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Disclaimer 
READ THIS … its very important 

• The views expressed in this talk are those of the 
speakers and not their employer. 

• This is an academic style talk and does not address 
details of any particular Intel product.  You will learn 
nothing about Intel products from this presentation.   

• This was a team effort, but if we say anything really 
stupid, it’s our fault … don’t blame our collaborators. 

 

Slides marked with this symbol were produced-with Kurt 

Keutzer and his team for CS194 … A UC Berkeley course 

on Architecting parallel applications with Design Patterns. 

Third party names are the property of their owners. 
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INTRODUCTION TO MPI 
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Programming Model:  Message Passing 

 Program consists of a collection of named processes. 

 Number of processes almost always fixed at program startup time 

 Local address space per node -- NO physically shared memory. 

 Logically shared data is partitioned over local processes. 

 Processes communicate through explicit communication events. 

 Coordination is implicit in every communication event. 

 MPI (Message Passing Interface) is the most commonly used SW 

Pn P1 P0 

s: 12  

i: 2 

Private 

memory 

s: 14  

i: 3 

s: 11  

i: 1 

send P1,s 

Network 

receive Pn,s 
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MPI:  Message Passing Interface 

omp_set_lock(lck) MPI_Bsend_init 

MPI_Pack 

MPI_Sendrecv_replace 

MPI_Recv_init 

MPI_Allgatherv 

MPI_Unpack  

MPI_Sendrecv 

MPI_Bcast 

MPI_Ssend 

C$OMP ORDERED MPI_Startall 

MPI_Test_cancelled  

MPI_Type_free 

MPI_Type_contiguous 

MPI_Barrier 

MPI_Start 

MPI_COMM_WORLD 

MPI_Recv 

MPI_Send 

MPI_Waitall 

MPI_Reduce 

MPI_Alltoallv 

MPI_Group_compare 

MPI_Scan 
MPI_Group_size 

MPI_Errhandler_create 

  

MPI:  An API for Writing Clustered Applications 
 

• A library of routines to coordinate the 
execution of multiple processes.  

• Provides point to point and collective 
communication  in Fortran, C and C++  

• Unifies last 30+ years of  cluster 
computing and MPP practice 
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An MPI program at runtime 

 Typically, when you run an MPI program, multiple processes all running 

the same program are launched … working on their own block of data. 
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An MPI program at runtime 

 Typically, when you run an MPI program, multiple processes all running 

the same program are launched … working on their own block of data. 

The collection of processes involved in a computation 

is called “a process group” 
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An MPI program at runtime 

 Typically, when you run an MPI program, multiple processes all running 

the same program are launched … working on their own block of data. 

You can dynamically split a process group into multiple subgroups to 

manage how processes are mapped onto different tasks 

MPI functions work within a “context” … events in different contexts … 

even if they share a process group … cannot interfere with each other.  



9 

MPI Hello World 

#include <stdio.h> 

#include <mpi.h> 

int main (int argc, char **argv){ 

    int rank, size; 

    MPI_Init (&argc, &argv); 

    MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

    MPI_Comm_size (MPI_COMM_WORLD, &size); 

    printf( "Hello from process %d of %d\n", 

                                rank, size ); 

    MPI_Finalize(); 

    return 0; 

} 
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Initializing and finalizing MPI 

#include <stdio.h> 

#include <mpi.h> 

int main (int argc, char **argv){ 

    int rank, size; 

    MPI_Init (&argc, &argv); 

    MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

    MPI_Comm_size (MPI_COMM_WORLD, &size); 

    printf( "Hello from process %d of %d\n", 

                                rank, size ); 

    MPI_Finalize(); 

    return 0; 

} 

int MPI_Init (int* argc, char* argv[]) 

 Initializes the MPI library … called before any 

other MPI functions. 

 agrc and argv are the command line args passed 

from main() 

int MPI_Finalize (void) 

 Frees memory allocated by the MPI library … close 
every MPI program with a call to MPI_Finalize 
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How many processes are involved? 

#include <stdio.h> 

#include <mpi.h> 

int main (int argc, char **argv){ 

    int rank, size; 

    MPI_Init (&argc, &argv); 

    MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

    MPI_Comm_size (MPI_COMM_WORLD, &size); 

    printf( "Hello from process %d of %d\n", 

                                rank, size ); 

    MPI_Finalize(); 

    return 0; 

} 

int MPI_Comm_size (MPI_Comm comm, int* size) 

 MPI_Comm, an opaque data type called a communicator.  Default 

context: MPI_COMM_WORLD (all processes)  

 MPI_Comm_size returns the number of processes in the process 

group associated with the communicator 

Communicators consist of 

two parts, a context and a 

process group.   

 

The communicator lets me 

control how groups of 

messages interact. 

 

The communicator lets me 

write modular SW … i.e. I 

can give a library module its 

own communicator and 

know that it’s messages 

can’t collide with messages 

originating from outside the 

module 
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Which process “am I” (the rank) 

#include <stdio.h> 

#include <mpi.h> 

int main (int argc, char **argv){ 

    int rank, size; 

    MPI_Init (&argc, &argv); 

    MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

    MPI_Comm_size (MPI_COMM_WORLD, &size); 

    printf( "Hello from process %d of %d\n", 

                                rank, size ); 

    MPI_Finalize(); 

    return 0; 

} 

int MPI_Comm_rank (MPI_Comm comm, int* rank) 

 MPI_Comm, an opaque data type, a communicator.  Default context: 

MPI_COMM_WORLD (all processes)  

 MPI_Comm_rank An integer ranging from 0 to “(num of procs)-1” 

Note that other than init() 

and finalize(), every MPI 

function has a 

communicator. 

 

This makes sense .. You 

need a context and group of 

processes that the MPI 

functions impact … and 

those come from the 

communicator. 
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Running the program 

#include <stdio.h> 

#include <mpi.h> 

int main (int argc, char **argv){ 

    int rank, size; 

    MPI_Init (&argc, &argv); 

    MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

    MPI_Comm_size (MPI_COMM_WORLD, &size); 

    printf( "Hello from process %d of %d\n", 

                                rank, size ); 

    MPI_Finalize(); 

    return 0; 

} 

 On a 4 node cluster, I’d run this 

program (hello) as: 

> mpiexec –n 4 hello 

• What would this program would output? 
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Exercise 1: Hello world 

 Goal 

 To confirm that you can run a program on our cluster 

 Program 

 Write a program that prints “hello world” to the screen. 

 Modify it to run as an MPI program … with each process in the process group 

printing “hello world” and its rank 

#include <mpi.h> 

int size, rank, argc;   char **argv; 

MPI_Init (&argc, &argv); 

MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

MPI_Comm_size (MPI_COMM_WORLD, &size); 

MPI_Finalize(); 

To run the executable hello on 2 nodes of the cluster, type: 

 > mpiexec –n 4 a.out 

If you need to start the MPI deamon (mpd) go to your home directory and type: 

 > touch .mpd.conf 

 > chmod 600 .mpd.conf 
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Running the program 

#include <stdio.h> 

#include <mpi.h> 

int main (int argc, char **argv){ 

    int rank, size; 

    MPI_Init (&argc, &argv); 

    MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

    MPI_Comm_size (MPI_COMM_WORLD, &size); 

    printf( "Hello from process %d of %d\n", 

                                rank, size ); 

    MPI_Finalize(); 

    return 0; 

} 

 On a 4 node cluster, I’d run this 

program (hello) as: 

> mpiexec –n 4 hello 

Hello from process 1 of 4 

Hello from process 2 of 4 

Hello from process 0 of 4 

Hello from process 3 of 4 
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MPI FOR BULK 

SYNCHRONOUS PROGRAMS 
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Sending and Receiving Data 

 MPI_Send performs a blocking send of the specified data (“count” 

copies of type “datatype,” stored in “buf”) to the specified destination 

(rank “dest” within communicator “comm”), with message ID “tag” 

int MPI_Send (void* buf, int count, 

 MPI_Datatype datatype, int dest, 

 int tag, MPI_Comm comm)   

 

int MPI_Recv (void* buf, int count, 

 MPI_Datatype datatype, int source, 

 int tag, MPI_Comm comm, 

 MPI_Status* status) 

 

 MPI_Recv performs a blocking receive of specified data from specified 

source whose parameters match the send; information about transfer is 

stored in “status” 

By “blocking” we mean the functions return as soon as the buffer, “buf”, can be 

safely used. 
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MPI Data Types for C 

MPI Data Type C Data Type 

MPI_BYTE 

MPI_CHAR signed char 

MPI_DOUBLE double 

MPI_FLOAT float 

MPI_INT int 

MPI_LONG long 

MPI_LONG_DOUBLE long double 

MPI_PACKED 

MPI_SHORT short 

MPI_UNSIGNED_SHORT unsigned short 

MPI_UNSIGNED unsigned int 

MPI_UNSIGNED_LONG unsigned long 

MPI_UNSIGNED_CHAR unsigned char 

MPI provides 
predefined 
data types 

that must be 
specified when 

passing 
messages. 
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The data in a message: datatypes 

 The data in a message to send or receive is described by a triple: 

  (address, count, datatype) 

 An MPI datatype is defined as: 

 Predefined, simple data type from the language (e.g., MPI_DOUBLE) 

 Complex data types (contiguous blocks or even custom types. 

 E.g.  … A particle’s state is defined by its 3 coordinates and 3 velocities 

MPI_Datatype PART; 

MPI_Type_contiguous( 6, MPI_DOUBLE, &PART ); 

MPI_Type_commit( &PART ); 

 You can use this data type in MPI functions, for example, to send data for a 

single particle: 

   MPI_Send (buff, 1, PART, Dest, tag, MPI_COMM_WORLD); 

address 
count 

Datatype 
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Receiving the right message 

 The receiving process identifies messages with the double : 

  (source, tag) 

 Where: 

 Source is the rank of the sending process 

 Tag is a user-defined integer to help the receiver keep track of different 

messages from a single source 

 

   MPI_Recv (buff, 1, PART, Src, tag, MPI_COMM_WORLD, &status); 

Source tag 

 Can relax tag checking by specifying MPI_ANY_TAG as the tag in a receive. 

 Can relax source checking by specifying MPI_ANY_SOURCE 

   MPI_Recv (buff, 1, PART, MPI_ANY_SOURCE, MPI_ANY_TAG,  

                                                               MPI_COMM_WORLD, &status); 

 This is a useful way to insert race conditions into an MPI program 
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A typical pattern with MPI Programs 

 Many MPI applications have few (if any) sends and receives. They 

use the following very common pattern: 

 Use the Single Program Multiple Data 

pattern 

 Each process maintains a local view of 

the global data 

 A problem broken down into phases each 

of which is composed of two subphases: 

• Compute on local view of data 

• Communicate to update global view 

on all processes (collective 

communication). 

 Continue phases until complete 

 

Collective comm. 

Collective comm. 

P0 P3 P2 P1 

Processes 

Time 

This is a subset or the SPMD pattern sometimes 

referred to as the Bulk Synchronous pattern. 

This is a subset or the SPMD pattern sometimes 

referred to as the Bulk Synchronous pattern. 
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MPI Collective Routines 

 Collective communications: called by all processes in the group to 

create a global result and share with all participating processes. 

 Allgather, Allgatherv, Allreduce, Alltoall, 

Alltoallv, Bcast, Gather, Gatherv, Reduce, 

Reduce_scatter, Scan, Scatter, Scatterv  

 Notes: 

 Allreduce, Reduce, Reduce_scatter, and Scan use the 
same set of built-in or user-defined combiner functions.  

 Routines with the “All” prefix deliver results to all participating 
processes 

 Routines with the “v” suffix allow chunks to have different sizes 

 Global synchronization is available in MPI 

 MPI_Barrier( comm ) 

 Blocks until all processes in the group of the communicator comm call it. 
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Collective Data Movement 

A 

B 

D 

C 

B C D 

A 

A 

A 

A 

Broadcast 

Scatter 

Gather 

A 

A 

P0 

P1 

P2 

P3 

P0 

P1 

P2 

P3 

Take a value from P0 

and give a copy to 

P1, P2 and P3 

Scatter an array on 

P0 to P1, P2, and P3 

Gather values from 

P1, P2, and P3 into 

an array on P0 



24 

More Collective Data Movement 

A 

B 

D 

C 

A0 B0 C0 D0 

A1 B1 C1 D1 

A3 B3 C3 D3 

A2 B2 C2 D2 

A0 A1 A2 A3 

B0 B1 B2 B3 

D0 D1 D2 D3 

C0 C1 C2 C3 

A B C D 

A B C D 

A B C D 

A B C D 

Allgather 

Alltoall 

P0 

P1 

P2 

P3 

P0 

P1 

P2 

P3 

Take a chunk from each 

P and gather into a single 

array on each P 

Take arrays on each P 

and spread them out to 

arrays on each P 
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Collective Computation 

P0 

P1 

P2 

P3 

P0 

P1 

P2 

P3 

A 

B 

D 

C 

A 

B 

D 

C 

ABCD 

A 
AB 

ABC 

ABCD 

Reduce 

Scan 

Take values on each P 

and combine them with 

an op (such as add) into 

a single value on one P. 

Take values on each P 

and combine them with a 

scan operation and 

spread the scan array out 

among all P. 
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MPI_BCAST Example 

#include <mpi.h> 

 

int main(int argc, char *argv[]) { 

 int nprocs, myrank, msg[4] = {0,0,0,0}; 

 

 MPI_Init(&argc, &argv); 

 MPI_Comm_size(MPI_COMM_WORLD, &nprocs); 

 MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 

 

 if (myrank == 0) msg[0] = 1; 

 else             msg[0] = 0; 

 

 MPI_Bcast(msg, 4, MPI_INT, 0, MPI_COMM_WORLD); 

 

 MPI_Finalize(); 

} 

MPI_COMM_WORLD 

Rank 0 

1 1 1 1 msg 

Rank 1 

0 0 0 0 msg 

1 1 1 1 msg 

Rank 2 

0 0 0 0 msg 

1 1 1 1 msg 

M
P
I
_
B
C
A
S
T
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Reduction 

 int MPI_Reduce (void* sendbuf, 

  void* recvbuf, int count, 

  MPI_Datatype datatype, MPI_Op op, 

  int root, MPI_Comm comm) 

• MPI_Reduce performs specified reduction operation on specified data 

from all processes in communicator, places result in process “root” only. 

• MPI_Allreduce places result in all processes (avoid unless necessary) 

Operation Function 

MPI_SUM Summation 

MPI_PROD Product 

MPI_MIN Minimum value 

MPI_MINLOC Minimum value and location 

MPI_MAX Maximum value 

MPI_MAXLOC Maximum value and location 

MPI_LAND Logical AND 

Operation Function 

MPI_BAND Bitwise AND 

MPI_LOR Logical OR 

MPI_BOR Bitwise OR 

MPI_LXOR Logical exclusive OR 

MPI_BXOR Bitwise exclusive OR 

User-defined It is possible to define new 
reduction operations 
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MPI_REDUCE Example 

#include <mpi.h> 

 

int main(int argc, char* argv[]) { 

  int msg, sum, nprocs, myrank; 

 

  MPI_Init(&argc,&argv); 

  MPI_Comm_size(MPI_COMM_WORLD, &nprocs); 

  MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 

 

  sum = 0; 

  msg = myrank; 

 

  MPI_Reduce(&msg, &sum, 1, MPI_INT, MPI_SUM, 0, 

             MPI_COMM_WORLD); 

 

  MPI_Finalize(); 

} 

 

MPI_COMM_WORLD 

Rank 1 

1 msg 

Rank 0 

3 sum 

0 msg 

M
P
I
_
R
E
D
U
C
E
 

2 msg 

Rank 2 

0 + 1 + 2 
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Exercise 2: Pi Program 

 Goal 

 To write a simple Bulk Synchronous, SPMD program 

 Program 

 Start with the provided “pi program” and using an MPI reduction, write a 

parallel version of the program. 

#include <mpi.h> 

int size, rank, argc;   char **argv; 

MPI_Init (&argc, &argv); 

MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

MPI_Comm_size (MPI_COMM_WORLD, &size); 

MPI_Finalize(); 

int MPI_Reduce (void* sendbuf, void* recvbuf, int count, 

 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm) 

Operation Function 

MPI_SUM Summation 

MPI_PROD Product 

MPI Data Type C Data 
Type 

MPI_DOUBLE double 

MPI_FLOAT float 

MPI_INT int 

MPI_LONG long 
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Example Problem:  Numerical Integration 

  
4.0 

(1+x2) 
dx =  

0 

1 

 F(xi)x   
i = 0 

N 

Mathematically, we know that: 

We can approximate the 

integral as a sum of 

rectangles: 

Where each rectangle has 

width x and height F(xi) at 

the middle of interval i. 

4.0 

2.0 

1.0 

X 
0.0 
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PI Program: an example 

static long num_steps = 100000; 

double step; 

void main () 

{   int i;    double x, pi, sum = 0.0; 

 

   step = 1.0/(double) num_steps; 

             x = 0.5 * step; 

   for (i=0;i<= num_steps; i++){ 

    x+=step; 

    sum += 4.0/(1.0+x*x); 

   } 

   pi = step * sum; 

} 
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Pi program in MPI  

#include <mpi.h> 

void main (int argc, char *argv[]) 

{ 

 int i, my_id, numprocs;  double x, pi, step, sum = 0.0 ; 

 step = 1.0/(double) num_steps ; 

   MPI_Init(&argc, &argv) ; 

 MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ; 

 MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ; 

 my_steps = num_steps/numprocs ;   

 for (i=my_id*my_steps; i<(my_id+1)*my_steps ; i++) 

 { 

    x = (i+0.5)*step; 

    sum += 4.0/(1.0+x*x); 

 } 

 sum *= step ;  

 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 

  MPI_COMM_WORLD) ; 

} 

Sum values in “sum” from 

each process and place it 

in “pi” on process 0  
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MPI Pi program performance 

*Intel compiler (icpc) with –O3 on Apple OS X 10.7.3 with a dual core (four HW thread) 

Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 

Thread 

or procs 

OpenMP 

SPMD 

critical 

OpenMP 

PI Loop 

MPI 

1 0.85 0.43 0.84 

2 0.48 0.23 0.48 

3 0.47 0.23 0.46 

4 0.46 0.23 0.46 

Note: OMP loop used a 

Blocked loop distribution.  

The others used a cyclic 

distribution.  Serial .. 0.43. 
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UNDERSTANDING MESSAGE 

PASSING WITH MPI 
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Buffers 

 Message passing has a small set of primitives, but there are subtleties 

 Buffering and deadlock 

 Deterministic execution 

 Performance  

 When you send data, where does it go?  One possibility is: 

Process 0 Process 1 

User data 

Local buffer 

the network 

User data 

Local buffer 

Derived from: Bill Gropp, UIUC 
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Blocking Send-Receive Timing Diagram 
(Receive before Send) 

send side                               receive side 

MPI_Send:  T1 

T4: MPI_Recv returns 

MPI_Send returns T2 

Once receive 

is called @ T0, 

Local buffer unavailable 

to user 

Local buffer filled and  

available to user 

It is important to post the receive before 

sending, for highest performance.  

T0: MPI_Recv 

Local 

buffer can 

be reused 

T3: Transfer Complete 

time time 



37 

 Send a large message from process 0 to process 1 

 If there is insufficient storage at the destination, the send 
must wait for the user to provide the memory space (through 
a receive) 

 What happens with this code? 
 
 
 
 

 

Sources of Deadlocks 

Process 0 

 
Send(1) 

Recv(1) 

Process 1 

 
Send(0) 

Recv(0) 

• This code could deadlock … it depends on the 
availability of system buffers in which to store the data 
sent until it can be received  

Slide source: based on slides from Bill Gropp, UIUC 



38 

Some Solutions to the “deadlock” Problem 

 Order the operations more carefully: 

• Supply receive buffer at same time as send: 

Process 0 

 
Send(1) 

Recv(1) 

Process 1 

 
Recv(0) 

Send(0) 

Process 0 

 

Sendrecv(1) 

Process 1 

 
Sendrecv(0) 

Slide source: Bill Gropp, UIUC 
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More Solutions to the “unsafe” Problem 

 Supply a sufficiently large buffer in the send function 

• Use non-blocking operations: 

Process 0 

 
Bsend(1) 

Recv(1) 

Process 1 

 
Bsend(0) 

Recv(0) 

Process 0 

 
Isend(1) 

Irecv(1) 

Waitall 

Process 1 

 
Isend(0) 

Irecv(0) 

Waitall 

Slide source: Bill Gropp, UIUC 
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Non-Blocking Communication 

 Non-blocking operations return immediately and pass ‘‘request handles” 
that can be waited on and queried 

• MPI_ISEND( start, count, datatype, dest, tag, comm, request ) 

• MPI_IRECV( start, count, datatype, src, tag, comm, request ) 

• MPI_WAIT( request, status ) 

 One can also test without waiting using  MPI_TEST 

• MPI_TEST( request, flag, status ) 

 Anywhere you use MPI_Send or  MPI_Recv, you can use the pair of 
MPI_Isend/MPI_Wait or  MPI_Irecv/MPI_Wait 

Non-blocking operations are extremely important … they 

allow you to overlap computation and communication. 
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buffer unavailable 

to user 

Non-Blocking Send-Receive Diagram 

send side             receive side 

MPI_Isend 

T8: MPI_Wait returns 

T3 buffer unavailable 

to user 

receive buffer 

filled and available 

to the user 

T0: MPI_Irecv 

T7: transfer finishes 

T4: MPI_Wait called 

Sender completes 

T1: MPI_Irecv Returns 

T5 

time time 

T2 

MPI_Isend returns 

T6 

T9 

MPI_Wait 

MPI_Wait returns 

buffer available 

to user 
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Example: shift messages around a ring 

(part 1 of 2) 

#include <stdio.h> 

#include <mpi.h> 

 

int main(int argc, char **argv) 

{ 

  int num, rank, size, tag, next, from; 

  MPI_Status status1, status2; 

  MPI_Request req1, req2; 

 

  MPI_Init(&argc, &argv); 

  MPI_Comm_rank( MPI_COMM_WORLD, &rank); 

  MPI_Comm_size( MPI_COMM_WORLD, &size); 

  tag = 201; 

  next = (rank+1) % size; 

  from = (rank + size - 1) % size; 

  if (rank == 0) { 

    printf("Enter the number of times around the ring: "); 

    scanf("%d", &num); 

 

    printf("Process %d sending %d to %d\n", rank, num, next); 

    MPI_Isend(&num, 1, MPI_INT, next, tag, MPI_COMM_WORLD,&req1); 

    MPI_Wait(&req1, &status1); 

  }  
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Example: shift messages around a ring 

(part 2 of 2) 
 do { 

    MPI_Irecv(&num, 1, MPI_INT, from, tag, MPI_COMM_WORLD, &req2); 

    MPI_Wait(&req2, &status2); 

    printf("Process %d received %d from process %d\n", rank, num, from); 

 

    if (rank == 0) { 

      num--; 

      printf("Process 0 decremented number\n"); 

    } 

 

    printf("Process %d sending %d to %d\n", rank, num, next); 

    MPI_Isend(&num, 1, MPI_INT, next, tag, MPI_COMM_WORLD, &req1); 

    MPI_Wait(&req1, &status1); 

  } while (num != 0); 

 

  if (rank == 0) { 

    MPI_Irecv(&num, 1, MPI_INT, from, tag, MPI_COMM_WORLD, &req2); 

    MPI_Wait(&req2, &status2); 

  } 

 

  MPI_Finalize(); 

  return 0; 

}  
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Exercise 3: Ring program 

 Goal 

 Explore other modes of message passing in MPI 

 Program 

 Start with the basic ring program we provide.  Run it for a range 

of message sizes and notes what happens for large messages. 

 If the program deadlocks (and it should) figure out why and how 

to fix it. 

 Try a range of message passing functions to understand how 

they work. 
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MPI AND THE GEOMETRIC 

DECOMPOSITION PATTERN 
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Example: finite difference methods 

 Solve the heat diffusion equation in 1 D: 

 u(x,t) describes the temperature field 

 We set the heat diffusion constant to one 

 Boundary conditions, constant u at endpoints. 

ihxxi  0

t

u

x

u









2

2

  map onto a mesh with stepsize h and k 

 Central difference approximation for spatial 

derivative (at fixed time) 2

11

2

2 2

h

uuu

x

u jjj  






iktti  0

 Time derivative at t = tn+1 

k

uu

dt

du nn 


1
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Example: Explicit finite differences 
 Combining time derivative expression using spatial derivative at t = tn 

2

11

1 2

h

uuu

k

uu n

j

n

j

n

j

n

j

n

j 

 




 Solve for u at time n+1 and step j 

 The solution at t = tn+1 is determined explicitly from the solution at t = tn  

(assume u[t][0] = u[t][N] = Constant for all t). 

n

j

n

j

n

j

n

j ruruuru 11

1 )21( 

 
2h

kr 

 for (int t = 0; t < N_STEPS-1; ++t) 
    for (int x = 1; x < N-1; ++x) 
          u[t+1][x] = u[t][x] + r*(u[t][x+1] - 2*u[t][x] + u[t][x-1]); 
  

 Explicit methods are easy to compute … each point updated based on 

nearest neighbors.  Converges for r<1/2. 



Heat Diffusion equation   

infinitesimally narrow rod (~one D) 

“infinite” heat 

bath (fixed 

temperature, T2) 

“infinite” heat 

bath (fixed 

temperature, T1) 

T2 T1 
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Heat Diffusion equation   

infinitesimally narrow rod (~one D) 

T2 T1 

Pictorially, you are sliding a three 

point “stencil” across the domain 

(u[t]) and computing a new value of 

the center point (u[t+1]) at each stop. 

49 
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Heat Diffusion equation   

int main() 

{ 

   double *u   = malloc (sizeof(double) * (N));     

   double *up1 = malloc (sizeof(double) * (N)); 

                                                      

   initialize_data(uk, ukp1, N, P); // init to zero, set end temperatures 

   for (int t = 0; t < N_STEPS; ++t){ 

      for (int x = 1; x < N-1; ++x) 

          up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]); 

   

      temp = up1; up1 = u; u = temp; 

    } 

return 0; 

T2 T1 

A well known trick with 2 arrays so I 

don’t overwrite values from step k-1 

as I fill in for step k 

Note: I don’t need the 

intermediate “u[t]” values 

hence “u” is just indexed by x. 
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Heat Diffusion equation   

int main() 

{ 

   double *u   = malloc (sizeof(double) * (N));     

   double *up1 = malloc (sizeof(double) * (N)); 

                                                      

   initialize_data(uk, ukp1, N, P); // init to zero, set end temperatures 

   for (int t = 0; t < N_STEPS; ++t){ 

      for (int x = 1; x < N-1; ++x) 

          up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]); 

   

      temp = up1; up1 = u; u = temp; 

    } 

return 0; 

T2 T1 

How would 

you parallelize 

this program? 
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Seven strategies for parallelizing 

software 

 These seven strategies for parallelizing software give us: 

 Names: so we can communicate better 

 Categories: so we can gather and share information 

 A palette (like an artist’s palette) of approaches that is: 

• Necessary: we should consider them all and 

• Sufficient: once we have considered them all then we don’t’ 

have to worry that we forgot something 
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Heat Diffusion equation   

T2 T1 

 Start with our original picture of the problem … a one dimensional 

domain with end points set at a fixed temperature. 
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Seven strategies for parallelizing 

software 

 These seven strategies for parallelizing software give us: 

 Names: so we can communicate better 

 Categories: so we can gather and share information 

 A palette (like an artist’s palette) of approaches that is: 

• Necessary: we should consider them all and 

• Sufficient: once we have considered them all then we don’t’ 

have to worry that we forgot something 
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Heat Diffusion equation   

T2 T1 

 Break it into chunks assigning one chunk to each process. 

P0 P1 P2 P3 
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Heat Diffusion equation   

T2 T1 

 Each process works on it’s own chunk … sliding the stencil across 

the domain to updates its own data. 

P0 P1 P2 P3 
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Heat Diffusion equation   

T2 T1 

 What about the ends of each chunk … where the stencil will run off the 

end and hence have missing values for the computation? 

? 
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Heat Diffusion equation   

T2 T1 

 We add ghost cells to the ends of each chunk, update them with the 

required values from neighbor chunks at each time step … hence giving 

the stencil everything it needs on any given chunk to update all of its 

values. 

Ghost cell 

Ghost cell 
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SPMD: Single Program Mulitple Data 

 Run the same program on P processing elements where 

P can be arbitrarily large.  

 Use the rank … an ID ranging from 0 to (P-1) … to select 

between a set of tasks and to manage any shared data 

structures.  

This pattern is very general and has been used to support 

most (if not all) the algorithm strategy patterns. 

MPI programs almost always use this pattern … it is 

probably the most commonly used pattern in the history of 

parallel programming. 

This pattern is very general and has been used to support 

most (if not all) the algorithm strategy patterns. 

MPI programs almost always use this pattern … it is 

probably the most commonly used pattern in the history of 

parallel programming. 
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How do people use MPI? 

The SPMD Design Pattern 

Replicate the program. 

Add glue code 

Break up the data 

A sequential program 

working on a data set 

•A  single program working on a 

decomposed data set. 

•Use Node ID and numb of nodes to 

split up work between processes 

• Coordination by passing messages. 
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Heat Diffusion MPI Example   

MPI_Init (&argc, &argv); 

MPI_Comm_size (MPI_COMM_WORLD, &P); 

MPI_Comm_rank (MPI_COMM_WORLD, &myID); 

double *u   = malloc (sizeof(double) * (2 + N/P))  // include "Ghost Cells" 

double *up1 = malloc (sizeof(double) * (2 + N/P)); // to hold values 

                                                    // from my neighbors 

initialize_data(uk, ukp1, N, P); 

for (int t = 0; t < N_STEPS; ++t){ 

  if (myID != 0)  MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, 0, MPI_COMM_WORLD); 

  if (myID != P-1) MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD, &status); 

  if (myID != P-1) MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD); 

  if (myID != 0)   MPI_Recv (&u[0], 1, MPI_DOUBLE, myID-1, 0,MPI_COMM_WORLD, &status); 

 

  for (int x = 2; x < N/P; ++x) 

    up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]); 

  if (myID != 0) 

    up1[1] = u[1] + (k / (h*h)) * (u[1+1] - 2*u[1] + u[1-1]);   

  if (myID != P-1) 

    up1[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]); 

  temp = up1; up1 = u; u = temp; 

 

} // End of for (int t ...) loop 

 

MPI_Finalize(); 

return 0; 

 

We write/explain 

this part first and 

then address the 

communication and 

data structures 
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Heat Diffusion MPI Example   

// Compute interior of each “chunk” 

  for (int x = 2; x < N/P; ++x) 

    up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]); 

 

// update edges of each chunk keeping the two far ends fixed  

// (first element on Process 0 and the last element on process P-1).  

  if (myID != 0) 

    up1[1] = u[1] + (k / (h*h)) * (u[1+1] - 2*u[1] + u[1-1]);   

 

  if (myID != P-1) 

    up1[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]); 

 

// Swap pointers to prepare for next iterations 

  temp = up1; up1 = u; u = temp; 

 

} // End of for (int t ...) loop 

 

MPI_Finalize(); 

return 0; 

Note I was lazy and assumed N was evenly 

divided by P.  Clearly, I’d never do this in a 

“real” program. 

Update array values using local data 

and values from ghost cells. 

u[0] and u[N/P+1] 

are the ghost 

cells 
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Heat Diffusion MPI Example   

MPI_Init (&argc, &argv); 

MPI_Comm_size (MPI_COMM_WORLD, &P); 

MPI_Comm_rank (MPI_COMM_WORLD, &myID); 

double *u   = malloc (sizeof(double) * (2 + N/P))  // include "Ghost Cells" 

double *up1 = malloc (sizeof(double) * (2 + N/P)); // to hold values 

                                                    // from my neighbors 

initialize_data(uk, ukp1, N, P); 

for (int t = 0; t < N_STEPS; ++t){ 

  if (myID != 0) 

    MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, 0, MPI_COMM_WORLD); 

 

  if (myID != P-1) 

    MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD, &status); 

  

  if (myID != P-1) 

    MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD); 

   

  if (myID != 0) 

    MPI_Recv (&u[0], 1, MPI_DOUBLE, myID-1, 0,MPI_COMM_WORLD, &status); 

/* continued on previous slide */ 

1D PDE solver … the simplest “real” message 

passing code I can think of. Note: edges of 

domain held at a fixed temperature 

Send my “left” boundary value to the neighbor on my “left’ 

Receive my “right” ghost cell from the neighbor to my “right’ 

Send my “right” boundary value  to the neighbor to my “right’ 

Receive my “left” ghost cell from the neighbor to my “left” 
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The Geometric Decomposition Pattern 

T2 T1 

Ghost cell 

Ghost cell 

 This is an instance of a very important design pattern … the Geometric 

decomposition pattern. 

 We will cover this pattern in more detail in a later lecture.  
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Partitioned Array Pattern 

 Problem: 

 Arrays often need to be partitioned between multiple UEs.  How can we 

do this so the resulting program is both readable and efficient? 

 Forces 

 Large number of small blocks organized to balance load. 

 Able to specialize organization to different platforms/problems. 

 Understandable indexing to make programming easier. 

 Solution: 

 Express algorithm in blocks 

 Abstract indexing inside mapping functions … programmer works in an 

index space natural to the domain, functions map into distribution 

needed for efficient execution. 

 The text of the pattern defines some of these common mapping 

functions (which can get quite confusing … and in the literature are 

usually left as “an exercise for the reader”). 
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Partitioned Arrays 

 Realistic problems are 2D or 

3D; require move complex 

data distributions. 

 We need to parallelize the 

computation by partitioning 

this index space 

 Example: Consider a 2D 

domain over which we wish 

to solve a PDE using an 

explicit finite difference 

solver .  The figure shows a 

five point stencil … update a 

value based on its value and 

its 4 neighbors. 

 Start with an array  
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Partitioned Arrays: Column block distribution 

 Split the non-unit-stride dimension (P-1) times to produce P chunks, assign 

the ith chunk to Pi. WIth N = n * n, P = p * p 

 In a 2D finite-differencing program (exchange edges), how much do we 

have to communicate?  2*n = 2*sqrt(N) messages per processor 

UE = unit of 

execution … think of 

it as a generic term 

for “process or 

thread” 

P is the 

# of 

processors 



68 

Partitioned Arrays: Block distribution 

 If we parallelize in both dimensions, then we have (n/p)2 elements per 

processor, and we need to send 4*(n/p) = 4 *sqrt(N/P) messages from 

each processor. Asymptotically better than 2*sqrt(N). 

P is the 

# of 

processors 



69 

Partitioned Arrays:  
block cyclic distribution 

 LU decomposition (A= LU) .. Move 

down the diagonal transform rows to 

“zero the column” below the diagonal. 

 Zeros fill in the right lower triangle of 

the matrix … less work to do.  

 Balance load with cyclic distribution  

of blocks of A mapped onto a grid of 

nodes (2x2 in this  case … colors 

show the mapping to nodes).   

* * * * * * * * 
0 * * * * * * * 
0 0 * * * * * * 
0 0 * 0 * * * * 
0 0 * 0 * * * * 
0 0 * 0 * * * * 
0 0 * 0 * * * * 
0 0 * 0 * * * * 
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Exercise 4: Transpose 

 Goal 

 Explore interaction of partitioned arrays and message passing 

 Program 

 We provide a matrix transposition program … which is one of the 

simplest examples of a program based on partitioned arrays. 

 Notice how the SPMD pattern interacts with the partitioned array 

pattern. 

 Modify the program to use isend/irecv and overlap 

communication with local transpose to maximize aggregate 

bandwidth 
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MIXING MPI AND OPENMP 
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How do people mix MPI and OpenMP? 

 

Replicate the program. 

Add glue code 

Break up the data 

A sequential program 

working on a data set 

•Create the MPI program with 

its data decomposition. 

• Use OpenMP inside each 

MPI process. 
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Pi program with MPI and OpenMP 
#include <mpi.h> 

#include “omp.h” 

void main (int argc, char *argv[]) 

{ 

 int i, my_id, numprocs;  double x, pi, step, sum = 0.0 ; 

 step = 1.0/(double) num_steps ; 

   MPI_Init(&argc, &argv) ; 

 MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ; 

 MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ; 

 my_steps = num_steps/numprocs ; 

#pragma omp parallel for reduction(+:sum) private(x) 

 for (i=my_id*my_steps; i<(m_id+1)*my_steps ; i++) 

 { 

    x = (i+0.5)*step; 

    sum += 4.0/(1.0+x*x); 

 } 

 sum *= step ;  

 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 

  MPI_COMM_WORLD) ; 

} 

Get the MPI 

part done 

first, then add 

OpenMP 

pragma 

where it 

makes sense 

to do so 
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Key issues when mixing OpenMP and MPI 

1. Messages are sent to a process not to a particular thread. 

 Not all MPIs are threadsafe.  MPI 2.0 defines threading modes: 

• MPI_Thread_Single: no support for multiple threads 

• MPI_Thread_Funneled: Mult threads, only master calls MPI 

• MPI_Thread_Serialized: Mult threads each calling MPI, but they 
do it one at a time. 

• MPI_Thread_Multiple: Multiple threads without any restrictions 

 Request and test thread modes with the function: 

MPI_init_thread(desired_mode, delivered_mode, ierr) 

2. Environment variables are not propagated by mpirun.  
You’ll need to broadcast OpenMP parameters and set them 
with the library routines. 
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Dangerous Mixing of MPI and OpenMP 

 The following will work only if MPI_Thread_Multiple is supported … a 

level of support I wouldn’t depend on. 

MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ; 
#pragma omp parallel  
{ 
     int tag, swap_neigh, stat, omp_id = omp_thread_num(); 
     long buffer [BUFF_SIZE], incoming [BUFF_SIZE]; 
     big_ugly_calc1(omp_id, mpi_id, buffer); 
                                                                                  // Finds MPI id and tag so 
     neighbor(omp_id, mpi_id, &swap_neigh, &tag);  // messages don’t conflict 
    
     MPI_Send (buffer,   BUFF_SIZE, MPI_LONG, swap_neigh,  
                    tag, MPI_COMM_WORLD); 
     MPI_Recv (incoming, buffer_count, MPI_LONG, swap_neigh,  
                    tag,  MPI_COMM_WORLD, &stat); 
 
     big_ugly_calc2(omp_id, mpi_id, incoming, buffer); 
#pragma critical 
    consume(buffer, omp_id, mpi_id); 
} 
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Messages and threads 

 Keep message passing and threaded sections of your program 
separate: 

 Setup message passing outside OpenMP parallel regions 
(MPI_Thread_funneled) 

 Surround with appropriate directives (e.g. critical section or master) 
(MPI_Thread_Serialized) 

 For certain applications depending on how it is designed it may not 
matter which thread handles a message.  (MPI_Thread_Multiple) 

• Beware of race conditions though if two threads are probing on 
the same message and then racing to receive it. 
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Safe Mixing of MPI and OpenMP 
Put MPI in sequential regions 

MPI_Init(&argc, &argv) ;      MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ; 
 
// a whole bunch of initializations 
 
#pragma omp parallel for  
for (I=0;I<N;I++) { 
     U[I] =  big_calc(I); 
} 
 
     MPI_Send (U,   BUFF_SIZE, MPI_DOUBLE, swap_neigh,  
                    tag, MPI_COMM_WORLD); 

 MPI_Recv (incoming, buffer_count, MPI_DOUBLE, swap_neigh,  
                    tag,  MPI_COMM_WORLD, &stat); 
 
#pragma omp parallel for  
for (I=0;I<N;I++) { 
     U[I] =  other_big_calc(I, incoming); 
} 
 
consume(U, mpi_id); 

Technically Requires 

MPI_Thread_funneled, but I 

have never had a problem with 

this approach … even with pre-

MPI-2.0 libraries. 
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Safe Mixing of MPI and OpenMP 
Protect MPI calls inside a parallel region 

MPI_Init(&argc, &argv) ;      MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ; 
 
// a whole bunch of initializations 
 
#pragma omp parallel 
{ 
#pragma omp for 
    for (I=0;I<N;I++)    U[I] =  big_calc(I); 
 
#pragma master 
{ 
     MPI_Send (U,   BUFF_SIZE, MPI_DOUBLE, neigh, tag,  MPI_COMM_WORLD); 

 MPI_Recv (incoming, count, MPI_DOUBLE, neigh,  tag,  MPI_COMM_WORLD,          
                                                                                                                           &stat); 
} 
#pragma omp barrier 
#pragma omp for  
    for (I=0;I<N;I++)   U[I] =  other_big_calc(I, incoming); 
 
#pragma omp master 
    consume(U, mpi_id); 
} 

Technically Requires 

MPI_Thread_funneled, but I 

have never had a problem with 

this approach … even with pre-

MPI-2.0 libraries. 
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Hybrid OpenMP/MPI works, but is it worth it? 

 Literature* is mixed on the hybrid model: sometimes its better, 

sometimes MPI alone is best. 

 There is potential for benefit to the hybrid model 

 MPI algorithms often require replicated data making them less memory 

efficient. 

 Fewer total MPI communicating agents means fewer messages and less 

overhead from message conflicts. 

 Algorithms with good cache efficiency should benefit from shared caches 

of multi-threaded programs. 

 The model maps perfectly with clusters of SMP nodes. 

 But really, it’s a case by case basis and to large extent depends on the 

particular application. 

*L. Adhianto and Chapman, 2007 
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CLOSING COMMENTS 
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Does a shared address space make 
programming easier?   

Time 

E
ffo

rt 

Extra work upfront,  but easier 
optimization and debugging means 

overall, less time to solution 
Message passing 

Time 

E
ffo

rt 

initial parallelization can be 
quite easy  

Multi-threading 

But difficult debugging and 
optimization means overall 

project takes longer  

*P. N. Klein, H. Lu, and R. H. B. Netzer, Detecting Race Conditions in Parallel Programs that Use Semaphores, Algorithmica,  vol. 35 pp. 321–345, 2003 

Proving that a shared address space program using 

semaphores is race free is an NP-complete problem* 
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Closing comments 

 Question conventional wisdom. 

 Do we really need cache coherence?  If the memory hierarchy can’t be 

hidden, isn’t it better to expose the hierarchy so I can control it? 

 Debugging and Maintenance costs more than coding.  So extra work up 

front to organize a problem to exploit the concurrency (e.g. decomposing 

and distributing data structures) shouldn’t be such a big deal. 

 SW lives longer than HW. So why would anyone use a non-portable, 

non-standard programming model?  That’s just nuts!! 

 As you move forward through the course ….  

 Notice that the patterns used in creating parallel code only weakly 

depend on the programming model.  I can do loop parallelism with MPI, 

message passing with pthreads, kernel parallelism with OpenMP. 

 So learn multiple programming models and enjoy them … but don’t 

obsess about them.  Ultimately, it’s the design patterns and learning how 

to apply them to different problems that matter. 
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MPI References 

 The Standard itself: 

 at http://www.mpi-forum.org 

 All MPI official releases, in both postscript and 

HTML 

 Other information on Web: 

 at http://www.mcs.anl.gov/mpi 

 pointers to lots of stuff, including other talks and 

tutorials, a FAQ, other MPI pages 

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi
http://www.mcs.anl.gov/mpi
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Books for learning MPI 

 Using MPI-2:  Portable Parallel Programming  

with the Message-Passing Interface, by Gropp,  

Lusk, and Thakur, MIT Press, 1999.. 

 Parallel Programming with MPI, by Peter Pacheco, 

Morgan-Kaufmann, 1997. 

 Patterns for Parallel Programing, by Tim Mattson, 

Beverly Sanders, and Berna Massingill. 
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MPI core functions 

#include <mpi.h> 

int size, rank, argc, err_code=0;    

char **argv; 

 

MPI_Init (&argc, &argv); 

MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

MPI_Comm_size (MPI_COMM_WORLD, &size); 

MPI_Abort(MPI_COMM_WORLD,      err_code); 

MPI_Finalize(); 
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Basic MPI communication 

Blocking send/receive 

 MPI_Send (void* buf, int count, MPI_Datatype datatype,  

       int dest, int tag, MPI_Comm comm)   

 

 MPI_Recv (void* buf, int count, MPI_Datatype datatype,  

       int source, int tag, MPI_Comm comm, MPI_Status* status) 

 

Nonblocking send/receive 

 MPI_Irecv(void *buf, int count, MPI_Datatype datatype, 

       int source, int tag, MPI_Comm comm,  

       MPI_Request *request) 

 

 MPI_Isend(const void *buf, int count, MPI_Datatype datatype, 

       int dest, int tag, MPI_Comm comm, MPI_Request *request) 

 

 MPI_Wait(MPI_Request *request, MPI_Status *status) 
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Collective Communication 

 MPI_Reduce (void* sendbuf, void* recvbuf,  

           int count, MPI_Datatype datatype, MPI_Op op, 

  int root, MPI_Comm comm) 

 

 MPI_Bcast (void *buf, int count, MPI_Datatype datatype,  

           int root, MPI_Comm comm) 

 

 MPI_Sendrecv(void *sendbuf, int sendcount, 

     MPI_Datatype sendtype, int dest, int sendtag,  

     void *recvbuf, int recvcount, MPI_Datatype recvtype, 

     int source, int recvtag, MPI_Comm comm,  

     MPI_Status *recv_status) 

 

 MPI_Barrier(MPI_Datatype datatype) 

 


