire a resource
- release aresource

F. Giacomini From pointers to values

24

Arrays

* “Arrays decay to pointers at the slightest provocation”

void f(int* a);

int ai1[N]; // N is const, known at compile time
int* a2 = new int[n]; // n is known only at runtime

f(al); // calls f(int*)
f(a2); // calls f(int*)

delete ; don't forget the delete, don't forget the

* The size of the array is not encoded in the type

« Safer alternatives exist, notably std: :vector<> and
std::array<>

std::array<int, N> al1; // N is const, known at compile time
std: :vector<int> a2(n): n is known only at runtime

F. Giacomini From pointers to values 25

L aziness

* “I didn't think about it”, “I started from an existing piece

n ua

of code”, "I started from an example”

— poid X::f() { void X::f() {
ofstream* dump_ = new ofstream(dump_fname_); ofstream dump{dump_fname_ };
: —> :
dump_->write(..); dump.write(..);
dump_->close();

delete dump_;
dump_=0;

* note also the use of a data member for a variable that could
have been local to the function

— [TH1F *hfix = new TH1F("hfix","hfix title",nbins,xlow,xup);

(the guide doesn't even

mention the delete) TH1F hfix{"hfix","hfix title",nbins,xlow,xup};

F. Giacomini From pointers to values 26

What's wrong with pointers?

« Am | the owner of the pointee (the object pointed to)?
who is responsible for the delete?

char* p = strstr("giacomini”, "min");

- Should | free p?
- |Is p a null-terminated string? is it an array? of what size?
- The answers are not encoded in the type

F. Giacomini From pointers to values

27

What's wrong with pointers?

« Am | the owner of the pointee (the object pointed to)?
who is responsible for the delete?

* Run-time overhead (allocation, indirection,
fragmentation, etc.)

F. Giacomini From pointers to values

28

What's wrong with pointers?

 Am | the owner of the pointee (the object pointed to)?
who is responsible for the delete?

* Run-time overhead (allocation, indirection,
fragmentation, etc.)

* Explicit allocation and deallocation increases the risk of
memory leaks and double deletes

{

TH1F *hfix = new TH1F("hfix","hfix title",nbins,xlow,xup);
/] ..
} // ops, forgot to delete hfix

{

TH1F *hfix = new TH1F("hfix","hfix title",nbins,xlow,xup);

/] ..
delete hfix;

/] .
delete hfix; // ops, delete again

F. Giacomini From pointers to values 29

What's wrong with pointers?

 Am | the owner of the pointee (the object pointed to)?
who is responsible for the delete?

* Run-time overhead (allocation, indirection,
fragmentation, etc.)

* Explicit allocation and deallocation increases the risk of
memory leaks and double deletes

» Unsafe in presence of exceptions

{

TH1F *hfix = new TH1F("hfix","hfix title",nbins,xlow,xup);
// potentially-throwing code
delete hfix; // not executed in case an exception is thrown

F. Giacomini From pointers to values 30

What's wrong with pointers?

 Am | the owner of the pointee (the object pointed to)?
who is responsible for the delete?

* Run-time overhead (allocation, indirection,
fragmentation, etc.)

* Explicit allocation and deallocation increases the risk of
memory leaks and double deletes

» Unsafe in presence of exceptions

* In general what is said fFor memory is often applicable to
any resource

F. Giacomini From pointers to values

31

Outline

e Smart pointers
- How they work

F. Giacomini

From pointers to values

32

Smart pointers

* Objects that behave like pointers, but also manage the
lifetime of the pointee

* Leverage the RAIl idiom

- Resource Acquisition Is Initialization

« Resource (e.g. memory) is acquired in the constructor
e Resource (e.g. memory) is released in the destructor

* Importance of how the destructor is designed in C++

- deterministic: guaranteed execution at the end of the
scope

— order of execution opposite to order of construction

F. Giacomini From pointers to values

33

Smart pointers

template<typename Pointee> o
class SmartPointer Clear man.a.gement
{ responsibility
Pointee* p_; . .
public: * Likely no space nor runtime
SmartPointer(Pointee* p): p_(p) {} .
_SmartPointer() { delete p.; 3 overhead wrt to raw pointer
%
- depends on the type of smart
}“t main() pointer (see later)
SmartPointer<int> sp{new 1nt}; °® NO risk OF memory lea kS
/] .
} /7 automatic and guaranteed - see later for double delete's

// destruction of sp here,
which calls delete p;

* Exception safe

F. Giacomini From pointers to values 34

Smart pointers

* They behave like pointers thanks to the overloading of
operator* and operator->

template<typename Pointee>
class SmartPointer
{
using Pointer = Poilntee¥*;
using Reference = Pointee&;
Pointer p_;
public:
/] ..
Pointer operator->() { return p_; }
Reference operator*() { return *p_; }

i ¢

struct X {
void f();

i

SmartPointer<X> xp(new X);

F. Giacomini From pointers to values

Smart pointers and copyability

 What does it mean to copy a (smart) pointer?

int main()

{

SmartPointer<X> p1 {new X};

SmartPointer<X> p2 {p1}; /] copy construction
SmartPointer<X> p3 {..};

p3 = pl; // copy assignment

* Do pl1and p2/p3 manage the same pointee?
* After the copy, what about the previous pointee of p2/p3?

F. Giacomini From pointers to values 36

Two smart pointers in the standard

* unique_ptr<T>, unique ptr<T[]>
- exclusive ownership
- movable, non-copyable
- Nno space nor runtime overhead

* shared_ptr<T> (soon also shared ptr<T[]>)
- shared ownership
- movable and copyable

- some space and runtime overhead (but not for pointer
access)

F. Giacomini From pointers to values

37

unique_ ptr

* unique_ptr<T>, unique ptr<T[]>
- exclusive ownership

* no possibility of double delete
- movable, non-copyable

— NO space nor runtime overhead

struct X {

int k;

X(int j): k(3) {}
}s

auto use(std::unique_ptr<X> x) -> decltype(x->k) { return x->k; }

int main()

{

auto x = std::make_unique<X>(3); // new X{3}
std::cout << use(x) << '\n'; /| error, not copyable
std::cout << use(std::make unique<X>(3)) << '\n'; // ok, movable

F. Giacomini From pointers to values

38

shared_ptr

* shared_ptr<T> (soon also shared_ptr<T[]>)

- shared ownership (reference counted)
* the last one to be destroyed will delete — no double delete
- movable and copyable

- some space and runtime overhead (only for the management of
the reference count)

struct X {

int k;

X(int j): k(3) {}
}s

auto use(std::shared ptr<X> x) -> decltype(x->k) { return x->k; }

int main()
{
auto x = std::make shared<X>(3); // new X{3}
std::cout << use(x) << '\n'; // ok, copyable
std::cout << use(std::make shared<X>(3)) << '\n'; // ok, movable

I

F. Giacomini From pointers to values 39

Access to the raw pointer

* Access to the raw pointer may be needed
- e.g. to access a legacy API
e unique/shared ptr<>::get()
— returns a non-owning raw pointer
e unique_ptr<>:release()
— returns an owning raw pointer
- must be explicitly managed

F. Giacomini From pointers to values

40

Support for a custom deleter

* Smart pointers can be used to manage any resource
- the resource release is not necessarily done with delete

 Both unique/shared _ptr support a custom deleter

auto ul = std::unique_ptr<FILE, decltype(&std::fclose)>{
std::fopen("/tmp/afile", "r"),
&std::fclose // int fclose(FILE *fp);

I¥
auto u2 = std::unique_ptr<FILE, std::function<int(FILE*)>>{
std::fopen("/tmp/afile", "r"),
std: :fclose
I¥
auto u3 = std::unique_ptr<FILE, std::function<voild(FILE*)>>{
std: :fopen("/tmp/afile", "r"),
[J(FILE* f) { std::fclose(f); }
I¥
auto u4 = std::shared_ptr<FILE>{
std::fopen("/tmp/afile", "r"),
std::fclose

.
F]

Cannot use make unique and make_shared.

F. Giacomini From pointers to values 41

Outline

e Smart pointers

- How to use them

F. Giacomini

From pointers to values

42

Example: interface to C AP|

DIR *opendir(const char *name);
int closedir(DIR *dirp);

auto dir = std::shared_ptr<DIR>{opendir("/tmp"), closedir};

dirent entry;

for (auto* result = &entry; readdir_r(dir.get(), &entry, &result) == 0 && result;) {
std::cout << entry.d name << '\n';

 No owning pointers any more

 The only pointer leftis result, which is non-owning
- that's fine

F. Giacomini From pointers to values 43

Example: pimpl

// in E.hh // in E.cc
class E { class E::Impl {
class Impl; // actual data members
using ImplP = std::shared ptr<Impl>; }
ImplP impl_;
public: E::E(..): impl_{make_shared<Impl>(..)} {
EC..); /] .
/] ..

e Again, no raw pointers any more
* The default destructoris fine

F. Giacomini From pointers to values

44

Hands-on

* Consider the following class interface

class DirectoryReader

{
/] .

public:
DirectoryReader(std::string const& name);
~DirectoryReader();
std::vector<std::string> entries() const;
std::string name() const;

.
L]

1.Implement it without the pimplidiom
2. Implement it with the pimplidiom

1. Use std::shared ptr<> for the pimpl

2. Use std::unique_ptr<> for the pimpl
3.Implement the copy constructor and the copy assigment

F. Giacomini From pointers to values

Outline

Move semantics

F. Giacomini

From pointers to values

46

Returning a value from a function

* Returning a large value from a function is often perceived
as “slow”

- return “by pointer”

std::unique_ptr<LargeObject> make_large object() {
return std::make_unique<LargeObject>{};

}

auto lo = make_large object();
use the object, via a

- or, use “out” parameters

void make_large object(LargeObject& o) {
o = LargeObject{}; // requires copy assignable

}

LargeObject lo; /| requires default constructible
make large_object(lo);
lo. .. use the object

F. Giacomini

From pointers to values

47

Returning a value from a function

« Wouldn'tit be better to write

LargeObject make_large object()
{

}

return LargeObject{};

auto lo = make_large object(); // is there a copy here?
lo. .. use the object

?

In Fact the compiler is allowed to elide the copy of the
returned value into the final destination

- (N)RVO - (Named) Return Value Optimization

If (N)RVO is not applied, C++11 mandates a move, if
available

 |If the move is not available, copy; this may be really
expensive

F. Giacomini From pointers to values 48

Return Value Optimization

« Unnamed * Named

Type make_urvo(..)

{
if (..) {
return Type(..);

}
return Type (..);

}

Type t = make urvo(..);

* Try not to mix URVO e NRVO
- but it may still be ok if Type is
cheaply movable
* Don't
return std::move(result);

Type make_nrvo(..)

{
Type result;

if (..) {

return result;

}

return result;

}

Type t = make nrvo(..

Type make _without_rvo(..)

{
Type result;

if (..) {
return Type(..);

}

return result;

}

Type t = make without rvo

F. Giacomini From pointers to values 49

Copy vsS move

String s1("...");
String s2(s1);

String get_string();
String s3(get strin

* In (1) the deep copy is necessary, because s1 still exists

after the copy

* In (2) the deep copy is a waste, because the temporary
created by get_string() is immediately destroyed after

the construction of s3

 Named objects are called lvalues
- and you can take their address

« Temporary objects are called rvalues

- and you can't take their address

F. Giacomini From pointers to values

50

Copy vs move

String sl("...");l

F. Giacomini

From pointers to values

51

Copy vs move

class String {

char* s_; // null-terminated

public:

I

String(char const* s) {
size_t size = strlen(s) + 1;
s_ = new char[size];
memcpy(s_, s, size);

}
~String() { delete [] s_; }

1o

size_t size() const { return strlen(s_); }

String s1("...");

\O

F. Giacomini

From pointers to values

52

Copy vsS move

class String {

char* s_; // null-terminated

public:

String(char const* s) {
size_t size = strlen(s) + 1;
s_ = new char[size];
memcpy(s_, s, size);

}

~String() { delete [] s_; }

[/ copy

String(String const& other) {
size_t size = strlen(other.s_) + 1;
s_ = new char[size];
memcpy(s_, other.s_, size);

}

size_t size() const { return strlen(s_); }

I

s

S2

String s1("...");
String s2(s1);
>
VARRVANRY,
>

F. Giacomini From pointers to values

53

Copy vs move

class String {

char* s_; // null-terminated

public:

String(char const* s) {
size_t size = strlen(s) + 1;
s_ = new char[size];
memcpy(s_, s, size);

}

~String() { delete [] s_; }

/] copy

String(String const& other) {
size_t size = strlen(other.s_) + 1;
s_ = new char[size];
memcpy(s_, other.s_, size);

}

size_t size() const { return strlen(s_); }

String s1("...");
String s2(s1);

s

s e >

S2

String s3(get_string());|

F. Giacomini

From pointers to values

54

Copy vs move

class String {

char* s_; // null-terminated

public:

String(char const* s) {
size_t size = strlen(s) + 1;
s_ = new char[size];
memcpy(s_, s, size);

}

~String() { delete [] s_; }

/] copy

String(String const& other) {
size_t size = strlen(other.s_) + 1;
s_ = new char[size];
memcpy(s_, other.s_, size);

}

size_t size() const { return strlen(s_); }

String s1("...");
String s2(s1);

s

s e >

S2

String s3(get_string());|

tmp

s e >

F. Giacomini

From pointers to values

55

Copy vsS move

class String {

char* s_; // null-terminated String s1("...");
public: String s2(s1);
String(char const* s) {

size t size = strlen(s) + 1; s1 >

s_ = new char[size]; :::}7

memcpy(s_, s, size); T
1 vV Vv VvV
~String() { delete [] s_; } S2 s_ }* »
/] copy

String(String const& other) {
size_t size = strlen(other.s_) + 1;

s_ = new char[size]; String s3(get_string());
memcpy(s_, other.s_, size);
}

/] move

String(??? tmp): s_(tmp.s_) { Emp s_ }“44444ﬂ7
}

size_t size() const { return strlen(s_); } 3 E::}/

F. Giacomini From pointers to values

Copy vsS move

class String {

char* s_; // null-terminated

public:

String(char const* s) {
size_t size = strlen(s) + 1;
s_ = new char[size];
memcpy(s_, s, size);

}

~String() { delete [] s_; }

/] copy

String(String const& other) {
size_t size = strlen(other.s_) + 1;
s_ = new char[size];
memcpy(s_, other.s_, size);

}

/] move

String(??? tmp): s_(tmp.s_) {
tmp.s_ = nullptr;

}

size_t size() const { return strlen(s_); }

String s1("...");
String s2(s1);
s1 s_ } >
VARRVANRY,
S2 s } >

tmp

w el

s3

F. Giacomini From pointers to values

57

Copy vsS move

class String {

char* s_; // null-terminated

public:

String(char const* s) {
size_t size = strlen(s) + 1;
s_ = new char[size];
memcpy(s_, s, size);

}

~String() { delete [] s_; }

/] copy

String(String const& other) {
size_t size = strlen(other.s_) + 1;
s_ = new char[size];
memcpy(s_, other.s_, size);

}

// move

String(??? tmp): s_(tmp.s_) {
tmp.s_ = nullptr;

}

size_t size() const { return strlen(s_); }

String s1("...");
String s2(s1);
s1 s_ } >
VARRVANRY,
S2 s } >

tmp

w el

s3

F. Giacomini From pointers to values

58

rvalue references

* In C++98 there is no way to overload functions specifically
for rvalue (i.e. temporary) arguments

 C++11 introduces rvalue references (T&&)

class String

{

// move constructor
String(String&& tmp)
: s _(tmp.s_)
{
tmp.s_ = nullptr;

}

values can be explicitly transformed into rvalues

void foo(String&&);
void foo(String const&);

foo(s); // calls foo(String consté&)
foo(std::move(s)); // calls foo(String&&); I don't care about s anymor
: undefined

F. Giacomini From pointers to values 59

Special functions

* Aclassin C++11 has now 5 special member functions
- plus the default constructor

class C

{
T(T const&); // copy constructor
T& operator=(T const&); // copy assignment
T(T&&); // move constructor, new in C++11
T& operator=(T&&); // move assignment, new in C++11
~T(); // destructor

 The compiler can generate them automatically under
certain constraints

class C // non-copyable, movable
* Rule of thumb: if you need to ¢
. T(T const&) = delete;
declare any one of these functions, T& operator=(T const8) = delete;
declare them all T(T8&) = default;
T& operator=(T&&) = default;
- consider = delete, = default ~TO) = default;

F. Giacomini From pointers to values 60

= delete

Prevent the compiler from implicitly generating functions
not explicitly declared

// a non-copyable class in C++98 // a non-copyable class in C++11
struct C struct C
{ e { copy constructor and copy.assignment

O G e e o oo e
private: C(C const&) = delete;

C(C const&); C& operator=(C const&) = delete;

C& operator=(C const&); ‘**)’};
i

C c;

C c; C ci1(c); // error (at compile time)
C ci1(c); // error (at compile or link time) C c2; c2 = c; error (at compile time

C c2; c2 =c; // error (at compile or link time)

void f(double);

f(1.); // ok
The mechanism is more general: [[(1); // ok, calls f passing double(1)
any function can be deleted void f(int) = delete;

f(1); // error

F. Giacomini From pointers to values 61

= default

* Explicitly tell the compiler that the default
implementation of a special member function is ok

- To force the generation of the function

- As a documentation feature

struct C struct C
tell it with t
{) o — { |muitwnhcode|
// the implicitly-generated default constructor, C() = default;
// copy constructor and copy assignment operator C(C const&) = default;
// are ok C& operator=(C const&) = default;
I¥ ¥
C c; C c;
C ci1(c);
C c2; c2 = c;

Remember that the default constructor is generated only if
no other constructor is present

F. Giacomini

From pointers to values 62

Outline

Error management

F. Giacomini

From pointers to values

63

Mechanisms for error management

The sooner errors are identified, the better

static_assert
- declares a logical assertion that by design must be valid at compile time

assert
- declares a logical assertion that by design must be valid at run time

Exceptions

- to express an error condition happening at run time, typically related to
lack of a resource

Return codes
- C-style
- can be ignored (but they should not!)

F. Giacomini From pointers to values 64

static assert

* Check that a certain constant boolean expression is
satisfied during compilation

- if not, fail compilation with the specified message

class X {..};

template<typename T>
class Y {
static_assert(
std::1s_default _constructible<T>::value,
"T must be default constructible"
)
};

Y<X> vy: this would fail i1f X were not default constructible

« A static assertion declaration can appear practically
anywhere in the code

 There is no effect, hence no overhead, at runtime

F. Giacomini From pointers to values 65

assert

* Check that a certain boolean expression is satisfied
during runtime

- if not satisfied, it means that the state of the program is
corrupted — better to abort as soon as possible

std::vector<int> make_v_with_at least 3 items(int n, int v)

{

assert(n >= 3);
return std::vector<int>(n, v);

}

int main()

{
auto vl = make v_with_at least 3 items(4, 1); // ok
auto v2 = make_v_with_at_least_3_items(2, 1); // abort

* Useful For debugging
- can be disabled for performance reasons (-DNDEBUG)
- avoid side effects in assert's

F. Giacomini From pointers to values

66

Exceptions

* Mechanism to report errors out of a function, stopping its

execution
« Cannot be ignored

* Help separating application logic from error management

* An exception is raised using throw and intercepted with

catch

struct E {..};
struct S {..};

S make s() {
auto r = acquire _resources_to build s();
if (!success(r)) {
E e;
throw e; // or directly throw E{};
}
S result{r}; // not executed in case an
return result; // exception is thrown

void g() {
try {
/] ..
auto s = make s();
()
/] ..
} catch (E& e) {

// manage e

}

F. Giacomini From pointers to values

67

Exceptions

* An exception is
propagated up the stack
of function calls until a
suitable catch clause is
found

- |If no suitable catch
clause is found the
program is terminate()'d

e During stack unwinding all
object destructors are
called

void f() {
// this part is executed
throw E();
// this part is not executed

}

void g() {
T t; // this part is executed

f();

// this part is not executed,
// but ~T() is called

}

void h() {

try {
// this part is executed

a();

// this part is not executed
} catch (E& e) { // by reference
// use e

}

F. Giacomini From pointers to values 68

Exception specification

 C++98 allowed the possibility to list the exceptions that a
function could throw

void f() throw(std::runtime _exception, my exceetiongél
« Dynamic exception specifications are deprecated in C++11

- still supported, but can be removed from a future revision of the
standard

- they were practically useless, if not harmful, anyway
* A noexcept specification has been introduced void f() noexcepty]

* noexcept tells the compiler that a function
- doesn't throw, or
- is not able to manage possible exceptions — better to terminate

* noexcept can depend on a constant expression, to make the
function conditionally non-throwing

F. Giacomini From pointers to values 69

Exception safety

* Different levels of safety guarantees (for member
functions):

— Basic - if an exception is thrown, the object’s invariant is
still valid and no resource is leaked

* the object is usable (at least destroyable) although the
contents may be unspecified

» every class should provide at least the basic guarantee

- Strong - if an exception is thrown, the object's state is as it
was before the function was called

- No-throw - no exception leaves the function
* the function should be marked as noexcept

F. Giacomini From pointers to values 70

Destructor and noexcept

* In C++11 the destructor is by default noexcept

- j.e.releasing a resource cannot fail

- technically an incompatibility wrt to C++98

* The exception is caught in C++98 (“exception” is printed)

struct X {
~X() { throw 1; }
}s
int main()
{
try {
X X;
} catch (...) {
std::cout << "exception\n";
}

 The program is terminate'd in C++11

F. Giacomini

From pointers to values

71

Outline

Putting it all together

F. Giacomini

From pointers to values

72

Passing parameters to a function

* By (smart) *, by &, by &&, by value?

* C++98's default advice still makes sense
— pass primitive and small types by value
— pass large types by (const)&

* Don't pass by smart pointer, unless the smart pointer
itself is needed in the callee

void use_pointer(shared ptr<Type> p) {
p.reset(..);

}

void use_type(Type& t) {
t. ..
i

shared ptr<Type> p = std::make_shared<Type>(..);
use_pointer(p);
use type(*p);

F. Giacomini From pointers to values

73

Passing parameters to a function

C++11 allows to add a function overload for temporaries

- useful if there are significant opportunities of optimization

void foo(Type const&) { .. }
void foo(Type&&) { .. }

Type t{ .. };

foo(t);

/] calls foo(Type const&)
; calls foo(Type&&

 For more than one parameter it becomes less desirable
— consider pass by value, if move is cheap

- especially useful for sinks, e.g. constructors
struct {
T1 t1_; T2 t2_;
S(T1 t1, T2 t2) : t1_(std::move(tl)), t2 (std::move(t2)) { .. }

¢

T1 t1; T2 t2;
S s(t1, make t2()),
S s(make t1

F. Giacomini From pointers to values 74

The importance of being noexcept

 Consider

class String

{
/] ..
String(String&& tmp) // noexcept
{ ..}

}s

String s { .. };
std::vector<String> v(s, 10000000);

v.Eush backSsg; f(causes re-allocation of the whole vector

« How much does noexcept affect the performance?

F. Giacomini From pointers to values

The importance of being noexcept

 Consider

class String

{
/] ..
String(String&& tmp) // noexcept
{ ..}

}s

String s { .. };
std::vector<String> v(s, 10000000);

v.Eush backSsz; f(causes re-allocation of the whole vector

« How much does noexcept affect the performance?
- without noexcept: 1077 ms
- with noexcept: 66 Ms

 |If the move can throw, vector will copy, not move, data

F. Giacomini From pointers to values

Move and noexcept

* If move operations are noexcept the compiler can apply
significant optimizations

- aim atit
* T::operator=(T&&) is typically easy to make noexcept

- if swap is noexcept (which it should be), just swap all data
members

 T& T::T(T&& tmp) may be more difficult
— start with one object (tmp), end up with two (*this and tmp)

— probably T::T() must be noexcept as well
« which is not obvious if a resource has to be acquired

F. Giacomini From pointers to values 77

Error management in practice

e static_assert

* Require at compile time that a statically-determined
characteristic of the program holds

#include <type_ traits>

class String

{

/] ..
String(String&& tmp) noexcept

{ ..}
i

static_assert(
std::is_nothrow_move constructible<String>::value,
"String must be nothrow move constructible"

-

 String is nothrow move constructible

F. Giacomini From pointers to values

Error management in practice

assert

The class invariant must be true at the beginning of a
member function

* A pre-condition must be true at the beginning of a function

class String

{
size_t size() const {
assert(s_ !'= nullptr); // && s_ is null-terminated (invariant)
return strlen(s_);
}
char operator[](size_t 1) const {
assert(s_ !'= nullptr); // && s_ is null-terminated (invariant)

assert(0 <= 1 && 1 < size()); // 1 is within the valid range (pre-condition)
return s_[1];

}

.
F]

* Conditions can be expensive or even impossible to check

- -DNDEBUG

F. Giacomini From pointers to values

79

Error management in practice

e assert

e Check that a certain logical condition must be true during
the execution

std::vector<X> v { .. };

X& search_in_v(std::string const& name) {
auto it = std::find_1if(

begin(v),

end(v),

[J(X const& x) { return x.name() == name; }
)
assert(it != end(v));

return *it;

(Assuming that by design an X with that name must be there)

F. Giacomini From pointers to values 80

Error management in practice

* Exception

* Failure to establish the invariant in the constructor

class String {
char* s _; // s_ '= nullptr & s_ is null-terminated (invariant)
public:
String(char const* s) {
assert(s !'= nullptr); // & & s is null-terminated (pre-condition)
size_t size = strlen(s) + 1;
s_ = new char[size];
memcpy(s_, s, size);

/] -

i 2

« At the end of a successful execution of the constructor

- s_lisnotnullptr, otherwise new would have thrown bad_alloc

— If the pre-condition is true, memcpy copies alsoa '\0"' at the end of s_
* bad_alloc means failure to establish the invariant

F. Giacomini From pointers to values 81

Strong exception safety

class String {
char* s_;
public:
String(String const& other) {
size_t size = strlen(other.s_) + 1;
s_ = new char[size];
memcpy(s_, other.s_, size);

}
String& operator=(String const& other)

{
String tmp(other);
std::swap(s_, tmp.s_);
return *this;

 How to implement the copy

assignment, guaranteeing strong
exception safety

- if the operation fails the object
state remains unaltered

 Copy & swap

- acquire the needed resources
creating a temporary copy of the
source

e can throw

- swap the resources of the
temporary copy with the
resources of *this

- the destructor of the temporary
copy releases the old resources
of *this

— swap iS noexcept

F. Giacomini From pointers to values 82

De-virtualization

 Virtual functions have a cost
- indirect call through a pointer kept in the virtual table

* |f the compiler can determine the exact dynamic type of
an object, it can call the function directly

- and possibly inline it
struct B {
virtual int fun() { return 31; }
i
struct D: B {
int fun() { return 42; }

i
struct E: D
. { here the compiler can easily see that b is actually a D
}s and call directly, and inline, D::fun()
int main()
{

B* b_= nrew D;
b->fun()}

F. Giacomini From pointers to values

83

De-virtualization

 The compiler however may not see enough code or not
be able to prove what the dynamic type of an object is

 The compiler can be helped telling it either
- that a virtual fFunction cannot be overridden any more, or
- that an entire class cannot be derived from

here the compiler can prove that d->fun() cannot be overridden
and statically determine to call, and inline, D1::fun()

struct B { |
virtual int f() { return 31; } [herethe compiler can prove that d->fun() cannot be overridden
}s and statically determine to call, and inline, B::fun()

struct D1: B {

int f() final override { return 427 }
}s
struct D2 final: B {
I¥

int f(D1* d) { return d->f(); 1
int f(D2* d) { return(d->f()}¥}

F. Giacomini From pointers to values

De-virtualization

* Consider static polymorphism

- no virtual Functions = no need to de-virtualize

struct B {

virtual int f() = 0;
};
struct D1: B {

int f() override { return 42; }
}s
struct D2: B {
int f() { return 31; }

}s
int f(B* b) { return b->f(); }

f(new D1);
f(new D2);

struct D1 {

int f() { return 42; }
%5
struct D2 {

int f() { return 31; }

I

template<typename B>
int f(B* b) { return b->f(); }

f(new D1); // calls f<Di1>(D1* b)

F. Giacomini

From pointers to values 85

Memory model

* Finally C++ has a memory model that contemplates a
multi-threaded execution of a program

* Athread is asingle flow of control within a program

- Every thread can potentially access every object and
function in the program

- The interleaving of each thread's instructions is undefined

Thread 1 Thread 2
y =1; X =1;
ri = x; r2 =1y;
Execution 1 Execution 2 Execution 3

y =1; x =13 y =1;
ri = x; r2 =y; x =1;
x =1; y =1; r2 =vy;
r2 =vy; ri = x; ri = x;
[/ r1 =0, r2 ==1 [/ r1l ==1, r2 == [/ r1l ==1, r2 ==

F. Giacomini From pointers to values

Memory model

(’y = 1; ax = 1;

C++ guarantees that two threads can update and access
separate memory locations without interfering with each
other

For all other situations updates and accesses have to be
properly synchronized

- atomics, locks, memory fences

If updates and accesses to the same location by multiple
threads are not properly synchronized, there is a data race

- undefined behavior

Data races can be made visible by transformations applied by
the compiler or by the processor for performance reasons

Thread 1 Thread 2 Thread 1 Thread 2

‘ > ri = x; r2=y;
»rl = x; r2 =y; y = 1; x =1;
[/ rl ==0 [/ r2 == 0

F. Giacomini From pointers to values 87

Take-away messages

Strive not to use pointers
- if you have to, manage memory with smart pointers

When designing a class define its invariant, pre-
conditions and post-conditions

- check invariants and pre-conditions with (static) asserts

- use exceptions to communicate failure to (re-)establish
invariants or to satisfy post-conditions

Help the compiler to enable the return value optimization
Strive to make at least the move operations noexcept
Make your code const-correct

Consider static polymorphism instead of dynamic
polymorphism

F. Giacomini From pointers to values 88

Further reading

News, Status & Discussion about Standard C+
http://www.isocpp.org

The C++ Standards Committee
http://www.open-std.org/jtc1/sc22/wg21/
C++ Now Conference

http://cppnow.org/
The C++ Conference

http://cppcon.org/
boost C++ libraries

http://www.boost.org/

F. Giacomini From pointers to values

89

http://www.isocpp.org/
http://www.open-std.org/jtc1/sc22/wg21/
http://cppnow.org/
http://cppcon.org/
http://www.boost.org/

Hands-on

 Complete the String implementation so that:
- it is default constructible
— it is constructible from a C string
- itis movable and copyable
- it provides a size() member Function
- it provides access to single characters with operator(]
- it provides a c_str() member function
- it provides support for iterators
* Put the noexcept declaration where applicable
 Be generous with static_assert and assert
* Experiment with alternative internal representations

F. Giacomini From pointers to values

90

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

