
1 1

A hand’s on introduction to Cluster

Computing
Tim Mattson (Intel Labs)

Intel Labs 80 core Research
processor

Intel labs 48 core SCC processor

VRC

2
1

.4
m

m

26.5mm

System Interface + I/O

D
D

R
3

 M
C

D
D

R
3

 M
C

D
D

R
3

 M
C

D
D

R
3

 M
C

PLL

TILE

TILE

JTAG

IBM Cell Broadband engine processor

NVIDIA GTX 480 processor

Intel “Sandybridge” processor

NVIDIA Tegra 3 (quad Arm
Corex A9 cores + GPU)

Other than the Intel lab’s research processors. Die photos from UC Berkeley CS194 lecture notes Third party names are the property of their owners

An Intel MIC processor

2 2

Disclaimer
READ THIS … its very important

• The views expressed in this talk are those of the
speakers and not their employer.

• This is an academic style talk and does not address
details of any particular Intel product. You will learn
nothing about Intel products from this presentation.

• This was a team effort, but if we say anything really
stupid, it’s our fault … don’t blame our collaborators.

Slides marked with this symbol were produced-with Kurt

Keutzer and his team for CS194 … A UC Berkeley course

on Architecting parallel applications with Design Patterns.

Third party names are the property of their owners.

3/119

INTRODUCTION TO MPI

4

Programming Model: Message Passing

 Program consists of a collection of named processes.

 Number of processes almost always fixed at program startup time

 Local address space per node -- NO physically shared memory.

 Logically shared data is partitioned over local processes.

 Processes communicate through explicit communication events.

 Coordination is implicit in every communication event.

 MPI (Message Passing Interface) is the most commonly used SW

Pn P1 P0

s: 12

i: 2

Private

memory

s: 14

i: 3

s: 11

i: 1

send P1,s

Network

receive Pn,s

5

MPI: Message Passing Interface

omp_set_lock(lck) MPI_Bsend_init

MPI_Pack

MPI_Sendrecv_replace

MPI_Recv_init

MPI_Allgatherv

MPI_Unpack

MPI_Sendrecv

MPI_Bcast

MPI_Ssend

C$OMP ORDERED MPI_Startall

MPI_Test_cancelled

MPI_Type_free

MPI_Type_contiguous

MPI_Barrier

MPI_Start

MPI_COMM_WORLD

MPI_Recv

MPI_Send

MPI_Waitall

MPI_Reduce

MPI_Alltoallv

MPI_Group_compare

MPI_Scan
MPI_Group_size

MPI_Errhandler_create

MPI: An API for Writing Clustered Applications

• A library of routines to coordinate the
execution of multiple processes.

• Provides point to point and collective
communication in Fortran, C and C++

• Unifies last 30+ years of cluster
computing and MPP practice

6

An MPI program at runtime

 Typically, when you run an MPI program, multiple processes all running

the same program are launched … working on their own block of data.

7

An MPI program at runtime

 Typically, when you run an MPI program, multiple processes all running

the same program are launched … working on their own block of data.

The collection of processes involved in a computation

is called “a process group”

8

An MPI program at runtime

 Typically, when you run an MPI program, multiple processes all running

the same program are launched … working on their own block of data.

You can dynamically split a process group into multiple subgroups to

manage how processes are mapped onto different tasks

MPI functions work within a “context” … events in different contexts …

even if they share a process group … cannot interfere with each other.

9

MPI Hello World

#include <stdio.h>

#include <mpi.h>

int main (int argc, char **argv){

 int rank, size;

 MPI_Init (&argc, &argv);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 MPI_Comm_size (MPI_COMM_WORLD, &size);

 printf("Hello from process %d of %d\n",

 rank, size);

 MPI_Finalize();

 return 0;

}

10

Initializing and finalizing MPI

#include <stdio.h>

#include <mpi.h>

int main (int argc, char **argv){

 int rank, size;

 MPI_Init (&argc, &argv);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 MPI_Comm_size (MPI_COMM_WORLD, &size);

 printf("Hello from process %d of %d\n",

 rank, size);

 MPI_Finalize();

 return 0;

}

int MPI_Init (int* argc, char* argv[])

 Initializes the MPI library … called before any

other MPI functions.

 agrc and argv are the command line args passed

from main()

int MPI_Finalize (void)

 Frees memory allocated by the MPI library … close
every MPI program with a call to MPI_Finalize

11

How many processes are involved?

#include <stdio.h>

#include <mpi.h>

int main (int argc, char **argv){

 int rank, size;

 MPI_Init (&argc, &argv);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 MPI_Comm_size (MPI_COMM_WORLD, &size);

 printf("Hello from process %d of %d\n",

 rank, size);

 MPI_Finalize();

 return 0;

}

int MPI_Comm_size (MPI_Comm comm, int* size)

 MPI_Comm, an opaque data type called a communicator. Default

context: MPI_COMM_WORLD (all processes)

 MPI_Comm_size returns the number of processes in the process

group associated with the communicator

Communicators consist of

two parts, a context and a

process group.

The communicator lets me

control how groups of

messages interact.

The communicator lets me

write modular SW … i.e. I

can give a library module its

own communicator and

know that it’s messages

can’t collide with messages

originating from outside the

module

12

Which process “am I” (the rank)

#include <stdio.h>

#include <mpi.h>

int main (int argc, char **argv){

 int rank, size;

 MPI_Init (&argc, &argv);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 MPI_Comm_size (MPI_COMM_WORLD, &size);

 printf("Hello from process %d of %d\n",

 rank, size);

 MPI_Finalize();

 return 0;

}

int MPI_Comm_rank (MPI_Comm comm, int* rank)

 MPI_Comm, an opaque data type, a communicator. Default context:

MPI_COMM_WORLD (all processes)

 MPI_Comm_rank An integer ranging from 0 to “(num of procs)-1”

Note that other than init()

and finalize(), every MPI

function has a

communicator.

This makes sense .. You

need a context and group of

processes that the MPI

functions impact … and

those come from the

communicator.

13

Running the program

#include <stdio.h>

#include <mpi.h>

int main (int argc, char **argv){

 int rank, size;

 MPI_Init (&argc, &argv);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 MPI_Comm_size (MPI_COMM_WORLD, &size);

 printf("Hello from process %d of %d\n",

 rank, size);

 MPI_Finalize();

 return 0;

}

 On a 4 node cluster, I’d run this

program (hello) as:

> mpiexec –n 4 hello

• What would this program would output?

14

Exercise 1: Hello world

 Goal

 To confirm that you can run a program on our cluster

 Program

 Write a program that prints “hello world” to the screen.

 Modify it to run as an MPI program … with each process in the process group

printing “hello world” and its rank

#include <mpi.h>

int size, rank, argc; char **argv;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

MPI_Comm_size (MPI_COMM_WORLD, &size);

MPI_Finalize();

To run the executable hello on 2 nodes of the cluster, type:

 > mpiexec –n 4 a.out

If you need to start the MPI deamon (mpd) go to your home directory and type:

 > touch .mpd.conf

 > chmod 600 .mpd.conf

15

Running the program

#include <stdio.h>

#include <mpi.h>

int main (int argc, char **argv){

 int rank, size;

 MPI_Init (&argc, &argv);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 MPI_Comm_size (MPI_COMM_WORLD, &size);

 printf("Hello from process %d of %d\n",

 rank, size);

 MPI_Finalize();

 return 0;

}

 On a 4 node cluster, I’d run this

program (hello) as:

> mpiexec –n 4 hello

Hello from process 1 of 4

Hello from process 2 of 4

Hello from process 0 of 4

Hello from process 3 of 4

16/119

MPI FOR BULK

SYNCHRONOUS PROGRAMS

17

Sending and Receiving Data

 MPI_Send performs a blocking send of the specified data (“count”

copies of type “datatype,” stored in “buf”) to the specified destination

(rank “dest” within communicator “comm”), with message ID “tag”

int MPI_Send (void* buf, int count,

 MPI_Datatype datatype, int dest,

 int tag, MPI_Comm comm)

int MPI_Recv (void* buf, int count,

 MPI_Datatype datatype, int source,

 int tag, MPI_Comm comm,

 MPI_Status* status)

 MPI_Recv performs a blocking receive of specified data from specified

source whose parameters match the send; information about transfer is

stored in “status”

By “blocking” we mean the functions return as soon as the buffer, “buf”, can be

safely used.

18

MPI Data Types for C

MPI Data Type C Data Type

MPI_BYTE

MPI_CHAR signed char

MPI_DOUBLE double

MPI_FLOAT float

MPI_INT int

MPI_LONG long

MPI_LONG_DOUBLE long double

MPI_PACKED

MPI_SHORT short

MPI_UNSIGNED_SHORT unsigned short

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long

MPI_UNSIGNED_CHAR unsigned char

MPI provides
predefined
data types

that must be
specified when

passing
messages.

19

The data in a message: datatypes

 The data in a message to send or receive is described by a triple:

 (address, count, datatype)

 An MPI datatype is defined as:

 Predefined, simple data type from the language (e.g., MPI_DOUBLE)

 Complex data types (contiguous blocks or even custom types.

 E.g. … A particle’s state is defined by its 3 coordinates and 3 velocities

MPI_Datatype PART;

MPI_Type_contiguous(6, MPI_DOUBLE, &PART);

MPI_Type_commit(&PART);

 You can use this data type in MPI functions, for example, to send data for a

single particle:

 MPI_Send (buff, 1, PART, Dest, tag, MPI_COMM_WORLD);

address
count

Datatype

20

Receiving the right message

 The receiving process identifies messages with the double :

 (source, tag)

 Where:

 Source is the rank of the sending process

 Tag is a user-defined integer to help the receiver keep track of different

messages from a single source

 MPI_Recv (buff, 1, PART, Src, tag, MPI_COMM_WORLD, &status);

Source tag

 Can relax tag checking by specifying MPI_ANY_TAG as the tag in a receive.

 Can relax source checking by specifying MPI_ANY_SOURCE

 MPI_Recv (buff, 1, PART, MPI_ANY_SOURCE, MPI_ANY_TAG,

 MPI_COMM_WORLD, &status);

 This is a useful way to insert race conditions into an MPI program

21

A typical pattern with MPI Programs

 Many MPI applications have few (if any) sends and receives. They

use the following very common pattern:

 Use the Single Program Multiple Data

pattern

 Each process maintains a local view of

the global data

 A problem broken down into phases each

of which is composed of two subphases:

• Compute on local view of data

• Communicate to update global view

on all processes (collective

communication).

 Continue phases until complete

Collective comm.

Collective comm.

P0 P3 P2 P1

Processes

Time

This is a subset or the SPMD pattern sometimes

referred to as the Bulk Synchronous pattern.

This is a subset or the SPMD pattern sometimes

referred to as the Bulk Synchronous pattern.

22

MPI Collective Routines

 Collective communications: called by all processes in the group to

create a global result and share with all participating processes.

 Allgather, Allgatherv, Allreduce, Alltoall,

Alltoallv, Bcast, Gather, Gatherv, Reduce,

Reduce_scatter, Scan, Scatter, Scatterv

 Notes:

 Allreduce, Reduce, Reduce_scatter, and Scan use the
same set of built-in or user-defined combiner functions.

 Routines with the “All” prefix deliver results to all participating
processes

 Routines with the “v” suffix allow chunks to have different sizes

 Global synchronization is available in MPI

 MPI_Barrier(comm)

 Blocks until all processes in the group of the communicator comm call it.

23

Collective Data Movement

A

B

D

C

B C D

A

A

A

A

Broadcast

Scatter

Gather

A

A

P0

P1

P2

P3

P0

P1

P2

P3

Take a value from P0

and give a copy to

P1, P2 and P3

Scatter an array on

P0 to P1, P2, and P3

Gather values from

P1, P2, and P3 into

an array on P0

24

More Collective Data Movement

A

B

D

C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

A B C D

A B C D

A B C D

A B C D

Allgather

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3

Take a chunk from each

P and gather into a single

array on each P

Take arrays on each P

and spread them out to

arrays on each P

25

Collective Computation

P0

P1

P2

P3

P0

P1

P2

P3

A

B

D

C

A

B

D

C

ABCD

A
AB

ABC

ABCD

Reduce

Scan

Take values on each P

and combine them with

an op (such as add) into

a single value on one P.

Take values on each P

and combine them with a

scan operation and

spread the scan array out

among all P.

26

MPI_BCAST Example

#include <mpi.h>

int main(int argc, char *argv[]) {

 int nprocs, myrank, msg[4] = {0,0,0,0};

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

 if (myrank == 0) msg[0] = 1;

 else msg[0] = 0;

 MPI_Bcast(msg, 4, MPI_INT, 0, MPI_COMM_WORLD);

 MPI_Finalize();

}

MPI_COMM_WORLD

Rank 0

1 1 1 1 msg

Rank 1

0 0 0 0 msg

1 1 1 1 msg

Rank 2

0 0 0 0 msg

1 1 1 1 msg

M
P
I
_
B
C
A
S
T

27

Reduction

 int MPI_Reduce (void* sendbuf,

 void* recvbuf, int count,

 MPI_Datatype datatype, MPI_Op op,

 int root, MPI_Comm comm)

• MPI_Reduce performs specified reduction operation on specified data

from all processes in communicator, places result in process “root” only.

• MPI_Allreduce places result in all processes (avoid unless necessary)

Operation Function

MPI_SUM Summation

MPI_PROD Product

MPI_MIN Minimum value

MPI_MINLOC Minimum value and location

MPI_MAX Maximum value

MPI_MAXLOC Maximum value and location

MPI_LAND Logical AND

Operation Function

MPI_BAND Bitwise AND

MPI_LOR Logical OR

MPI_BOR Bitwise OR

MPI_LXOR Logical exclusive OR

MPI_BXOR Bitwise exclusive OR

User-defined It is possible to define new
reduction operations

28

MPI_REDUCE Example

#include <mpi.h>

int main(int argc, char* argv[]) {

 int msg, sum, nprocs, myrank;

 MPI_Init(&argc,&argv);

 MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

 sum = 0;

 msg = myrank;

 MPI_Reduce(&msg, &sum, 1, MPI_INT, MPI_SUM, 0,

 MPI_COMM_WORLD);

 MPI_Finalize();

}

MPI_COMM_WORLD

Rank 1

1 msg

Rank 0

3 sum

0 msg

M
P
I
_
R
E
D
U
C
E

2 msg

Rank 2

0 + 1 + 2

29

Exercise 2: Pi Program

 Goal

 To write a simple Bulk Synchronous, SPMD program

 Program

 Start with the provided “pi program” and using an MPI reduction, write a

parallel version of the program.

#include <mpi.h>

int size, rank, argc; char **argv;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

MPI_Comm_size (MPI_COMM_WORLD, &size);

MPI_Finalize();

int MPI_Reduce (void* sendbuf, void* recvbuf, int count,

 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

Operation Function

MPI_SUM Summation

MPI_PROD Product

MPI Data Type C Data
Type

MPI_DOUBLE double

MPI_FLOAT float

MPI_INT int

MPI_LONG long

30

Example Problem: Numerical Integration


4.0

(1+x2)
dx = 

0

1

 F(xi)x  
i = 0

N

Mathematically, we know that:

We can approximate the

integral as a sum of

rectangles:

Where each rectangle has

width x and height F(xi) at

the middle of interval i.

4.0

2.0

1.0

X
0.0

31

PI Program: an example

static long num_steps = 100000;

double step;

void main ()

{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 x = 0.5 * step;

 for (i=0;i<= num_steps; i++){

 x+=step;

 sum += 4.0/(1.0+x*x);

 }

 pi = step * sum;

}

32

Pi program in MPI

#include <mpi.h>

void main (int argc, char *argv[])

{

 int i, my_id, numprocs; double x, pi, step, sum = 0.0 ;

 step = 1.0/(double) num_steps ;

 MPI_Init(&argc, &argv) ;

 MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;

 MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;

 my_steps = num_steps/numprocs ;

 for (i=my_id*my_steps; i<(my_id+1)*my_steps ; i++)

 {

 x = (i+0.5)*step;

 sum += 4.0/(1.0+x*x);

 }

 sum *= step ;

 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

 MPI_COMM_WORLD) ;

}

Sum values in “sum” from

each process and place it

in “pi” on process 0

33

MPI Pi program performance

*Intel compiler (icpc) with –O3 on Apple OS X 10.7.3 with a dual core (four HW thread)

Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

Thread

or procs

OpenMP

SPMD

critical

OpenMP

PI Loop

MPI

1 0.85 0.43 0.84

2 0.48 0.23 0.48

3 0.47 0.23 0.46

4 0.46 0.23 0.46

Note: OMP loop used a

Blocked loop distribution.

The others used a cyclic

distribution. Serial .. 0.43.

34

UNDERSTANDING MESSAGE

PASSING WITH MPI

35

Buffers

 Message passing has a small set of primitives, but there are subtleties

 Buffering and deadlock

 Deterministic execution

 Performance

 When you send data, where does it go? One possibility is:

Process 0 Process 1

User data

Local buffer

the network

User data

Local buffer

Derived from: Bill Gropp, UIUC

36

Blocking Send-Receive Timing Diagram
(Receive before Send)

send side receive side

MPI_Send: T1

T4: MPI_Recv returns

MPI_Send returns T2

Once receive

is called @ T0,

Local buffer unavailable

to user

Local buffer filled and

available to user

It is important to post the receive before

sending, for highest performance.

T0: MPI_Recv

Local

buffer can

be reused

T3: Transfer Complete

time time

37

 Send a large message from process 0 to process 1

 If there is insufficient storage at the destination, the send
must wait for the user to provide the memory space (through
a receive)

 What happens with this code?

Sources of Deadlocks

Process 0

Send(1)

Recv(1)

Process 1

Send(0)

Recv(0)

• This code could deadlock … it depends on the
availability of system buffers in which to store the data
sent until it can be received

Slide source: based on slides from Bill Gropp, UIUC

38

Some Solutions to the “deadlock” Problem

 Order the operations more carefully:

• Supply receive buffer at same time as send:

Process 0

Send(1)

Recv(1)

Process 1

Recv(0)

Send(0)

Process 0

Sendrecv(1)

Process 1

Sendrecv(0)

Slide source: Bill Gropp, UIUC

39

More Solutions to the “unsafe” Problem

 Supply a sufficiently large buffer in the send function

• Use non-blocking operations:

Process 0

Bsend(1)

Recv(1)

Process 1

Bsend(0)

Recv(0)

Process 0

Isend(1)

Irecv(1)

Waitall

Process 1

Isend(0)

Irecv(0)

Waitall

Slide source: Bill Gropp, UIUC

40

Non-Blocking Communication

 Non-blocking operations return immediately and pass ‘‘request handles”
that can be waited on and queried

• MPI_ISEND(start, count, datatype, dest, tag, comm, request)

• MPI_IRECV(start, count, datatype, src, tag, comm, request)

• MPI_WAIT(request, status)

 One can also test without waiting using MPI_TEST

• MPI_TEST(request, flag, status)

 Anywhere you use MPI_Send or MPI_Recv, you can use the pair of
MPI_Isend/MPI_Wait or MPI_Irecv/MPI_Wait

Non-blocking operations are extremely important … they

allow you to overlap computation and communication.

41

buffer unavailable

to user

Non-Blocking Send-Receive Diagram

send side receive side

MPI_Isend

T8: MPI_Wait returns

T3 buffer unavailable

to user

receive buffer

filled and available

to the user

T0: MPI_Irecv

T7: transfer finishes

T4: MPI_Wait called

Sender completes

T1: MPI_Irecv Returns

T5

time time

T2

MPI_Isend returns

T6

T9

MPI_Wait

MPI_Wait returns

buffer available

to user

42

Example: shift messages around a ring

(part 1 of 2)

#include <stdio.h>

#include <mpi.h>

int main(int argc, char **argv)

{

 int num, rank, size, tag, next, from;

 MPI_Status status1, status2;

 MPI_Request req1, req2;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 MPI_Comm_size(MPI_COMM_WORLD, &size);

 tag = 201;

 next = (rank+1) % size;

 from = (rank + size - 1) % size;

 if (rank == 0) {

 printf("Enter the number of times around the ring: ");

 scanf("%d", &num);

 printf("Process %d sending %d to %d\n", rank, num, next);

 MPI_Isend(&num, 1, MPI_INT, next, tag, MPI_COMM_WORLD,&req1);

 MPI_Wait(&req1, &status1);

 }

43

Example: shift messages around a ring

(part 2 of 2)
 do {

 MPI_Irecv(&num, 1, MPI_INT, from, tag, MPI_COMM_WORLD, &req2);

 MPI_Wait(&req2, &status2);

 printf("Process %d received %d from process %d\n", rank, num, from);

 if (rank == 0) {

 num--;

 printf("Process 0 decremented number\n");

 }

 printf("Process %d sending %d to %d\n", rank, num, next);

 MPI_Isend(&num, 1, MPI_INT, next, tag, MPI_COMM_WORLD, &req1);

 MPI_Wait(&req1, &status1);

 } while (num != 0);

 if (rank == 0) {

 MPI_Irecv(&num, 1, MPI_INT, from, tag, MPI_COMM_WORLD, &req2);

 MPI_Wait(&req2, &status2);

 }

 MPI_Finalize();

 return 0;

}

44

Exercise 3: Ring program

 Goal

 Explore other modes of message passing in MPI

 Program

 Start with the basic ring program we provide. Run it for a range

of message sizes and notes what happens for large messages.

 If the program deadlocks (and it should) figure out why and how

to fix it.

 Try a range of message passing functions to understand how

they work.

45

MPI AND THE GEOMETRIC

DECOMPOSITION PATTERN

46

Example: finite difference methods

 Solve the heat diffusion equation in 1 D:

 u(x,t) describes the temperature field

 We set the heat diffusion constant to one

 Boundary conditions, constant u at endpoints.

ihxxi  0

t

u

x

u









2

2

 map onto a mesh with stepsize h and k

 Central difference approximation for spatial

derivative (at fixed time) 2

11

2

2 2

h

uuu

x

u jjj  






iktti  0

 Time derivative at t = tn+1

k

uu

dt

du nn 


1

47

Example: Explicit finite differences
 Combining time derivative expression using spatial derivative at t = tn

2

11

1 2

h

uuu

k

uu n

j

n

j

n

j

n

j

n

j 

 




 Solve for u at time n+1 and step j

 The solution at t = tn+1 is determined explicitly from the solution at t = tn

(assume u[t][0] = u[t][N] = Constant for all t).

n

j

n

j

n

j

n

j ruruuru 11

1)21(

 
2h

kr 

 for (int t = 0; t < N_STEPS-1; ++t)
 for (int x = 1; x < N-1; ++x)
 u[t+1][x] = u[t][x] + r*(u[t][x+1] - 2*u[t][x] + u[t][x-1]);

 Explicit methods are easy to compute … each point updated based on

nearest neighbors. Converges for r<1/2.

Heat Diffusion equation

infinitesimally narrow rod (~one D)

“infinite” heat

bath (fixed

temperature, T2)

“infinite” heat

bath (fixed

temperature, T1)

T2 T1

48

Heat Diffusion equation

infinitesimally narrow rod (~one D)

T2 T1

Pictorially, you are sliding a three

point “stencil” across the domain

(u[t]) and computing a new value of

the center point (u[t+1]) at each stop.

49

50

Heat Diffusion equation

int main()

{

 double *u = malloc (sizeof(double) * (N));

 double *up1 = malloc (sizeof(double) * (N));

 initialize_data(uk, ukp1, N, P); // init to zero, set end temperatures

 for (int t = 0; t < N_STEPS; ++t){

 for (int x = 1; x < N-1; ++x)

 up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

 temp = up1; up1 = u; u = temp;

 }

return 0;

T2 T1

A well known trick with 2 arrays so I

don’t overwrite values from step k-1

as I fill in for step k

Note: I don’t need the

intermediate “u[t]” values

hence “u” is just indexed by x.

51

Heat Diffusion equation

int main()

{

 double *u = malloc (sizeof(double) * (N));

 double *up1 = malloc (sizeof(double) * (N));

 initialize_data(uk, ukp1, N, P); // init to zero, set end temperatures

 for (int t = 0; t < N_STEPS; ++t){

 for (int x = 1; x < N-1; ++x)

 up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

 temp = up1; up1 = u; u = temp;

 }

return 0;

T2 T1

How would

you parallelize

this program?

52

Seven strategies for parallelizing

software

 These seven strategies for parallelizing software give us:

 Names: so we can communicate better

 Categories: so we can gather and share information

 A palette (like an artist’s palette) of approaches that is:

• Necessary: we should consider them all and

• Sufficient: once we have considered them all then we don’t’

have to worry that we forgot something

53

Heat Diffusion equation

T2 T1

 Start with our original picture of the problem … a one dimensional

domain with end points set at a fixed temperature.

54

Seven strategies for parallelizing

software

 These seven strategies for parallelizing software give us:

 Names: so we can communicate better

 Categories: so we can gather and share information

 A palette (like an artist’s palette) of approaches that is:

• Necessary: we should consider them all and

• Sufficient: once we have considered them all then we don’t’

have to worry that we forgot something

55

Heat Diffusion equation

T2 T1

 Break it into chunks assigning one chunk to each process.

P0 P1 P2 P3

56

Heat Diffusion equation

T2 T1

 Each process works on it’s own chunk … sliding the stencil across

the domain to updates its own data.

P0 P1 P2 P3

57

Heat Diffusion equation

T2 T1

 What about the ends of each chunk … where the stencil will run off the

end and hence have missing values for the computation?

?

58

Heat Diffusion equation

T2 T1

 We add ghost cells to the ends of each chunk, update them with the

required values from neighbor chunks at each time step … hence giving

the stencil everything it needs on any given chunk to update all of its

values.

Ghost cell

Ghost cell

59

SPMD: Single Program Mulitple Data

 Run the same program on P processing elements where

P can be arbitrarily large.

 Use the rank … an ID ranging from 0 to (P-1) … to select

between a set of tasks and to manage any shared data

structures.

This pattern is very general and has been used to support

most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern … it is

probably the most commonly used pattern in the history of

parallel programming.

This pattern is very general and has been used to support

most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern … it is

probably the most commonly used pattern in the history of

parallel programming.

60

How do people use MPI?

The SPMD Design Pattern

Replicate the program.

Add glue code

Break up the data

A sequential program

working on a data set

•A single program working on a

decomposed data set.

•Use Node ID and numb of nodes to

split up work between processes

• Coordination by passing messages.

61

Heat Diffusion MPI Example

MPI_Init (&argc, &argv);

MPI_Comm_size (MPI_COMM_WORLD, &P);

MPI_Comm_rank (MPI_COMM_WORLD, &myID);

double *u = malloc (sizeof(double) * (2 + N/P)) // include "Ghost Cells"

double *up1 = malloc (sizeof(double) * (2 + N/P)); // to hold values

 // from my neighbors

initialize_data(uk, ukp1, N, P);

for (int t = 0; t < N_STEPS; ++t){

 if (myID != 0) MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, 0, MPI_COMM_WORLD);

 if (myID != P-1) MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD, &status);

 if (myID != P-1) MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD);

 if (myID != 0) MPI_Recv (&u[0], 1, MPI_DOUBLE, myID-1, 0,MPI_COMM_WORLD, &status);

 for (int x = 2; x < N/P; ++x)

 up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

 if (myID != 0)

 up1[1] = u[1] + (k / (h*h)) * (u[1+1] - 2*u[1] + u[1-1]);

 if (myID != P-1)

 up1[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]);

 temp = up1; up1 = u; u = temp;

} // End of for (int t ...) loop

MPI_Finalize();

return 0;

We write/explain

this part first and

then address the

communication and

data structures

62

Heat Diffusion MPI Example

// Compute interior of each “chunk”

 for (int x = 2; x < N/P; ++x)

 up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

// update edges of each chunk keeping the two far ends fixed

// (first element on Process 0 and the last element on process P-1).

 if (myID != 0)

 up1[1] = u[1] + (k / (h*h)) * (u[1+1] - 2*u[1] + u[1-1]);

 if (myID != P-1)

 up1[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]);

// Swap pointers to prepare for next iterations

 temp = up1; up1 = u; u = temp;

} // End of for (int t ...) loop

MPI_Finalize();

return 0;

Note I was lazy and assumed N was evenly

divided by P. Clearly, I’d never do this in a

“real” program.

Update array values using local data

and values from ghost cells.

u[0] and u[N/P+1]

are the ghost

cells

63

Heat Diffusion MPI Example

MPI_Init (&argc, &argv);

MPI_Comm_size (MPI_COMM_WORLD, &P);

MPI_Comm_rank (MPI_COMM_WORLD, &myID);

double *u = malloc (sizeof(double) * (2 + N/P)) // include "Ghost Cells"

double *up1 = malloc (sizeof(double) * (2 + N/P)); // to hold values

 // from my neighbors

initialize_data(uk, ukp1, N, P);

for (int t = 0; t < N_STEPS; ++t){

 if (myID != 0)

 MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, 0, MPI_COMM_WORLD);

 if (myID != P-1)

 MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD, &status);

 if (myID != P-1)

 MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD);

 if (myID != 0)

 MPI_Recv (&u[0], 1, MPI_DOUBLE, myID-1, 0,MPI_COMM_WORLD, &status);

/* continued on previous slide */

1D PDE solver … the simplest “real” message

passing code I can think of. Note: edges of

domain held at a fixed temperature

Send my “left” boundary value to the neighbor on my “left’

Receive my “right” ghost cell from the neighbor to my “right’

Send my “right” boundary value to the neighbor to my “right’

Receive my “left” ghost cell from the neighbor to my “left”

64

The Geometric Decomposition Pattern

T2 T1

Ghost cell

Ghost cell

 This is an instance of a very important design pattern … the Geometric

decomposition pattern.

 We will cover this pattern in more detail in a later lecture.

65

Partitioned Array Pattern

 Problem:

 Arrays often need to be partitioned between multiple UEs. How can we

do this so the resulting program is both readable and efficient?

 Forces

 Large number of small blocks organized to balance load.

 Able to specialize organization to different platforms/problems.

 Understandable indexing to make programming easier.

 Solution:

 Express algorithm in blocks

 Abstract indexing inside mapping functions … programmer works in an

index space natural to the domain, functions map into distribution

needed for efficient execution.

 The text of the pattern defines some of these common mapping

functions (which can get quite confusing … and in the literature are

usually left as “an exercise for the reader”).

66

Partitioned Arrays

 Realistic problems are 2D or

3D; require move complex

data distributions.

 We need to parallelize the

computation by partitioning

this index space

 Example: Consider a 2D

domain over which we wish

to solve a PDE using an

explicit finite difference

solver . The figure shows a

five point stencil … update a

value based on its value and

its 4 neighbors.

 Start with an array 

67

Partitioned Arrays: Column block distribution

 Split the non-unit-stride dimension (P-1) times to produce P chunks, assign

the ith chunk to Pi. WIth N = n * n, P = p * p

 In a 2D finite-differencing program (exchange edges), how much do we

have to communicate? 2*n = 2*sqrt(N) messages per processor

UE = unit of

execution … think of

it as a generic term

for “process or

thread”

P is the

of

processors

68

Partitioned Arrays: Block distribution

 If we parallelize in both dimensions, then we have (n/p)2 elements per

processor, and we need to send 4*(n/p) = 4 *sqrt(N/P) messages from

each processor. Asymptotically better than 2*sqrt(N).

P is the

of

processors

69

Partitioned Arrays:
block cyclic distribution

 LU decomposition (A= LU) .. Move

down the diagonal transform rows to

“zero the column” below the diagonal.

 Zeros fill in the right lower triangle of

the matrix … less work to do.

 Balance load with cyclic distribution

of blocks of A mapped onto a grid of

nodes (2x2 in this case … colors

show the mapping to nodes).

* * * * * * * *
0 * * * * * * *
0 0 * * * * * *
0 0 * 0 * * * *
0 0 * 0 * * * *
0 0 * 0 * * * *
0 0 * 0 * * * *
0 0 * 0 * * * *

70

Exercise 4: Transpose

 Goal

 Explore interaction of partitioned arrays and message passing

 Program

 We provide a matrix transposition program … which is one of the

simplest examples of a program based on partitioned arrays.

 Notice how the SPMD pattern interacts with the partitioned array

pattern.

 Modify the program to use isend/irecv and overlap

communication with local transpose to maximize aggregate

bandwidth

71

MIXING MPI AND OPENMP

72 72

How do people mix MPI and OpenMP?

Replicate the program.

Add glue code

Break up the data

A sequential program

working on a data set

•Create the MPI program with

its data decomposition.

• Use OpenMP inside each

MPI process.

73 73

Pi program with MPI and OpenMP
#include <mpi.h>

#include “omp.h”

void main (int argc, char *argv[])

{

 int i, my_id, numprocs; double x, pi, step, sum = 0.0 ;

 step = 1.0/(double) num_steps ;

 MPI_Init(&argc, &argv) ;

 MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;

 MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;

 my_steps = num_steps/numprocs ;

#pragma omp parallel for reduction(+:sum) private(x)

 for (i=my_id*my_steps; i<(m_id+1)*my_steps ; i++)

 {

 x = (i+0.5)*step;

 sum += 4.0/(1.0+x*x);

 }

 sum *= step ;

 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

 MPI_COMM_WORLD) ;

}

Get the MPI

part done

first, then add

OpenMP

pragma

where it

makes sense

to do so

74 74

Key issues when mixing OpenMP and MPI

1. Messages are sent to a process not to a particular thread.

 Not all MPIs are threadsafe. MPI 2.0 defines threading modes:

• MPI_Thread_Single: no support for multiple threads

• MPI_Thread_Funneled: Mult threads, only master calls MPI

• MPI_Thread_Serialized: Mult threads each calling MPI, but they
do it one at a time.

• MPI_Thread_Multiple: Multiple threads without any restrictions

 Request and test thread modes with the function:

MPI_init_thread(desired_mode, delivered_mode, ierr)

2. Environment variables are not propagated by mpirun.
You’ll need to broadcast OpenMP parameters and set them
with the library routines.

75 75

Dangerous Mixing of MPI and OpenMP

 The following will work only if MPI_Thread_Multiple is supported … a

level of support I wouldn’t depend on.

MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;
#pragma omp parallel
{
 int tag, swap_neigh, stat, omp_id = omp_thread_num();
 long buffer [BUFF_SIZE], incoming [BUFF_SIZE];
 big_ugly_calc1(omp_id, mpi_id, buffer);
 // Finds MPI id and tag so
 neighbor(omp_id, mpi_id, &swap_neigh, &tag); // messages don’t conflict

 MPI_Send (buffer, BUFF_SIZE, MPI_LONG, swap_neigh,
 tag, MPI_COMM_WORLD);
 MPI_Recv (incoming, buffer_count, MPI_LONG, swap_neigh,
 tag, MPI_COMM_WORLD, &stat);

 big_ugly_calc2(omp_id, mpi_id, incoming, buffer);
#pragma critical
 consume(buffer, omp_id, mpi_id);
}

76 76

Messages and threads

 Keep message passing and threaded sections of your program
separate:

 Setup message passing outside OpenMP parallel regions
(MPI_Thread_funneled)

 Surround with appropriate directives (e.g. critical section or master)
(MPI_Thread_Serialized)

 For certain applications depending on how it is designed it may not
matter which thread handles a message. (MPI_Thread_Multiple)

• Beware of race conditions though if two threads are probing on
the same message and then racing to receive it.

77 77

Safe Mixing of MPI and OpenMP
Put MPI in sequential regions

MPI_Init(&argc, &argv) ; MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;

// a whole bunch of initializations

#pragma omp parallel for
for (I=0;I<N;I++) {
 U[I] = big_calc(I);
}

 MPI_Send (U, BUFF_SIZE, MPI_DOUBLE, swap_neigh,
 tag, MPI_COMM_WORLD);

 MPI_Recv (incoming, buffer_count, MPI_DOUBLE, swap_neigh,
 tag, MPI_COMM_WORLD, &stat);

#pragma omp parallel for
for (I=0;I<N;I++) {
 U[I] = other_big_calc(I, incoming);
}

consume(U, mpi_id);

Technically Requires

MPI_Thread_funneled, but I

have never had a problem with

this approach … even with pre-

MPI-2.0 libraries.

78 78

Safe Mixing of MPI and OpenMP
Protect MPI calls inside a parallel region

MPI_Init(&argc, &argv) ; MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;

// a whole bunch of initializations

#pragma omp parallel
{
#pragma omp for
 for (I=0;I<N;I++) U[I] = big_calc(I);

#pragma master
{
 MPI_Send (U, BUFF_SIZE, MPI_DOUBLE, neigh, tag, MPI_COMM_WORLD);

 MPI_Recv (incoming, count, MPI_DOUBLE, neigh, tag, MPI_COMM_WORLD,
 &stat);
}
#pragma omp barrier
#pragma omp for
 for (I=0;I<N;I++) U[I] = other_big_calc(I, incoming);

#pragma omp master
 consume(U, mpi_id);
}

Technically Requires

MPI_Thread_funneled, but I

have never had a problem with

this approach … even with pre-

MPI-2.0 libraries.

79 79

Hybrid OpenMP/MPI works, but is it worth it?

 Literature* is mixed on the hybrid model: sometimes its better,

sometimes MPI alone is best.

 There is potential for benefit to the hybrid model

 MPI algorithms often require replicated data making them less memory

efficient.

 Fewer total MPI communicating agents means fewer messages and less

overhead from message conflicts.

 Algorithms with good cache efficiency should benefit from shared caches

of multi-threaded programs.

 The model maps perfectly with clusters of SMP nodes.

 But really, it’s a case by case basis and to large extent depends on the

particular application.

*L. Adhianto and Chapman, 2007

80

CLOSING COMMENTS

81

0

20000

40000

60000

80000

100000

120000

140000

1993 1994 1995 1996 1997 1998 1999 2000

Source: the “June lists” from www.top500.org

Parallel hardware trends
Top 500: total number of processors (1993-2000)

The downward trend from ‘93 to ‘95 is

due to the old TMC SIMD machines

failing and leaving the list.

Year for the “June top500 list”

S
u
m

 o
f #

 o
f p

ro
c
s
. fo

r a
ll m

a
c
h

in
e
s
 o

n
 to

p
5
0
0
 lis

t

82

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000
J
a
n
-9

3

J
a
n
-9

4

J
a
n
-9

5

J
a
n
-9

6

J
a
n
-9

7

J
a
n
-9

8

J
a
n
-9

9

J
a
n
-0

0

J
a
n
-0

1

J
a
n
-0

2

J
a
n
-0

3

J
a
n
-0

4

J
a
n
-0

5

J
a
n
-0

6

J
a
n
-0

7

J
a
n
-0

8

J
a
n
-0

9

J
a
n
-1

0

J
a
n
-1

1

Top 500 supercomputers: total number of processors (1993-2011)

Parallel hardware trends
Top 500: total number of processors (1993-2011)

• Many core processors have
fundamentally changed the game.

• HPC Programmers need to think
in terms of ~100K parallelism
today.

• Order million parallelism will be
available on top-end machines in
the next few years

Year for the “June top500 list”

S
u
m

 o
f #

 o
f p

ro
c
s
. fo

r a
ll m

a
c
h

in
e
s
 o

n
 to

p
5
0
0
 lis

t

83

Does a shared address space make
programming easier?

Time

E
ffo

rt

Extra work upfront, but easier
optimization and debugging means

overall, less time to solution
Message passing

Time

E
ffo

rt

initial parallelization can be
quite easy

Multi-threading

But difficult debugging and
optimization means overall

project takes longer

*P. N. Klein, H. Lu, and R. H. B. Netzer, Detecting Race Conditions in Parallel Programs that Use Semaphores, Algorithmica, vol. 35 pp. 321–345, 2003

Proving that a shared address space program using

semaphores is race free is an NP-complete problem*

84

Closing comments

 Question conventional wisdom.

 Do we really need cache coherence? If the memory hierarchy can’t be

hidden, isn’t it better to expose the hierarchy so I can control it?

 Debugging and Maintenance costs more than coding. So extra work up

front to organize a problem to exploit the concurrency (e.g. decomposing

and distributing data structures) shouldn’t be such a big deal.

 SW lives longer than HW. So why would anyone use a non-portable,

non-standard programming model? That’s just nuts!!

 As you move forward through the course ….

 Notice that the patterns used in creating parallel code only weakly

depend on the programming model. I can do loop parallelism with MPI,

message passing with pthreads, kernel parallelism with OpenMP.

 So learn multiple programming models and enjoy them … but don’t

obsess about them. Ultimately, it’s the design patterns and learning how

to apply them to different problems that matter.

85

MPI References

 The Standard itself:

 at http://www.mpi-forum.org

 All MPI official releases, in both postscript and

HTML

 Other information on Web:

 at http://www.mcs.anl.gov/mpi

 pointers to lots of stuff, including other talks and

tutorials, a FAQ, other MPI pages

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi
http://www.mcs.anl.gov/mpi

86

Books for learning MPI

 Using MPI-2: Portable Parallel Programming

with the Message-Passing Interface, by Gropp,

Lusk, and Thakur, MIT Press, 1999..

 Parallel Programming with MPI, by Peter Pacheco,

Morgan-Kaufmann, 1997.

 Patterns for Parallel Programing, by Tim Mattson,

Beverly Sanders, and Berna Massingill.

87

MPI core functions

#include <mpi.h>

int size, rank, argc, err_code=0;

char **argv;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

MPI_Comm_size (MPI_COMM_WORLD, &size);

MPI_Abort(MPI_COMM_WORLD, err_code);

MPI_Finalize();

88

Basic MPI communication

Blocking send/receive

 MPI_Send (void* buf, int count, MPI_Datatype datatype,

 int dest, int tag, MPI_Comm comm)

 MPI_Recv (void* buf, int count, MPI_Datatype datatype,

 int source, int tag, MPI_Comm comm, MPI_Status* status)

Nonblocking send/receive

 MPI_Irecv(void *buf, int count, MPI_Datatype datatype,

 int source, int tag, MPI_Comm comm,

 MPI_Request *request)

 MPI_Isend(const void *buf, int count, MPI_Datatype datatype,

 int dest, int tag, MPI_Comm comm, MPI_Request *request)

 MPI_Wait(MPI_Request *request, MPI_Status *status)

89

Collective Communication

 MPI_Reduce (void* sendbuf, void* recvbuf,

 int count, MPI_Datatype datatype, MPI_Op op,

 int root, MPI_Comm comm)

 MPI_Bcast (void *buf, int count, MPI_Datatype datatype,

 int root, MPI_Comm comm)

 MPI_Sendrecv(void *sendbuf, int sendcount,

 MPI_Datatype sendtype, int dest, int sendtag,

 void *recvbuf, int recvcount, MPI_Datatype recvtype,

 int source, int recvtag, MPI_Comm comm,

 MPI_Status *recv_status)

 MPI_Barrier(MPI_Datatype datatype)

