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Disclaimer intel)
READ THIS ... its very important

e The views expressed in this talk are those of the
speakers and not their employer.

e This is an academic style talk and does not address
details of any particular Intel product. You will learn
nothing about Intel products from this presentation.

e This was a team effort, but if we say anything really
stupid, it's our fault ... don’t blame our collaborators.

Slides marked with this symbol were produced-with Kurt
Keutzer and his team for CS194 ... A UC Berkeley course
on Architecting parallel applications with Design Patterns.

Third party names are the property of their owners.



INTRODUCTION TO MPI

3/119



® Program consists of a collection of named processes.
= Number of processes almost always fixed at program startup time
* Local address space per node -- NO physically shared memory.
= Logically shared data is partitioned over local processes.
" Processes communicate through explicit communication events.
= Coordination is implicit in every communication event.
= MPI (Message Passing Interface) is the most commonly used SW

Private
memory

receive Pn,s S; 11

send P1,s




MPI Type contiguous MPI Recv 1nit

MPI Bcast
MDT (-« ﬁw_Size
LIEE MPI: An API for Writing Clustered Applications
DRLD
MPT * A library of routines to coordinate the
h execution of multiple processes. npare
- * Provides point to point and collective 0
communication in Fortran, C and C++
T * Unifies last 30+ years of cluster I
- computing and MPP practice -
MPT | ~k)

MPI Sendrecv replace MPI Ssend MPI_Waitall

MPI Alltoallv MPI Send



An MPI program at runtime

" Typically, when you run an MPI program, multiple processes all running
the same program are launched ... working on their own block of data.




An MPI program at runtime

" Typically, when you run an MPI program, multiple processes all running
the same program are launched ... working on their own block of data.

_—

T 1
\ 7 A 4 / V. 4

The collection of processes involved in a computation
Is called “a process group”




An MPI program at runtime

" Typically, when you run an MPI program, multiple processes all running

the same program aW. working o block of data.
A\
N\ .

1
\ 7/ A /7 / &4V |

You can dynamically split a process group into multiple subgroups to
manage how processes are mapped onto different tasks

MPI functions work within a “context” ... events in different contexts ...
even if they share a process group ... cannot interfere with each other. | 8




#include <stdio.h>

#include <mpi.h>

int main (int argc, char **argv){
int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm _size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

rank, size );

MPI_Finalize();
return 9;




Initializing and finalizing MPI

#include <stdio.h>
#include <mpi.h>

int main (int argc, char **argv){

int rank, size;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

MPI_Finalize();

int MPI Init (int* argc, char* argv[])
= |nitializes the MPI library ... called before any
other MPI functions.

= agrc and argv are the command line args passed
from main()

rank, size );

return Ogvg\\\\\

int MPI Finalize (void)

® Frees memory allocated by the MPI library ... close
every MPI program with a call to MPI_Finalize

10




J \ How many processes are involve

int MPI Comm size (MPI Comm comm, int* size)
= MPI_ Comm, an opaque data type called a communicator. Default

context: MPI_COMM_WORLD (all processes)

= MPI Comm_size returns the number of processes in the process
#incl group associated with the communicator

#include <mpi.h>

int rank, size;
MPI Init (&argc, &argv);

MPI_Finalize();
return O;

int main (int argc, char **argv){

MPI_Comm_rank (MPI_COMM_WORLD, &rank):;
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

rank, size );

Communicators consist of
two parts, a context and a
process group.

The communicator lets me
control how groups of
messages interact.

The communicator lets me
write modular SW ... i.e. |
can give a library module its
own communicator and
know that it's messages
can'’t collide with messages
originating from outside the
module

11



ICN Process am

int MPI Comm rank (MPI Comm comm, int* rank)

= MPI_ Comm, an opaque data type, a communicator. Default context:
MPI_COMM_WORLD (all processes)

= MPI Comm rank An integer ranging from O to “(num of procs)-1~

#incl .

#include <mpi.h> /

int main (int argc, char **argv){

int rank, size; Note that other than init()
MPI_Init (&argc, &argv); and finalize(), every MPI

MPI_Comm_rank (MPI_COMM_WORLD, &rank); function has a
MPI_Comm_size (MPI_COMM_WORLD, &size);

printf( "Hello from process %d of %d\n", This makes sense .. You
need a context and group of

processes that the MPI
MPI Finalize(); functions impact ... and
return 0; those come from the
communicator.

rank, size );

12



Running the program

® On a4 node cluster, I'd run this
program (hello) as:

> mpiexec —n 4 hello

® What would this program would output?

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){
int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",
rank, size );
MPI_Finalize();
return O;

13




Exercise 1: Hello world

" Goal

= To confirm that you can run a program on our cluster
® Program

= \Write a program that prints “hello world” to the screen.

» Modify it to run as an MPI program ... with each process in the process group
printing “hello world” and its rank

#include <mpi.h>

int size, rank, argc; char **argv;
MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Finalize();

To run the executable hello on 2 nodes of the cluster, type:
> mpiexec —n 4 a.out

If you need to start the MPI deamon (mpd) go to your home directory and type:
> touch .mpd.conf
> chmod 600 .mpd.conf 14




Running the program

® On a4 node cluster, I'd run this
program (hello) as:

> mpiexec —n 4 hello
Hello from process 1 of 4

#include <stdio.h> Hello from process 2 of 4
#include <mpi.h> Hello from process 0 of 4
int main (int argc, char **a Hello from process 3 of 4

int rank, size;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

MPI_Comm_size (MPI_COMM_WORLD, &size);

printf( "Hello from process %d of %d\n",
rank, size );

MPI_Finalize();

return O;

15




MPI FOR BULK
SYNCHRONOUS PROGRAMS
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| \\\ Sendin g and Receivin g Data

int MPI Send (void* buf, int
MPI Datatype datatype,
int tag, MPI Comm comm)

int MPI Recv (void* buf, int
MPI Datatype datatype,
int tag, MPI Comm comm,
MPI Status* status)

count,
int dest,

count,
int source,

" MPI_Send performs a blocking send of the specified data (“count”

copies of type “datatype,” stored in “buf”’) to the specified destination
(rank “dest” within communicator “comm?), with message ID “tag”

" MPI_ Recv performs a blocking receive of specified data from specified

source whose parameters match the send; information about transfer is
stored in “status”

By “blocking” we mean the functions return as soon as the buffer, “buf”’, can be

safely used.

17



MPI Data Types for C

MPI Data Type C Data Type
MPI BYTE

MPI CHAR signed char

MPI DOUBLE double

MPI FLOAT float

MPI INT int

MPI LONG long

MPI LONG DOUBLE long double

MPI PACKED

MPI SHORT short

MPI UNSIGNED SHORT

unsigned short

MPI UNSIGNED

unsigned int

MPI UNSIGNED LONG

unsigned long

MPI UNSIGNED CHAR

unsigned char

MPI provides
predefined
data types

that must be

specified when
passing
messages.

18



® The data in a message to send or receive is described by a triple:
= (address, count, datatype)
® An MPI datatype is defined as:
» Predefined, simple data type from the language (e.g., MPI_DOUBLE)
= Complex data types (contiguous blocks or even custom types.
® E.g. ... Aparticle’s state is defined by its 3 coordinates and 3 velocities
MPI_Datatype PART;
MPI_Type_ contiguous( 6, MPlI_DOUBLE, &PART );
MPI_Type_commit( &PART );
® You can use this data type in MPI functions, for example, to send data for a
single particle:
MPIl_Send (buff 1, PART, Dest, tag, MPI_COMM_WORLD);
/ N

address Datatype

count

19



® The receiving process identifies messages with the double :
= (source, tag)
® Where:

= Source is the rank of the sending process

» Tag is a user-defined integer to help the receiver keep track of different
messages from a single source

MPI_Recv (buff, 1, PART, Src, tag, MPI_COMM_WORLD, &status);

Sou rce/ \tag

® Can relax tag checking by specifying MPl_ANY_TAG as the tag in a receive.
® Can relax source checking by specifying MPl_ANY_SOURCE
MPI_Recv (buff, 1, PART, MPI_ANY_SOURCE, MPI_ANY_TAG,
MPI_COMM_WORLD, &status);

" This is a useful way to insert race conditions into an MPI program
20



rograms

® Many MPI applications have few (if any) sends and receives. They

use the following very common pattern:

= Use the Single Program Multiple Data
pattern
= Each process maintains a local view of
the global data
= A problem broken down into phases each
of which is composed of two subphases:
« Compute on local view of data

« Communicate to update global view
on all processes (collective
communication).

= Continue phases until complete

Time

3%

Collective comm.

:

Collective comm.

This is a subset or the SPMD pattern sometimes
referred to as the Bulk Synchronous pattern.

I:)O I:)1 I:)2 P3
Processes

21



MPI Collective Routines

®  Collective communications: called by all processes in the group to
create a global result and share with all participating processes.

= Allgather, Allgatherv, Allreduce, Alltoall,

Alltoallv, Bcast, Gather, Gatherv, Reduce,

Reduce scatter, Scan, Scatter, Scatterv
" Notes:

* Allreduce, Reduce, Reduce scatter, and Scan use the
same set of built-in or user-defined combiner functions.

= Routines with the “A11” prefix deliver results to all participating
processes

= Routines with the “v” suffix allow chunks to have different sizes
®  Global synchronization is available in MPI
" MPI Barrier( comm )

® Blocks until all processes in the group of the communicator comm call it.

22



Take a value from PO
and give a copy to
P1, P2 and P3

Scatter an array on
PO to P1, P2, and P3

Gather values from
P1, P2, and P3 into
an array on PO

PO
Pl

P2
P3

Broadcast

Scatter

v

Gather

v

A

Al L
Al L
Al ||

Al
B | |
Cl | |
D | |
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Take a chunk from each
P and gather into a single
array on each P

Take arrays on each P
and spread them out to
arrays on each P

PO
Pl

P3

PO

P2
P3

Al L1
B | |

Cl | |
D | |

AOATIAZAS
B0/B11B2B3
coclic2c3
DOD1D2D3

Allgather

Alltoall

A BICD
A BICID
A BICID
ABICID

A0B0ICOIDO
ALBIICIDI
A2B2/C2|D2
A31B3/C3D3

24



ective Computation

PO
Z?]l;ecvaluc_es on each.P . Reduce
ombine them with
an op (such as add) into P2
a single value on one P. P3
Take values on each P PO
and combine them witha P15}
scan operation and P Scan
spread the scan array out
among all P. P3 m

25



#include <mpi.h> MPI_COMM_WORLD

int main(int argc, char *argv[]) { EE@II
int nprocs, myrank, msg[4] = {0,0,0,0}; E-

MPI Init(&argc, &argv);
MPI Comm size (MPI_COMM WORLD, &nprocs);
MPI Comm rank (MPI_COMM WORLD, &myrank);

if (myrank == 0) msg[0] = 1;
else msg[0] 0;

MPI Bcast(msg, 4, MPI INT, 0, MPI_COMM WORLD) ;

MPI Finalize();




Reduction

int MPI Reduce
vold* recvbuf,

(void* sendbuf,
int count,

MPI Datatype datatype, MPI Op op,
int root, MPI Comm comm)

®* MPI_Reduce performs specified reduction operation on specified data

from all processes in communicator, places result in process “root” only.

®* MPI_Allreduce places result in all processes (avoid unless necessary)

Operation Function Operation Function

MPI SUM Summation MPI BAND Bitwise AND

MPI PROD Product MPI LOR Logical OR
MPI_MIN Minimum value MPI_BOR Bitwise OR
MPI_MINLOC | Minimum value and location MPI LXOR Logical exclusive OR
MPI_MAX Maximum value MPI BXOR Bitwise exclusive OR

MPI MAXLOC

Maximum value and location

MPI LAND

Logical AND

User-defined

It is possible to define new
reduction operations

27



#include <mpi.h>

int main(int argc, char* argv[]) {
int msg, sum, nprocs, myrank;

IdN

MPI Init(&argc, &argv);
MPI Comm size (MPI_COMM WORLD, &nprocs);
MPI Comm rank (MPI _COMM WORLD, &myrank);

crojaletce. |

sum 0;
msg = myrank;

MPI Reduce (&msg, &sum, 1, MPI INT, MPI SUM, O,
MPI_COMM WORLD) ;

MPI Finalize();



Exercise 2: Pi Program

" Goal
= To write a simple Bulk Synchronous, SPMD program
® Program

»  Start with the provided “pi program” and using an MPI reduction, write a
parallel version of the program.

int MPI Reduce (void* sendbuf, void* recvbuf, int count,
MPI Datatype datatype, MPI Op op, int root, MPI Comm comm)

Operation | Function

MPI SUM Summation MPI Data Type C Data
MPT_PROD Product Type
MPI DOUBLE double
#include <mpi.h> MPT FLOAT float
int size, rank, argc; char **argv; PR— -~
MPI_Init (&argc, &argv); —— ong

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI Finalize();

29




Y T Example Problem: Numerical Integration

4.0/(1+x2)

F(x)

4.0 =

N
o

0.0

1.0

Mathematically, we know that:

1
J- 1+x2) dx=TC
0

We can approximate the
integral as a sum of
rectangles:

N
Z F(x;)Ax =~
i=0

Where each rectangle has
width Ax and height F(x;) at

the middle of interval i.
30



Pl Program: an example

static long num_steps = 100000;

double step;
void main ()
{ Inti; double x, pi, sum = 0.0;
step = 1.0/(double) num_steps;
x = 0.5 * step;
for (i=0;i<= num_steps; i++){
x+=step;

sum +=4.0/(1.0+x*x);

}

pi = step * sum;

31



Pi program in MPI

#include <mpi.h>
void main (int argc, char *argv[])

{

int 1, my_1d, numprocs; double x, pi1, step, sum = 0.0 ;

step = 1.0/(double) num_steps ;

MPI_Init(&argce, &argv) ;
MPI_Comm_Rank(MPI_COMM_WORLD, &my id) ;
MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
my_steps = num_steps/numprocs ;

for (1I=my _1d*my_steps; i<(my 1d+1)*my_steps ; 1++)

d
x = (1+0.5)*step; _
sum += 4.0/(1.0+x*x); Sum values in “sum” from
! ' ' ’ each process and place it
*= gt in “pi” on process 0
sum *= step ;

MPI_Reduce(&sum, &pi, 1, MPI_ DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD)

32



#include <mpi.h=
void main (int argc, char *argv]) Thread OpenMP OpenMP MPI
{ orprocs | SPMD Pl Loop
int i my_id. numprocs: double x. pi. step. sum g
step = 1.0/(double) mm_steps : critical
MFI Init(&arge, &argy) ; 1 0.85 0.43 0.84
MPI_ Comm_Rank(MPI COMM WORLD,
MPI Comm_Size(MPI_COMM_WORLD, { 2 0.48 0.23 0.48
for (i=my_id: i<num_steps: : i=i+numprocs) 3 0.47 0.23 0.46
{
x = (i+0.5)*step: 4 0.46 0.23 0.46
sum += 4 .0/(1 0+x*x);
h
sum *= step ; _ ) . Note: OMP loop used a
} MPI_COMM_WORLD) The others used a cyclic
distribution. Serial .. 0.43.

*Intel compiler (icpc) with —O3 on Apple OS X 10.7.3 with a dual core (four HW thread)

Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 33



UNDERSTANDING MESSAGE
PASSING WITH MPI

34



Buffers

® Message passing has a small set of primitives, but there are subtleties
= Buffering and deadlock
= Deterministic execution
= Performance

®" When you send data, where does it go? One possibility is:
Process O Process 1

User data

o

User data

Derived from: Bill Gropp, UIUC 35



(Receive before Send)

send side

MPI_Send: T1

MPI_Send returns T2 ~ -~

/ ~

Local
buffer can
be reused

v

time

It is important to post the receive before
sending, for highest performance.

receive side

time

— T0: MPI_Recv

\

Once receive

is called @ TO,

Local buffer unavailable
to user

— T3: Transfer Complete
— T4: MPI_Recyv returns

Local buffer filled and
available to user

36



7 A/ .
7/ -

~J 4 Sources of Deadlocks

® Send a large message from process 0 to process 1

» |f there is insufficient storage at the destination, the send
must wait for the user to provide the memory space (through
a receive)

® What happens with this code?

Process 0 Process 1
Send (1) Send (0)
Recv (1) Recv (0)

e This code could deadlock ... it depends on the
availability of system buffers in which to store the data
sent until it can be received

Slide source: based on slides from Bill Gropp, UIUC 37



, //jl\‘:-Some Solutions to the “deadlock” Problem

® Order the operations more carefully:

Process 0 Process 1
Send (1) Recv (0)
Recv (1) Send (0)

e Supply receive buffer at same time as send:

Process O Process 1

Sendrecv (1) Sendrecv (0)

Slide source: Bill Gropp, UIUC 38



\\\More Solutions to the “unsafe” Problem

" Supply a sufficiently large buffer in the send function

Process 0 Process 1
Bsend (1) Bsend (0)
Recv (1) Recv (0)
Use non-blocking operations:

Process 0 Process 1
Isend (1) Isend (0)
Irecv(1l) Irecv (0)
Waitall Waitall

Slide source: Bill Gropp, UIUC
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® Non-blocking operations return immediately and pass “request handles”
that can be waited on and queried

 MPIL_ISEND( start, count, datatype, dest, tag, comm, request )
 MPI_IRECV( start, count, datatype, src, tag, comm, request )
« MPI_WAIT( request, status )

® One can also test without waiting using MPI_TEST
« MPI_TEST( request, flag, status )

®  Anywhere you use MPI_Send or MPI_Recv, you can use the pair of
MPI_Isend/MPI_Wait or MPI_Irecv/MPI Walt

Non-blocking operations are extremely important ... they
allow you to overlap computation and communication.

40



send side receive side

— T0: MPI_Irecv
MPI Isend T2 — — T1: MPI Irecv Returns

MPI_Isend returns T3 — \ buffer unavailable
to user
buffer unavailable / N

— T4: MPI_Wait called

to user \
MPI_Wait T5 — N\
N\
Sender completes T6 — N\
MPI_Wait returns 19 — A T7: transfer finishes
— T8: MPI_Wait returns
buffer available :
{0 user v v \ receive buffer
time time filled and available

to the user
41




(part 1 of 2)

#include <stdio.h>
#include <mpi.h>

int main(int argc, char **argv)

{
int num, rank, size, tag, next, from;
MPI_Status status1, status2;
MPI_Request req1, reqg2;

MPI1_Init(&argc, &argv);

MPI_Comm_rank( MPI_COMM_WORLD, &rank);

MPI_Comm_size( MPI_COMM_WORLD, &size);

tag = 201;

next = (rank+1) % size;

from = (rank + size - 1) % size;

if (rank == 0) {
printf("Enter the number of times around the ring: ");
scanf("%d", &num);

printf("Process %d sending %d to %d\n", rank, num, next);
MPI_Isend(&num, 1, MPIl_INT, next, tag, MPI_COMM_WORLD,&req1);
MPI_Wait(&req1, &status1);

) 42



}

do {
MPI_Irecv(&num, 1, MPIl_INT, from, tag, MPI_COMM_WORLD, &req2);
MPI_Wait(&reqg2, &status2);
printf("Process %d received %d from process %d\n", rank, num, from);

if (rank == 0) {

num--;

printf("Process 0 decremented number\n");
}

printf("Process %d sending %d to %d\n", rank, num, next);
MPI_Isend(&num, 1, MPIl_INT, next, tag, MPI_COMM_WORLD, &req1);
MPI_Wait(&req1, &status1);

} while (num != 0);

if (rank == 0) {
MPI_Irecv(&num, 1, MPI_INT, from, tag, MPI_COMM_WORLD, &req2);
MPI_Wait(&reqg2, &status2);

}

MPI1_Finalize();
return O;

43



Exercise 3: Ring program

" Goal
= Explore other modes of message passing in MPI
" Program

= Start with the basic ring program we provide. Run it for a range
of message sizes and notes what happens for large messages.

» |f the program deadlocks (and it should) figure out why and how
to fix it.

= Try a range of message passing functions to understand how
they work.

44



MPI AND THE GEOMETRIC
DECOMPOSITION PATTERN
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"
Example: finite difference methods

m Solve the heat diffusion equation in 1 D:
u(x,t) describes the temperature field Ou ou
We set the heat diffusion constant to one y - 67
Boundary conditions, constant u at endpoints.

: t. =t,+ik
m  map onto a mesh with stepsize h and k X; =X, +ih i Tl
m Central difference approximation for spatial o0°u Uy —2uj tu,,
derivative (at fixed time) P e

n

dl/l Z/ln+1 —y
m Time derivative at t = {1 — =
dt k

46



" A
Example: Explicit finite differences

m  Combining time derivative expression using spatial derivative att = t"

n+l n
u; —uj _ J+1 —2u -I—I/l
k h2
m Solve for u at time n+1 and step j
+1 n n n
=(1=-2ru! +ru}_ +ru?, r=%2

m The solution att=t_,,is determined explicitly from the solution att =t
(assume u[t][0] = u[t][N] = Constant for all t).

for (int t = 0; t < N_STEPS-1; ++t)
for (int x = 1; x < N-1; ++x)
u[t+1][x] = u[t][x] + r*(u[t][x+1] - 2*u[t][x] + u[t][x-1]);

m EXxplicit methods are easy to compute ... each point updated based on

nearest neighbors. Converges for r<1/2.
47



"
Heat Diffusion equation

infinitesimally narrow rod (~one D)

T1 [TT T T IT T T I T TTITTITTITITTT]

“infinite” heat “infinite” heat
bath (fixed bath (fixed
temperature, T1) temperature, T2)

48



"
Heat Diffusion equation

infinitesimally narrow rod (~one D)

T1 ANEEEENANEEEEEEEEEEEE
LT —

OTTTTTT T TTITITTTITITTITT I

Pictorially, you are sliding a three
point “stencil” across the domain
(u[t]) and computing a new value of
the center point (u[t+1]) at each stop.

49



Heat Diffusion equation

T1 [TT T T T TT T T T TITITTTITITT1 1]
[(I1}—

int main()

{
double *u
double *upl

Note: | don’t need the
intermediate “u[t]” values
hence “u” is just indexed by x.

malloc (sizeof(double) * (N));
malloc (sizeof(double) * (N));

initialize data(uk, ukpl, N, P); // init to zero, set end temperatures
for (int t = @; t < N_STEPS; ++t){
for (int x = 1; x < N-1; ++X)
upl[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

A well known trick with 2 arrays so |
@ upl = u; u = D don’t overwrite values from step k-1
} as | fill in for step k

return 0;

50



Heat Diffusion equation

T1 [TT T T T TT T T T TITITTTITITT1 1]
[(I1}—

int main() How would

{ you parallelize
double *u malloc (sizeof(double) * (N)); this program'?

double *upl = malloc (sizeof(double) * (N));

initialize data(uk, ukpl, N, P); // init to zero, set end temperatures
for (int t = @; t < N_STEPS; ++t){
for (int x = 1; x < N-1; ++X)
upl[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

temp = upl; upl = u; u = temp;
}

return 0;

51



software

®" These seven strategies for parallelizing software give us:
= Names: so we can communicate better
» Categories: so we can gather and share information
= A palette (like an artist’s palette) of approaches that is:
* Necessary: we should consider them all and

o Sufficient: once we have considered them all then we don’t’
have to worry that we forgot something

Parallel Algorithm Strategyv Patterns Discrete-Event

Task-Parallelism Data-Parallelism Geometric-Decomposition
Divide and Congquer Pipeline Speculation
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Heat Diffusion equation

® Start with our original picture of the problem ... a one dimensional
domain with end points set at a fixed temperature.

T1 [TT T T T TT T T T TTTTTITITT1 1]
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software

®" These seven strategies for parallelizing software give us:
= Names: so we can communicate better
» Categories: so we can gather and share information
= A palette (like an artist’s palette) of approaches that is:
* Necessary: we should consider them all and

o Sufficient: once we have considered them all then we don’t’
have to worry that we forgot something

Parallel Algorithm Strategyv Patterns Discrete-Event

Task-Parallelism Data-Parallelism I Geometric-Decomposition I
Divide and Congquer Pipeline speculation
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Heat Diffusion equation

® Break it into chunks assigning one chunk to each process.

T1

Po P P, P3
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Heat Diffusion equation

® Each process works on it's own chunk ... sliding the stencil across
the domain to updates its own data.

T1

(1T} OI1— U1l 1l
P, P, P, P,
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Heat Diffusion equation

® What about the ends of each chunk ... where the stencil will run off the
end and hence have missing values for the computation?

11 OId
x [IT+— 11—

T1 [TT1T11]
[(I1}—
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Heat Diffusion equation

" We add ghost cells to the ends of each chunk, update them with the
required values from neighbor chunks at each time step ... hence giving
the stencil everything it needs on any given chunk to update all of its
values.

T1 [TTTT1::

Ghost cell

Ghost cell
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® Run the same program on P processing elements where
P can be arbitrarily large.

® Use therank ... an ID ranging from 0 to (P-1) ... to select
between a set of tasks and to manage any shared data
structures.

This pattern is very general and has been used to support
most (if not all) the algorithm strategy patterns.

MPI| programs almost always use this pattern ... it is
probably the most commonly used pattern in the history of
parallel programming.
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ow do people use

A sequential program
working on a data set

The SPMD Design Pattern

Replicate the program.
Add glue code
Break up the data

*A single program working on a
decomposed data set.

*Use Node ID and numb of nodes to
split up work between processes

* Coordination by passing messages.




MPI _Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &P);
MPI_Comm_rank (MPI_COMM_WORLD, &myID);

double *u

double *upl

= malloc (sizeof(double) * (2 + N/P)) // include "Ghost Cells"
malloc (sizeof(double) * (2 + N/P)); // to hold values
// from my neighbors

initialize_data(uk, ukpl, N, P);

for (int t = @; t < N_STEPS; ++t){

if (myID != @) MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, @, MPI_COMM_WORLD);

if (myID != P-1) MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, ©, MPI_COMM_WORLD, &status);

if (myID != P-1) MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, ©, MPI_COMM_WORLD);

if (myID != @) MPI_Recv (&u[@], 1, MPI_DOUBLE, myID-1, ©,MPI_COMM WORLD, &status);

/,>for (int x = 2; x < N/P; ++x) <\\

upl[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]); ) .

if (myID I= @) We write/explain
up1[1] = u[1] + (k / (h*h)) * (u[1+1] - 2*u[1] + u[1-1]); this part first and

if (myID != P-1)
upl[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]); then addreSS the

k temp = upl; upl = u; u = temp; / communication and

data structures

} // End of for (int t ...) loop

MPI_Finalize();

return 0;
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Heat Diffusion MPI Example

// Compute interior of each “chunk” Update array values using local data

for (int x = 25 x < N/P; ++x) and values from ghost cells.

upl[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

// update edges of each chunk keeping the two far ends fixed
// (first element on Process © and the last element on process P-1).
if (myID != @)

upl[1] = u[1] + (k / (h*h)) * (u[1+41] - 2*u[1l] + u[1-1]); u[0] and u[N/P+1]
are the ghost
cells

if (myID != P-1)

upl[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]);

// Swap pointers to prepare for next iterations
temp = upl; upl = u; u = temp;

} // End of for (int t ...) loop Note | was lazy and assumed N was evenly
divided by P. Clearly, I'd never do this in a

MPI_Finalize(); ‘real” program.

return 0;

62



MPI Init (&argc, &argv); 1D PDE solver ... the simplest “real” message
MPI_Comm_size (MPI_COMM WORLD, &P); passing code | can think of. Note: edges of
MPT_Comm_rank (MPI_COMM_WORLD, &myID); domain held at a fixed temperature

double *u = malloc (sizeof(double) * (2 + N/P)) // include "Ghost Cells"
double *upl = malloc (sizeof(double) * (2 + N/P)); // to hold values
// from my neighbors
initialize data(uk, ukpl, N, P);
for (int t = @; t < N_STEPS; ++t){
if (myID != @) — Send my “left” boundary value to the neighbor on my “left’
MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, ©, MPI_COMM_WORLD);

if (myID != P-1) . — Receive my “right” ghost cell from the neighbor to my “right’
MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, ©, MPI_COMM WORLD, &status);

if (myID != P-1) ,_ — Send my “right” boundary value to the neighbor to my “right’
MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, ©, MPI_COMM WORLD);

if (myID !=0) __— Receive my “left” ghost cell from the neighbor to my “left”

MPI_Recv (&u[©], 1, MPI _DOUBLE, myID-1, ©,MPI_COMM_WORLD, &status);
/* continued on previous slide */ 63




J \ The Geometric Decom position Pattern

®" This is an instance of a very important design pattern ... the Geometric
decomposition pattern.

" We will cover this pattern in more detail in a later lecture.

T1 [TTTT1::

Ghost cell

Ghost cell
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Partitioned Array Pattern

" Problem:

» Arrays often need to be partitioned between multiple UEs. How can we
do this so the resulting program is both readable and efficient?

" Forces
» Large number of small blocks organized to balance load.
» Able to specialize organization to different platforms/problems.
» Understandable indexing to make programming easier.
®  Solution:
= Express algorithm in blocks

» Abstract indexing inside mapping functions ... programmer works in an
index space natural to the domain, functions map into distribution
needed for efficient execution.

» The text of the pattern defines some of these common mapping
functions (which can get quite confusing ... and in the literature are
usually left as “an exercise for the reader”).
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® Realistic problems are 2D or
3D; require move complex

data dIStrIbUtIOHS al’o al,l a1,2 01’3 a1’4 a1,5 01’6 a1,7
® We need to parallelize the
computation by partitioning @2,0 | 92,1 | 922 | 923 | 924 | 925 | D26 | 927

this index space

® Example: Consider a 2D
domain over which we wish
to solve a PDE using an
explicit finite difference
solver . The figure shows a

five point stencil ... update a ago | 6,1 | @62 | @63 | 64 | C65 | Coe | V6,7
value based on its value and
its 4 neighbors. a70 | Q7,1 | Q72 | Q73 | Q74 | Q75 | 76 | O77

® Start with an array 2
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Partitioned Arrays: column block distribution

®  Split the non-unit-stride dimension (P-1) times to produce P chunks, assign
the it" chunkto P, WthN=n*n,P=p*p

" In a 2D finite-differencing program (exchange edges), how much do we
have to communicate? 2*n = 2*sqrt(N) messages per processor

P is the
# of
processors

Qo0 | Q0,1 Qo2 | Ao,3 Qo4 | @05 Qo6 | A0,7
Q10 | 91,1 Q12| 13 a14 | 215 Q16 | A1,7
Qz0 | @21 Qoo | Q23 Qg4 | Q25 Qa6 | Q27
Q3o | 43,1 G392 | A33 ‘ ass Q36 | A3,7
Quo | 24,1 Qg2 .—“ Que | Q47
a50 | 95,1 Q59 | @53 ‘ as5 A56 | A5,7
Qg0 | @6,1 Qgo | Q63 Qg4 | Q65 Qge | 6,7
Q70 | 471 Q79 | Q73 Q74 | @75 Q76 | A77
UE(0) UE(1) UE(2) UE(3)

UE = unit of
execution ... think of
it as a generic term
for “process or
thread”
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| Partitioned Arrays: Block distribution

" |f we parallelize in both dimensions, then we have (n/p)? elements per
processor, and we need to send 4*(n/p) = 4 *sqrt(N/P) messages from
each processor. Asymptotically better than 2*sqrt(N).

UE(0, 0) UEQ, 1)
Qp,0 | @0,1 | Q0,2 | 0,3 Qo4 | Q05 | Qo6 | 0,7
1,0 | 21,1 | @12 | C1.3 Q14 | Q15 | Q16 | Q1,7
Q20 | @21 | Q22 | Q23 Qo4 | Q25 | Q26 | B2 7
agzo | @31 | @3,2 | 233 ags | Ag6 | A3,7
Qg0 | A4,1 | Q4.2 Qa6 | A47
as50 | @51 | @52 | @53 ’ As55 | A56 | A5,7
P is the Ago | 6,1 | @62 | 26,3 Qg4 | A5 | A66 | X6,7
# of
processors Q70| @71 | Q72 | @73 Q74 | Q75 | Q76 | B77

UE(1, 0) UE(1,1) 68



® LU decomposition (A= LU) .. Move

block cyclic distribution

down the diagonal transform rows to
“zero the column” below the diagonal.

* *|* * *

* * * *

¥k ¥ X X

* F [ % ¥+ X *

O O Olo o Oo/f*

Zeros fill in the right lower triangle of
the matrix ... less work to do.

Balance load with cyclic distribution
of blocks of A mapped onto a grid of
nodes (2x2 in this case ... colors
show the mapping to nodes).




Exercise 4: Transpose

" Goal

= EXxplore interaction of partitioned arrays and message passing
® Program
= We provide a matrix transposition program ... which is one of the
simplest examples of a program based on partitioned arrays.

» Notice how the SPMD pattern interacts with the partitioned array
pattern.

» Modify the program to use isend/irecv and overlap

communication with local transpose to maximize aggregate
bandwidth
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MIXING MPI AND OPENMP

71



72

How do people mix MPl and OpenMP?

A sequential program
working on a data set

Replicate the program.
Add glue code
Break up the data

*Create the MPI program with
its data decomposition.

» Use OpenMP inside each
MPI process.




Get the MPI
part done
first, then add
OpenMP
pragma
where it
makes sense
to do so

73

4\ i brogram with MPI and OpenMP

#include <mpi.h>
#include “omp.h”
void main (int argc, char *argv[])

{

int 1, my_1d, numprocs; double x, pi, step, sum = 0.0 ;
step = 1.0/(double) num_steps ;
MPI_Init(&arge, &argv) ;
MPI_Comm_Rank(MPI_COMM_WORLD, &my id) ;
MPI_Comm_Size(MPI_COMM_ WORLD, &numprocs) ;
my_steps = num_ steps/numprocs ;

#pragma omp parallel for reduction(+:sum) private(x)
for (1I=my _1d*my steps; 1<(m_id+1)*my_steps ; i++)

{

x = (1+0.5)*step;

sum += 4.0/(1.0+x*x);
h
sum *= step ;

MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD) ;
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\‘u

)\ Key issues when mixing OpenMP and MPI

1. Messages are sent to a process not to a particular thread.
= Not all MPIs are threadsafe. MPI 2.0 defines threading modes:
« MPI_Thread_Single: no support for multiple threads
« MPI_Thread Funneled: Mult threads, only master calls MPI

« MPI_Thread_Serialized: Mult threads each calling MPI, but they
do it one at a time.

« MPI_Thread_ Multiple: Multiple threads without any restrictions
= Request and test thread modes with the function:
MPI_init_thread(desired _mode, delivered _mode, ierr)

2. Environment variables are not propagated by mpirun.
You'll need to broadcast OpenMP parameters and set them
with the library routines.
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" The following will work only if MPI_Thread_Multiple is supported ... a
level of support | wouldn’t depend on.

MPI_Comm_Rank(MPI COMM_ WORLD, &mpi_id) ;

#pragma omp parallel

{
int tag, swap_neigh, stat, omp_id = omp_thread _num();
long buffer [BUFF_SIZE], incoming [BUFF_SIZE];
big_ugly calc1(omp_id, mpi_id, buffer);
// Finds MPI id and tag so
neighbor(omp _id, mpi_id, &swap_neigh, &tag); // messages don’t conflict

MPI1_Send (buffer, BUFF_SIZE, MPI_LONG, swap_neigh,
tag, MPI_COMM_WORLD);

MPI1_Recv (incoming, buffer _count, MPl_LONG, swap neigh,
tag, MPI_COMM_WORLD, &stat);

big_ugly calc2(omp_id, mpi_id, incoming, buffer);
#pragma critical
consume(buffer, omp_id, mpi_id);
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1 Messages and threads

® Keep message passing and threaded sections of your program
separate:

= Setup message passing outside OpenMP parallel regions
(MPI_Thread_funneled)

= Surround with appropriate directives (e.g. critical section or master)
(MPI_Thread_Serialized)

= For certain applications depending on how it is designed it may not
matter which thread handles a message. (MPIl_Thread Multiple)

« Beware of race conditions though if two threads are probing on
the same message and then racing to receive it.
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Put MPI in sequential regions

MPI_Init(&argc, &argv);  MPI Comm_ Rank(MPI COMM_ WORLD, &mpi id) ;
/I a whole bunch of initializations

#pragma omp parallel for
for (1=0;I1<N;l++) {

U[l] = big_calc(l);
}

MPI_Send (U, BUFF_SIZE, MPI_DOUBLE, swap_neigh,
tag, MPI_COMM_WORLD);
MPI_Recv (incoming, buffer_count, MPI_DOUBLE, swap_neigh,
tag, MPI_COMM_WORLD, &stat);

#pragma omp parallel for
for (I=0;I<N;l++) {

U[l] = other_big_calc(l, incoming); ) )
} Technically Requires

MPI_Thread_funneled, but |
have never had a problem with
this approach ... even with pre-
MPI-2.0 libraries.

77 77

consume(U, mpi_id);




J \  Safe Mixing of MPI and OpenMP

MPI_Init(&argc, &argv);  MPI Comm_ Rank(MPI COMM_ WORLD, &mpi id) ;

/I a whole bunch of initializations

#oragma omp parallel Technically Requires

{ MPI_Thread_funneled, but |
#pragma omp for | have never had a problem with
for (IF05<N;l++) ULl = big_cale(l); this approach ... even with pre-
#pragma master MPI'ZO |Ibl'aI'IeS.
{
MPI_Send (U, BUFF_SIZE, MPI_DOUBLE, neigh, tag, MPI_COMM_WORLD);
MPI_Recv (incoming, count, MPI_DOUBLE, neigh, tag, MPI_COMM_WORLD,
&stat);
}

#pragma omp barrier
#pragma omp for
for (I=0;I<N;l++) UJ[l] = other_big_calc(l, incoming);

#pragma omp master
consume(U, mpi_id);
}
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Hybrid OpenMP/MPI works, but is it worth it?

® Literature® is mixed on the hybrid model: sometimes its better,
sometimes MPI alone is best.

" There is potential for benefit to the hybrid model

= MPI algorithms often require replicated data making them less memory
efficient.

= Fewer total MPlI communicating agents means fewer messages and less
overhead from message conflicts.

= Algorithms with good cache efficiency should benefit from shared caches
of multi-threaded programs.

= The model maps perfectly with clusters of SMP nodes.

® Butreally, it's a case by case basis and to large extent depends on the
particular application.

*L. Adhianto and Chapman, 2007 -
79



CLOSING COMMENTS
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L\ Top 500: total number of processors (1993-2000)

The downward trend from ‘93 to ‘95 is
due to the old TMC SIMD machines
failing and leaving the list.

140000
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40000
20000
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘

1993 1994 1995 1996 1997 1998 1999 2000
Year for the “June top500 list”

Source: the “June lists” from www.top500.org 81
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“J N+ Top 500: total number of processors (1993-2011)
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programming easier?

Extra work upfront, but easier
optimization and debugging means
overall, less time to solution

H0J}4

Message passing

Time

But difficult debugging and
optimization means overall
project takes longer

initial parallelization can be
quite easy

aBelTe

Multi-threading

Time

Proving that a shared address space program using
semaphores is race free is an NP-complete problem*

*P. N. Klein, H. Lu, and R. H. B. Netzer, Detecting Race Conditions in Parallel Programs that Use Semaphores, Algorithmica, vol. 35 pp. 321-345, 200383



osing comments

® Question conventional wisdom.

= Do we really need cache coherence? If the memory hierarchy can’t be
hidden, isn'’t it better to expose the hierarchy so | can control it?

» Debugging and Maintenance costs more than coding. So extra work up
front to organize a problem to exploit the concurrency (e.g. decomposing
and distributing data structures) shouldn’t be such a big deal.

= SW lives longer than HW. So why would anyone use a non-portable,
non-standard programming model? That'’s just nuts!!

®  As you move forward through the course ....

= Notice that the patterns used in creating parallel code only weakly
depend on the programming model. | can do loop parallelism with MPI,
message passing with pthreads, kernel parallelism with OpenMP.

= So learn multiple programming models and enjoy them ... but don’t
obsess about them. Ultimately, it's the design patterns and learning how
to apply them to different problems that matter.
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MPI References

® The Standard itself:

= at http://www.mpi-forum.org

= All MPI official releases, in both postscript and
HTML

® Other information on Web:
= at http://www.mcs.anl.gov/mpi

» pointers to lots of stuff, including other talks and
tutorials, a FAQ, other MPI pages
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http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi
http://www.mcs.anl.gov/mpi

®  Using MPI-2: Portable Parallel Programming
with the Message-Passing Interface, by Gropp,
Lusk, and Thakur, MIT Press, 1999..

®  Parallel Programming with MPI, by Peter Pacheco,
Morgan-Kaufmann, 1997.

" Patterns for Parallel Programing, by Tim Mattson,
Beverly Sanders, and Berna Massingill.

PATTERNS
FOR PARALLEL
PROGRAMMING

|||||




MPI core functions

#include <mpi.h>
int size, rank, argc, err_code=0;
char **argv;

MPI Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Abort(MPI_COMM_WORLD, err_code);
MPI_Finalize();
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Basic MPl communication

Blocking send/receive
" MPI Send (void* buf, int count, MPI Datatype datatype,

int dest, int tag, MPI Comm comm)

u MPI Recv (void* buf, int count, MPI Datatype datatype,

int source, int tag, MPI Comm comm, MPI Status* status)

Nonblocking send/receive
u MPI Irecv(void *buf, int count, MPI Datatype datatype,
int source, int tag, MPI Comm comm,

MPI Request *request)

u MPI Isend(const void *buf, int count, MPI Datatype datatype,

int dest, int tag, MPI Comm comm, MPI Request *request)

u MPI Wait (MPI Request *request, MPI Status *status)
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Collective Communication

MPI Reduce (void* sendbuf, void* recvbuf,
int count, MPI Datatype datatype, MPI Op op,

int root, MPI Comm comm)

MPI Bcast (void *buf, int count, MPI Datatype datatype,

int root, MPI Comm comm)

MPI Sendrecv(void *sendbuf, int sendcount,
MPI Datatype sendtype, 1int dest, int sendtag,
void *recvbuf, int recvcount, MPI Datatype recvtype,
int source, int recvtag, MPI Comm comm,

MPI Status *recv_status)

MPI Barrier (MPI Datatype datatype)
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