OpenCL:
A Hands-on Introduction

Tim Mattson
Intel Corp.

Acknowledgements: Simon-Mclntosh Smith (Univ. Bristol), Alice Koniges (NERSC) , Tom
Deakin (Univ. Bristol), and Ben Gaster (of Qualcomm) contributed to this content.

Course materials

In addition to these slides, C++ APl header files, a set of exercises,
and solutions, we provide:

OpenCL AP 1.1 Quick Reherence Cand - Page 1
Ther:lﬂHﬂanrpu

5 it Brgatens, oy -GetcA e e 7 aiem WO £ 4y il Bt B L R
ke, b ¥, (91 LYl SCHSREE dg rF e B

Comts o e chhatiwskoninte jd_dsice i ko
o ok e . o pore, e s,

e o OpenCLC 1.2 Reference Card
Rt OpenCL C++ 1.2 Reference Card

il it
Wity oo e v i vk, sk

L
o et o |2 corea comas]

== e These cards will help you keep
“"m_m-;: T track of the API as you do the
S exercises:

i 1PN HIA [P, VR |
o, P e

e ciimimvioein 1 _pasders kg
o e Fype e T 3 B0 o,
o clevice_d* dreions, o_uer. v chevices) . =

e e T, ST, i) . e .
e T PR R, 3, L AT

ERTE e =) Map Sufler Objects ey

e 3 5 T 230 e B 4 S B
i e
9 il g aP i b T T 36 B
1 2 B B e A 2 Mot by i b

d roge=Tres
i - fd e,

ERias
s'-in

,J.nu_-wt-r nn.q_u-u
Ll e, R TR MO TR

foed, Wrhe, Copy Buffer Objecta juas
i e s B e |

oo e e

o et
o et wacnd g, ol mercale,
i o 5 S e e e,

s e weit_in, o et e,
.gh “ervod_ oy

Mg Suffer Objects [Leag

H ez e e igas] mam)

o e el b | s

bt e coctacs

3 M“'m' vf.n‘\m e -
i

ﬂ.:ml

merel Lt ma s e B,
comnatc] et rsar woit i, | et S

Cjoary Buffer CObject [Log)

Creats Program Object fuu)

Tt coorr] s o oo thar s,
[

qmnnﬂ

o aorarar ceopea, <] e .
u-dﬂ-nu--nwn?:-‘:‘r'ir} n'm
o _lr *mrade_ml

2 i e Pogem _prgam progor|

2 it s Pragram i_pregran sregren]

e o e
iy 1
- P
o Opanl ¢ g vk
wE1n N el 11 apeifarion
Clury Progeam O ects L E
d e mn- R e it
.ﬂ%m fre .E‘.} i
o PRAA_{Eiona, i
Sl A R, WAST i, MR,
[Pocgram Dbt Continas ¥

https://www.khronos.org/files/ope
ncl-1-2-quick-reference-card.pdf

The v1.2 spec is also very readable
and recommended to have on-hand:

https://www.khronos.org/registry/
cl/specs/opencl-1.2.pdf

https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

AN INTRODUCTION TO OPENCL

Industry Standards for Programming
Heterogeneous Platforms

CPU GPUs
Multiol Sd . Emerging Increasingly general
ultiple cores driving : urpose data-parallel

performance increases Intersection PHTP computir?g

Q‘E

Multi OpenCL Graphics
procl:]esl;or Heterogeneous APIs and
i Computing Shading
programming -
e.g. OpenMP Languages

OpenCL - Open Computing Language

Open, royalty-free standard for portable, parallel programming of
heterogeneous parallel computing CPUs, GPUs, and other processors

AMD
ATI

NVIDIA — wants to steal

The origins of OpenCL

Merged, needed
commonality

across products

GPU vendor -

market share
from CPU

CPU vendor -
wants to steal

Intel — market share
from GPU
Was tired of recoding for
many core, GPUs.
Apple Pushed vendors to

standardize.

Wrote a rough draft
straw man API

Khronos Compute
group formed

— ARM

— Nokia

— IBM

— Sony

— Qualcomm
— Imagination
— TI

— + many
more

Third party names are the property of their owners.

OpenCL: From cell phone to
supercomputer

* OpenCL Embedded profile for
mobile and embedded silicon .

— Relaxes some data type and
precision requirements

— Avoids the need for a separate
“ES” specification
* Khronos APIs provide
computing support for
imaging & graphics
— Enabling advanced applications
in, e.g., Augmented Reality

A camera phone with GPS
] processes images to
* OpenCL will enable parallel recognize buildings and

computing in new markets landmarks and provides

— Mobile phones, cars, avionics relevant data from internet

OpenCL Platform Model

H

/

00O
||—|||—||_||—||_||_| I_I|:|
—ioon H F/
Processing e FH
Element 1 Hnﬂnnmmu
UL 1

T

Host

Compute Unit OpenCL Device

* One Host and one or more OpenCL Devices
— Each OpenCL Device is composed of one or more

Compute Units

« Each Compute Unit is divided into one or more Processing Elements
* Memory divided into host memory and device memory

The idea behind OpenCL

» Replace loops with functions (a) executing at each
point in a problem domain

— E.g., process a 1024x1024 image with one kernel invocation per
pixel or 1024x1024=1,048,576 kernel executions

Traditional loops OpenCL
void ~_kernel void
mul (const int n, mul (global const float *a,
const float *a, __global const float *Db,
const float *b, __global float *c)
float *c) {
{ int id = get global id(0);
int i; c[id] = a[id] * b[id];
for (i = 0; 1 < n; i++) }
c[i] = a[i] * b[i]; // execute over n work-items
}

An N-dimensional domain of work-items

* Global Dimensions:
— 1024x1024 (whole problem space)
* Local Dimensions:
— 128x128 (work-group, executes together)

1024 N
Synchronization between

work-items possible only

|| ettt

======== within work-groups:
~ | B EEEEEE barriers and memory fences
S | EEEEEE.
" T Cannot synchronize

etween work-groups
bet k
HEEEEEER within a kernel

* Choose the dimensions (1, 2, or 3) that are
“best” for your algorithm

OpenCL Memory model

Private Memory

. Private Private Private Private
— Per Work-]tem Memory Memory Memory Memory
e [ocal Memory Work-Item | | Work-ltem Work-Item | | Work-Item
— Shared within a . : e _
work-group
Work-Group Work-Group
* Global Memory
COnS tant Memory I Global Memory & Constant Memory I
— Visible to all Compute Device

work-groups
Host memory
— On the CPU

Memory management is explicit:
You are responsible for moving data from
host — global — local and back

Host Memory

Context and Command-Queues

Context:

— The environment within which kernels
execute and in which synchronization
and memory management is defined. 2

The context includes: ‘

— One or more devices)
, Device Memory
— Device memory

— One or more command-queues

All commands for a device (kernel
execution, synchronization, and
memory operations) are submitted
through a command-queue.

Each command-queue points to a
single device within a context.

Execution model (kernels)

* OpenCL execution model ... define a problem
domain and execute an instance of a kernel for
each point in the domain

___kernel void times_ two (
~_global float* input,
~_global float* output)

int i = get global id(0) ;
output[i] = 2.0f * input[i];

* get global id(0)

10
|nput 001 23 4 5/6 7 8 9,10 11 12/13 14 151617 18 19 20 21 22 23|24 25

|

OUtPUt 0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Building Program Objects

« The program object encapsulates:

— A context OpenCL uses runtime
i compilation ... because
— The program source or binary, and in general you don’t
— List of target devices and build know the details of the
options target device when you

. ship the program
« The build process to create a

program object:

cl: :Program program(context, KernelSource,
true) ;

__kernel void
horizontal reflect(read only image2d t src,
write only image2d t dst) Complle for
{ GPU
int x = get global id(0); // x-coord

int y = get global id(1l); // y-coord

int width = get image width(src);

float4d src_val = read imagef (src, sampler, Compﬂe for
(int2) (width-1-x, vy)) CPU

write imagef (dst, (int2) (x, y), src_val);

Example: vector addition

* The “hello world” program of data parallel
programming is a program to add two vectors

C[i] = A[i] + B[1i] for 1=0 to N-1

* For the OpenCL solution, there are two parts
— Kernel code
— Host code

Vector Addition - Kernel

__kernel void wadd(
__global const float *a,
__global const float *b,
__global float *c)

int gid = get global id(0) ;

af[gid] + b[gid];

cl[gid]

Exercise 1: Running the Vector Add kernel
Goal:
— To inspect and verify that you can run an OpenCL kernel
Procedure:

— Take the Vadd program we provide you. It will run a simple kernel to
add two vectors together.

— Look at the host code and identify the API calls in the host code.

Compare them against the API descriptions on the OpenCL C++
reference card.

Expected output:
— A message verifying that the program completed successfully

cd Mattson/OpenCL
make vadd
Jvadd (etc)

UNDERSTANDING THE HOST
PROGRAM

Vector Addition - Host

« The host program is the code that runs on the host to:
— Setup the environment for the OpenCL program
— Create and manage kernels

« 5 simple steps in a basic host program:

U WN =

Define the platform ... platform = devices+context+queues
Create and Build the program (dynamic library for kernels)
Setup memory objects

Define the kernel (attach arguments to kernel function)

Submit commands ... transfer memory objects and execute
kernels

Have a copy of the vadd host program on hand as we go
over this set of slides.

The C++ Interface

« Khronos has defined a common C++ header file
containing a high level interface to OpenCL, cl.hpp

« This interface is dramatically easier to work with’

« Key features:

— Uses common defaults for the platform and command-
queue, saving the programmer from extra coding for the
most common use cases

— Simplifies the basic APl by bundling key parameters with
the objects rather than requiring verbose and repetitive

argument lists
— Ability to “call” a kernel from the host, like a regular

function
— Error checking can be performed with C++ exceptions

! especially for C++ programmers...

C++ Interface:
setting up the host program

« Enable OpenCL API Exceptions. Do this before including
the header file
#define CL ENABLE EXCEPTIONS

 Include key header files ... both standard and custom
#include <CL/cl.hpp> // Khronos C++ Wrapper API

#include <cstdio> // C style IO (e.g. printf)
#include <iostream> // C++ style IO
#include <vector> // C++ vector types

« Define key namespaces
using namespace cl;

using namespace std;))
For information about C++, see

the appendix:
“C++ for C programmers”.

1. Create a context and queue

* Grab a context using a device type:

cl: :Context
Context (CL_DEVICE_TYPE_DEFAULT) ;

* Create a command queue for the first

device in the context:
cl: :CommandQueue queue (context) ;

Commands and Command-Queues

Commands include:

— Kernel executions

— Memory object management
— Synchronization

The only way to submit
commands to a device is
through a command-queue.

Each command-queue
points to a single device
within a context.

Multiple command-queues

can feed a single device.
— Used to define independent

streams of commands that
don’t require synchronization

Command-Queue execution details

Command queues can be configured in
different ways to control how commands
execute

In-order queues:

— Commands are enqueued and complete in the order
they appear in the program (program-order)

Out-of-order queues:

— Commands are enqueued in program-order but can
execute (and hence complete) in any order.

Execution of commands in the command-
queue are guaranteed to be completed at
synchronization points

— Discussed later

2. Create and Build the program

» Define source code for the kernel-program either as a string
literal (great for toy programs) or read it from a file (for real

applications).

« Create the program object and compile to create a “dynamic
library” from which specific kernels can be pulled:

“true” tells OpenCL to build
(compile/link) the program object

cl: :Program program(context, KernelSour

KernelSource is a string ... either statically set in the host program
or returned from a function that loads the kernel code from a file.

3. Setup Memory Objects

* For vector addition we need 3 memory objects, one each
for input vectors A and B, and one for the output vector C

« Create input vectors and assign values on the host:
std: :vector<float> h a(LENGTH) , h b (LENGTH), h c(LENGTH) ;

for (1 = 0; i < LENGTH; i++) {
h a[i] = rand() / (float)RAND MAX;
h b[i] = rand() / (float)RAND MAX;

« Define OpenCL device buffers and copy from host buffers:
cl::Buffer d a(context, begin(h a), end(h a), true);

cl::Buffer d b(context, begin(h b), end(h b), true);

cl::Buffer d c(context, CL MEM WRITE ONLY,
sizeof (float) *LENGTH) \

or CL_MEM_READ_ONLY or CL_MEM_READ_WRITE

What do we put in device memory?

 Memory Objects:

— A handle to a reference-counted region of global
memory.

* There are two kinds of memory object

— Buffer object:

» Defines a linear collection of bytes.

» The contents of buffer objects are fully exposed within kernels
and can be accessed using pointers

— Image object:
» Defines a two- or three-dimensional region of memory.

« Image data can only be accessed with read and write functions,
i.e. these are opaque data structures. The read functions use a
sampler.

Used when interfacing with a graphics API such as
OpenGL. We won’t use image objects in this tutorial.

Creating and manipulating buffers
» Buffers are declared on the host as object type:

cl: :Buffer

 Arrays in host memory hold your original host-side

data:
std: :vector<float> h a, h b;

» Create the device-side buffer (d_a), assign read
only memory to hold the host array (h_a) and copy

it into device memory:

cl::Buffer d a(context, begin(h a), end(h a), (true);

" A

Start_iterator and end_iterator for the
container holding host side object

Stipulates that this is
a read-only buffer

Creating and manipulating buffers

* The last argument sets the read/write access to
the Buffer by the device . true means “read only”
while false (the default) means “read/write”.

« Submit command to copy the device buffer back to
host memory in array “h_c”:
cl::copy(queue, d ¢, begin(h c), end(h c));

« Can also copy host memory to device buffers:
cl::copy(queue, begin(h c¢), end(h c), d c);

4. Define the kernel

Create a kernel functor for the kernels you want to
be able to call in the program:

Must match the pattern of
arguments to the kernel.

auto vadd = (A \

cl::make kernel<cl::Buffer,cl::Buffer,cl::Buffer>

(program, “vadd”);

/

A previously created
“program object” serving
as a dynamic library of
kernels

The name of the function
used for the kernel

This means you can ‘call’ the kernel as a ‘function’ in
your host code to enqueue the kernel.

5. Enqueue commands

» Specify global and local dimensions
— cl::NDRange global(1024)
— Cl::NDRange local(64)

— |If you don’t specify a local dimension, it is assumed as
cl::NullRange, and the runtime picks a size for you

« Enqueue the kernel for execution (note: returns
immediately ... i.e. this is a hon-blocking command):

vadd (cl: :EnqueueArgs (queue, global), d a, d b, d c);

« Read back result (as a blocking operation). We use an in-
order queue to assure the previous commands are
completed before the read can begin

cl: :copy(queue, begin(h c), end(h c), d c);

C++ interface: The vadd host program

#define N 1024 // Create buffers
using namespace cl; // True indicates CL MEM READ ONLY
int main(void) ({ // False indicates CL MEM READ WRITE

vector<float> h a(N);
vector<float> h b(N), h c(N);
// initialize host vectors..
Buffer d a, d b, d ¢c; d b =

Buffer (context,begin(h b) ,end(h_b), true);

d a-=
Buffer (context,begin(h _a) ,end(h_a), true);

Context context(
CL DEVICE TYPE DEFAULT) ; d ¢ = cl::Buffer(context,

CommandQueue queue (context) ; CL_MEM READ WRITE,
sizeof (float) * LENGTH) ;

Program program (

context, // Enqueue the kernel

loadprogram(“vadd.cl”), vadd (EnqueueArgs (

true) ; queune
NDRange (count)),
// Create the kernel functor d a, d b, d ¢, count);

auto vadd = make kernel
<Buffer,Buffer,Buffer,int>
(program, “vadd”) ; }

copy (queue, d c, begin(h c), end(h c));

Exercise 2: Chaining vector add kernels

Goal:

— To verify that you understand manipulating kernel invocations and buffers
in OpenCL

Procedure:
— Start with your VADD program in C++

— Add additional buffer objects and assign them to vectors defined on the
host (see the provided vadd programs for examples of how to do this)

— Chain vadds ... e.g. C=A+B; D=C+E; F=D+G.
— Read back the final result and verify that it is correct
Expected output:

— A message to standard output verifying that the chain of vector additions
produced the correct result.

As you modify vadd to chain vadd kernels, you'll need to

create additional buffers:
Buffer (context,begin(h_a),end(h_a), true);

And enqueue additional kernels:
vadd (EnqueueArgs (queue, NDRange(count)), d a, d b,
d c, count);

UNDERSTANDING THE KERNEL
PROGRAM

Working with Kernels (C++)

* The kernels are where all the action is in an OpenCL
program.
« Steps to using kernels:
1. %.?ad kernel source code into a program object from a
ile
2. Make a kernel functor from a function within the
program
3. Initialize device memory

4. Call the kernel functor, specifying memory objects
and global/local sizes

5. Read results back from the device

* Note the kernel function argument list must match
the kernel definition on the host.

Create a kernel

« Kernel code:
— Astring in the host code (“toy codes”).
— Loaded from a file as a string or binary.

« Compile for the default devices within the default Context
program.build() ;

The build step can be carried out by specifying
\ true in the program constructor. If you need to

specify build flags you must specify false in the

constructor and use this method instead.

« Define the kernel functor from a function within the
program - allows us to ‘call’ the kernel to enqueue it as if
it were just another function

auto vadd = make kernel<Buffer, Buffer, Buffer, int>
(program, “vadd”);

Advanced: get info about the kernel

« Advanced: if you want to query information about a

kernel, you will need to create a kernel object:
Kernel ko vadd(program, “vadd”):;

« E.g. get default size of local dimension (size of a Work-
Group)

::size t local =
ko vadd.getWorkGroupInfo
<CL_KERNEL WORK GROUP SIZE>

(Device: :getBefauIt ()) \

We can use any work-group-info parameter from table 5.15 in the
OpenCL 1.2 specification. The function will return the appropriate type.

Call (enqueue) the kernel

* Enqueue the kernel for execution with buffer
objects d a, d b and d c and their length,

count.:

vadd (EnqueueArgs (queue, NDRange (count),
NDRange (local)), d a, d b, d ¢, count);

We can include any arguments from the clEnqueueNDRangeKernel
function including Event wait lists and the command queue options

Exercise 3: The D =A + B + C problem

e Goal:

— To verify that you understand how to control the
argument definitions for a kernel.

— To verify that you understand the host/kernel interface.

* Procedure:
— Start with your VADD program.
— Modify the kernel so it adds three vectors together.

— Modify the host code to define three vectors and
associate them with relevant kernel arguments.

— Read back the final result and verify that it is correct.

« Expected output:

— Test your result and verify that it is correct. Print a
message to that effect on the screen.

We have now covered the basic
platform runtime APIs in OpenCL

() ()

Context
Programs Kernels Memory Objects Command Queues
dp mul B ff JJ =L .
_ kernel void ~ urrers Images |
d I(global const float *a, dp_mul
p_zlll;lggalci:oansctofrll:at *T)a, : CPU program binary arg[0] value In Out of
global float *c) —— Order Order
{ dp_mul
intid = get_global_id(0); GPU program binary eroft)vale Queue ||]| Queue
c[id] = aid] * bid]; — |
Biaiabi | Compute Device

Compila code 2 >

INTRODUCTION TO OPENCL
KERNEL PROGRAMMING

OpenCL C kernel language
* Derived from ISO C99

— A few restrictions: no recursion, function pointers,
functions in C99 standard headers ...

— Preprocessing directives defined by C99 are
supported (#include etc.)

 Built-in data types
— Scalar and vector data types, pointers

— Data-type conversion functions:
« convert_type<_sat><_roundingmode>

— Image types: image2d_t, image3d_t and sampler_t

Vector Types

The OpenCL C kernel programming language provides a set of
vector instructions:

— These are portable between different vector instruction sets

These instructions support vector lengths of 2, 4, 8, and 16 ...
for example:
— char2, ushort4, int8, floatlé,

* Vector literal

vi0 = () (2, 3, -7, -7); 2 3 |-7 |-7

vil = () (0, 1, 2, 3); o (1 |2 |3

Vector Types

 The OpenCL C kernel programming language provides a set of
vector instructions:
— These are portable between different vector instruction sets
« These instructions support vector lengths of 2, 4, 8, and 16 ...

for example:
— char2, ushort4, int8, floatlé,

* Vector literal

vi0 = () (2, 3, -7, -7; 2 (3 |-7 |-7
vil = () (0, 1, 2, 3); 0 (1 |2 |3
2 (3 |-7 |7
* Vector ops o 1 1z
vi0 += vil; + ‘1’ ‘1’ ‘1’ ‘1’
2 (4 |-5 |-4
vi0 = abs (vi0) ; v ¥
2 |4 |5 [4 |

data conversions

Data-type conversion functions:
— convert_type[_sat][_roundingmode]

float4 f; // a vector of 4 floats

//truncate (rtz) floats to generate ints. Results
//implementation defined for £ > INT MAX, NaN etc

int4 i1 = convert_int4(f);

// Same as above (rtz) but for values > INT MAX clamp
// to INT MAX, values < INT MIN clamp to INT MIN.

// NaN => 0.
int4 i2 = convert_int4_sat(f);

// round the floats to the nearest integer

int4 i3 = convert_int4_rte(f);

OpenCL C Language Highlights
Function qualifiers

— __kernel qualifier declares a function as a kernel
* |.e. makes it visible to host code so it can be enqueued

— Kernels can call other kernel-side functions

Address space qualifiers
— __global, __local, __constant, __private
— Pointer kernel arguments must be declared with an address space qualifier

Work-item functions
— uint get_work_dim() ... number of dimensions in use (1,2, or 3)
— size_t get_global_id(uint n) ... global work-item ID in dim “n”
— size_t get_local_id(uint n) ... work-item ID in dim “n” inside work-group
— size_t get_group_id(uint n) ... ID of work-group in dim “n”
— size_t get_global_size(uint n) ... num of work-items in dim “n”
— size_t get_local_size(uint n) ... num of work-items in work group in dim “n”

Synchronization functions

— Barriers - all work-items within a work-group must execute the barrier
function before any work-item can continue

— Memory fences - provides ordering between memory operations

OpenCL C Language Restrictions

Pointers to functions are not allowed

Pointers to pointers allowed a kernel,
out not as an argument to a kernel invocation

Bit-fields are not supported

Variable length arrays and structures are not
supported

Recursion is not supported (yet!)

Double types are optional in OpenCL v1.2, but
the key word is reserved

(note: most implementations support double)

Matrix multiplication: sequential code

We calculate C=AB, dimA = (N x P), dimB=(P x M), dimC=(N x M)

void mat mul (int Mdim, int Ndim, int Pdim,
float *A, float *B, float *C)
{
int 1, 3, k;
for (1 = 0; i < Ndim; i++) {
for (J = 0; j < Mdim; j++) {
for (k = 0; k < Pdim; k++) {
// C(i, j) = sum(over k) A(i,k) * B(k,])
C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j] ;

) ‘JH) _ ‘JH)

Dot product of a row of A and a column of B for each
element of C

Matrix multiplication: sequential code

We calculate C=AB, dimA = (N x N), dimB=(N x N), dimC=(N x N)

void mat mul (int Order, float *A, float *B, float *C)

{ Let’'s make it easier

and specialize to
square matrices

int 1, j, k;
for (1 = 0; 1 < Order; i++) {
for (j = 0; j < Order; j++) {

for (k = 0; k < Order; k++) {
// C(i, j) = sum(over k) A(i,k) * B(k,3J)
C[i*Order+j] += A[i*Order+k] * B[k*Order+]j];

QH) QH)

Dot product of a row of A and a column of B for each
element of C

Matrix multiplication performance

 Serial C code on CPU (single core).

Case MFLOPS
CPU GPU
Sequential C (not OpenCL) 887.2 N/A

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz
using the gcc compiler.

These are not official benchmark results. You
may observe completely different results should
you run these tests on your own system.

Third party names are the property of their owners.

Matrix multiplication: sequential code

void mat mul (int Order, float *A, float *B, float *C)
{
int 1, j, k;
for (1 = 0; i < Order; i++) {
for (jJ = 0; j < Order; j++) {
for (k = 0; k < Order; k++) {
// C(i, j) = sum(over k) A(i,k) * B(k,])
C[i* Order + j] += A[i* Order + k] * B[k* Order + j];
}
}

Exercise 4: Write a matrix multiply kernel

 (Goal:

— To verify that you understand how to convert an array based serial
code into an OpenCL kernel.

* Procedure:
— Start with the provided serial matrix multiply code.

— Copy it into a file (mmul.cl) and convert it into a kernel callable from
OpenCL where each work-item computes an element of the result
matrix

« Expected output:

— None ... we just want you to write the code and we’ll discuss the
results as a group.

Hints:

__kernel to mark your kernel ... which much be a void function

__global to mark global memory objects
int gid = get global id(DIM); //DIM is 0, 1 or 2 for

//dimension in NDRange

Matrix multiplication: OpenCL kernel (1/2)

__kernel void mat mul(const int Order,
__global float *A, global float *B,
__global float *C)

int 1, j, k;
for (1 = 0; i < Order; i++) {
for (jJ = 0; j < Order; j++) {
// C(i, j) = sum(over k) A(i,k) * B(k,3j)
for (k = 0; k < Order; k++) {
C[i*Order+j] += A[i*Order+k] * B[k*Order+j];
}

Mark as a kernel function and
specify memory qualifiers

Matrix multiplication: OpenCL kernel (2/2)

kernel void mat mul(const int Order,

__global float *A, global float *B,
__global float *C)

int 1, j, k;
i = get global id(0);
J = get global id(1);

for (k = 0; k < Order; k++) {
// C(i, j) = sum(over k) A(i,k) * B(k,]J)
C[i*Order+j] += A[i*Order+k] * B[k*Order+]j];
}

Remove outer loops and set
} work-item co-ordinates

Matrix multiplication: OpenCL kernel improved

Rearrange a bit and use a local scalar for intermediate C element
values (a common optimization in Matrix Multiplication functions)

__kernel void mmul (
const int Order,

__global float *A,
__global float *B,

__global float *C)

{

int k;

int i = get global id(0);
int j = get global id(1);
float tmp = 0.0f;

for (k = 0; k < Order; k++)
tmp +=

A[i*Order+k] *B[k*Order+j] ;

C[i*Order+j] = tmp;

Building programs

* To use a kernel, you must:

1. build the program object containing the kernel

« Specify the kernel source in the program object
constructor.

 We provide a utility function to load the source from a
file (or you can specify the source as a string)
cl::Program program(context, util::loadProgram("matmul1.cl"));

2. Compile the program object

 You can compile the program with the constructor by
specifying the last argument as “true’.
cl::Program program(context, util::loadProgram("matmul1.cl"),true);

How do you recover compiler messages should there be
compile-time errors in your kernel?

Compiler error messages (1/2)

* You need to use an explicit build step so you can recover the error and query
the system to fetch the compiler messages.

1. Do NOT build the program with the constructor (i.e. do not set the last
argument in the program constructor to true).

cl::Program program(context, util::loadProgram("matmui1.cl"));
2. Explicitly build the program within a try block to catch the error exception:

try
{
program.build();

}

catch (cl::Error error)

{

/I If it was a build error then show the error
if (error.err() == CL_BUILD_PROGRAM_FAILURE)

{

Ill recover compiler message (see the next slide)

}

throw error;

}

Compiler error messages (2/2)

Compiled code is connected to the device ... so we need a
handle to reference the device

std::vector<cl::Device> devices;

devices = context.getinfo<CL_CONTEXT_DEVICES>();

In our programming, we've been using the default device
which is the first one (devices[0]).

We need to query the program object to get the “BuildInfo”

std::string built = program.getBuildinfo
<CL_PROGRAM BUILD LOG>(devices[0]);

Now we can output the error compiler message
std::cerr << built << "\n";

Compiler error messages: Complete Example

cl::Program program(context, util::loadProgram("matmul1.cl"));
try
{

program.build();

}

catch (cl::Error error)
{
/I If it was a build error then show the error
if (error.err() == CL_BUILD _PROGRAM_FAILURE)
{
std::vector<cl::Device> devices;
devices = context.getinfo<CL_CONTEXT_DEVICES>();

std::string built = program.getBuildinfo
<CL_PROGRAM_BUILD_LOG>(devices[0]);

std::cerr << built << "\n";

}

throw error;

Exercise 5: The C = A* B problem

+ Goal:
— To verify that you understand how to write a host program.

* Procedure:

— Using the VADD host program and serial matrix multiply
programs as your guide, write a host program to call your
matrix multiplication kernel.

— Copy the result matrix back to the host and verify output
(using the functions we provided in the serial program).

* EXxpected output:

— Test your result and verify that it is correct. Output the
runtime and the MFLOPS.

— cp ~simonmcs/Solutions/Solution05

Matrix multiplication host program

#define DEVICE CL_DEVICE_TYPE_DEFAULT cl::CommandQueue queue(context);

Int main(void) auto mmul = cl::make kernel
{ // declarations (not shown) <int, cl::Buffer, cl::Buffer, cl::Buffer>

sz=N*N: (program, "mmul");
std::vector<float> h_A(sz);

std::vector<float> h_B(sz);
std::vector<float> h_C(sz);

d_A = cl::Buffer(context, begin(h_A),
end(h_A), true);
d B = cl::Buffer(context, begin(h_B),
end(h_B), true);
cl::Bufferd A,d B, d C; d C = cl::Buffer(context,
CL_MEM_WRITE_ONLY,

sizeof(float) * sz);
// initialize matrices and setup

// the problem (not shown) mmul(cl::EnqueueArgs(queue,
cl::NDRange(N,N)), N,
d A dB, dC)
cl::Context context(DEVICE);
cl::Program program(context, cl::copy(queue, d_C, begin(h_C),
util::loadProgram("matmul1.cl* end(h_C));
true));

// Timing and check results (not shown)

Matrix multiplication performance

* Matrices are stored in global memory.

Case MFLOPS

CPU GPU
Sequential C (not OpenCL) 887.2 N/A
C(i,j) per work-item, all global 3,926.1 3,720.9

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

These are not official benchmark results. You may
observe completely different results should you
run these tests on your own system.

Third party names are the property of their owners.

UNDERSTANDING THE OPENCL
MEMORY HIERARCHY

OpenCL Memory model

* Private Memor
. y Private Private Private Private
— Per Work-]tem Memory Memory Memory Memory

Work-Item Work-Item Work-ltem Work-ltem

— Shared within a

work-group

Work-Group Work-Group

Global Memory & Constant Memory

— Visible to all Compute Device
work-groups
* Host memory
— On the CPU

Host Memory

Memory management is explicit:
You are responsible for moving data from
host — global — local and back

The Memory Hierarchy

Bandwidths Sizes
Private memory Private memory
O(2-3) words/cycle/WI O(10) words/WiI
Local memory Local memory
O(10) words/cycle/WG O(1-10) KBytes/WG
Global memory Global memory
0(100-200) GBytes/s O(1-10) GBytes
Host memory Host memory
0(1-100) GBytes/s 0(1-100) GBytes

Managing the memory hierarchy is one of the most important
things to get right to achieve good performance

*Size and performance numbers are approximate and for a high-end discrete GPU, circa 2011

Optimizing matrix multiplication
MM cost determined by FLOPS and memory movement:

— 2*n3 = O(n3) FLOPS

— Operates on 3*n? = O(n%) numbers

To optimize matrix multiplication, we must ensure that for
every memory access we execute as many FLOPS as
possible.

Outer product algorithms are faster, but for pedagogical
reasons, let’s stick to the simple dot-product algorithm.

4 [EEEEEEEEE B(:,J)

C(H)

Dot product of a row of A and a column of B for each element of C

We will work with work-item/work-group sizes and the
memory model to optimize matrix multiplication

Optimizing matrix multiplication

« There may be significant overhead to manage work-items
and work-groups.

* So let’s have each work-item compute a full row of C

. . A(,:
C& — C]& + b X B(:,])

Dot product of a row of A and a column of B for each element of C

« And with an eye towards future optimizations, let’s collect
work-items into work-groups with 64 work-items per work-

group

Exercise 6: C=A"B (1 row per work-item)

e Goal:

— To give you experience managing the number of work-
items per workgroup.

 Procedure:

— Start from you last matrix multiplication program.
Modify it so each work-item handles an entire row of the
matrix.

« Expected output:

— Test your result and verify that it is correct. Output the
runtime and the MFLOPS.

cl::EnqueueArgs() is used with the kernel functor to control how a kernel is
enqueued. There are many overloaded forms ... the one you'll need is:

cl::EnqueueArgs(NDRange Global, NDRange Local)

Where “global” and “local” are (N), (N,N), or (N,N,N) depending on the
dimensionality of the NDRange index space.

An N-dimension domain of work-items

* Global Dimensions: 1024 (1D)
Whole problem space (index space)

» Local Dimensions: 64 (work-items per work-group)
Only 1024/64 = 16 work-groups in total

+&

1024

* Important implication: we will have a lot fewer
work-items per work-group (64) and work-
groups (16). Why might this matter?

Matrix multiplication: One work item per row of C

__kernel void mmul (int j, k;
const int Order, int 1 = get global id(0);
__global float *A, float tmp;
__global float *B, for (j = 0; j < Order; j++) {
__global float *C) tmp = 0.0f;
for (k = 0; k < Order; k++)
tmp +=

A[i*Order+k] *B[k*Order+j] ;
C[i*Order+j] += tmp;

Mat. Mul. host program (1 row per work-item)

cl::CommandQueue queue(context);

#define DEVICE CL_DEVICE_TYPE_DEFAULT
int main(void)
{ // declarations (not shown)
sz=N%*N;
std::vector<float> h_A(sz);

std::vector<float> h_B(sz);
std::vector<float> h_C(sz);

cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup
// the problem (not shown)

cl::Context context(DEVICE);

cl::Program program(context,
util::loadProgram(“mmulCrow.cl“
true));

-

auto mmul = cl::make_kernel

3

<int, cl::Buffer, cl::Buffer, cl::Buffer>
(program, "mmul”);

d_A = cl::Buffer(context, begin(h_A),
end(h_A), true);

= cl::Buffer(context, begin(h_B),
end(h_B), true);

= cl::Buffer(context,
CL_MEM_WRITE_ONLY,
sizeof (float) * sz);

d_B

d_C

mmul(cl::EnqueueArgs(queue,
cl::NDRange(N),
cl::NdRange(64)),
N, d_A, d_B, d_C);

cl::copy(queue, d_C, begin(h_C),
end(h_C));

// Timing and check results (not shown)

Mat. Mul. host program (1 row per work-item)

cl::CommandQueue queue(context);

#define DEVICE CL_DEVICE_TYPE_DEFAULT
int main(void)
{ // declarations (not shown)
sz=N%*N;
std::vector<float> h_A(sz);

std::vector<float> h_B(sz);
std::vector<float> h_C(sz);

Changes to host program:
1. 1D ND Range set to
number of rows in the C

‘ matrix

2. Local Dimension set to 64
(which gives us 16 work-
groups which matches the
GPU’s number of compute

units).
true));

Third party names are the property of their owners.

auto mmul = cl::make_kernel

3

<int, cl::Buffer, cl::Buffer, cl::Buffer>
(program, "mmul”);

d_A = cl::Buffer(context, begin(h_A),
end(h_A), true);

= cl::Buffer(context, begin(h_B),
end(h_B), true);

d_B

d_C = cl::Buffer(context,
CL_MEM_WRITE_ONLY,

sizeof (float) * sz);

mmul(cl::EnqueueArgs(queue,
cl::NDRange(

N),
cl::NdRange(64)),
N, d_A, d_B, d_C);

cl::copy(queue, d_C, begin(h_C),
end(h_C));

// Timing and check results (not shown)

Matrix multiplication performance

* Matrices are stored in global memory.

Case MFLOPS

CPU GPU
Sequential C (not OpenCL) 887.2 N/A
C(i,j) per work-item, all global 3,926.1 3,720.9
C row per work-item, all global 3,379.5 4,195.8

This has started to help.

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

These are not official benchmark results. You
may observe completely different results should

Third party names are the property of their owners. you run these tests on your own system.

Optimizing matrix multiplication

« Notice that, in one row of C, each element reuses the same
row of A.

« Let’s copy that row of A into private memory of the work-
item that’s (exclusively) using it to avoid the overhead of
loading it from global memory for each C(i,j) computation.

G A — %_F(h)(B(:,j)

Private memory of each
work-item

Private Private Private
MMMMMMMMMMMMMMMMMMMMMM

° Work-ltem | | Work-ltem | | Work-ltem | | Work-Item '
I] Va l (! (! I I l O I Local Memory Local Memory
Work-Group Work-Group
Global Memory & Constant Memory

* A work-items private memory:

— A very scarce resource, only a few tens of 32-bit
words per Work-ltem at most (on a GPU)

— If you use too much it spills to global memory or
reduces the number of Work-Items that can be

run at the same time, potentially harming
performance®

— Think of these like registers on the CPU

 How do you create and manage private
memory?

— Declare statically inside your kernel

* Occupancy on a GPU

Exercise 7: C = A* B (Row of Ain private memory)

* Goal:
— To give you experience working with private memory.

 Procedure:

— Start from you last matrix multiplication program (the
row-based method). Modify it so each work item copies
A from global to private memory to reduce traffic into

global memory.

« Expected output:

— Test your result and verify that it is correct. Output the
runtime and the MFLOPS.

Private memory can be allocated as an automatic (i.e. not with
malloc) inside a kernel ... so just declare any arrays you need.
You can use normal loads and stores inside a kernel to move
data between private and global address spaces.

Matrix multiplication: (Row of A in private memory)

kernel void mmul (for (k = 0; k < Order; k++)
T const int Order, Awrk[k] = A[i*Order+k];
__global float *A,
__global float *B, for (J = 0; J < Order; j++) {
__global float *C) tmp = 0.0f;
{ for (k = 0; k < Order; k++)
int j, k; tmp +=
int 1 = Awrk[k] *B[k*Order+j] ;
get global id(0) ;
float tmp; C[i*Order+j] += tmp;
float Awrk[1024];)
}

Matrix multiplication: (Row of A in private memory)

Copy a row of A into private memory from global memory
before we start with the matrix multiplications.

__kernel void mmul (
const int Order,
__global float *A,
__global float *B,
__global float *C)

int j, k;
int 1 =
get global id(0);
float tmp;
float Awrk[1024];

Setup a work array for Ain
private memory*

for (k = 0; k < Order; k++)
Awrk[k] = A[i*Order+k];

for (jJ = 0; jJj < Order; j++) {

tmp = 0.0f;
for (k = 0; k < Order; k++)
tmp +=

Awrk[k] *B[k*Order+j] ;

C[i*Order+j] += tmp;

(*Actually, this is using far more private memory than we’ll have and so Awrk[] will be spilled to global memory)

Mat. Mul. host program (Row of A in private memory)

#define DEVICE CL_DEVICE_TYPE_DEFAULT

int main(void)

{ /I declarations (not shown)
sz=N*N;
std:.vector<float> h_A(sz);

std::vector<float> h_B(sz);
std::vector<float> h_C(sz);

cl::Bufferd A,d B, d C;

// initialize matrices and setup
// the problem (not shown)

cl::Context context(DEVICE);

cl::Program program(context,
util::loadProgram("mmulCrow.cl"
true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel
<int, cl::Buffer, cl::Buffer, cl::Buffer>
(program, "mmul");

d_A = cl::Buffer(context, begin(h_A),
end(h_A), true);

d_B = cl::Buffer(context, begin(h_B),
end(h_B), true);

d C = cl::Buffer(context,
CL_MEM_WRITE_ONLY,
sizeof(float) * sz);

mmul(cl::EnqueueArgs(queue,
cl::NDRange(N),
cl::NDRange(64)),
N,d A, d B, d C);

cl::copy(queue, d_C, begin(h_C),
end(h_C));

// Timing and check results (not shown)
}

Host program unchanged from last exercise

Matrix multiplication performance

* Matrices are stored in global memory.

Case MFLOPS
CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

C row per work-item, A row private 3,385.8 8,584.3
Device is Tesla® M2090 GPU from /
NVIDIA® with a max of 16 Big impact!

compute units, 512 PEs
Device is Intel® Xeon® CPU, o
E5649 @ 2.53GHz These are not off1c1a! benchmark results. You may
observe completely different results should you run
Third party names are the property of their owners. these tests on your own system.

Optimizing matrix multiplication

« We already noticed that, in one row of C, each element
uses the same row of A

« Each work-item in a work-group also uses the same columns
of B

* So let’s store the B columns in local memory (which is
shared by the work-items in the work-group)

(i) _ <) +</A'(r)_\>(

——

Private memory of each

work-item Local memory for each
work-group

Pri Pri

vate Private Private vate
Memory emor Memory Memory

Local Memory JEEESEEEE

Local Memory Local Memory

« A work-group’s shared memory
— Typically 10’s of KBytes per Compute Unit*

— Use Local Memory to hold data that can be
reused by all the work-items in a work-group

— As multiple Work-Groups may be running on each Compute Unit
(CU), only a fraction of the total Local Memory size may be
available to each Work-Group

 How do you create and manage local memory?

— Create and Allocate local memory on the host
* cl::LocalSpaceArg localmem = cl::Local (sizeof (float) *N);

— Setup the kernel to receive local memory blocks
* auto foo = cl::make kernel<int, cl::Buffer,
cl::LocalSpaceArg> (program, “bar”);

— Mark kernel arguments that are from local memory as __local

— Your kernels are responsible for transferring data between Local and
Global/Constant memories ... there are built-in functions to help
(async_work_group_copy(), async_workgroup_strided_copy(), etc)

*Size and performance numbers are approximate and for a high-end discrete GPU, circa 2011

Local Memory performance hints

* Local Memory doesn’t always help...
— CPUs don’t have special hardware for it ™

— This can mean excessive use of Local Memory might
slow down kernels on CPUs

— GPUs now have effective on-chip caches which can
provide much of the benefit of Local Memory but
without programmer intervention

— Access patterns to Local Memory affect performance
in a similar way to accessing Global Memory
* Have to think about things like coalescence & bank conflicts

— So, your mileage may vary!

Memory Consistency

OpenCL uses a relaxed consistency memory model; i.e.

— The state of memory visible to a work-item is not guaranteed to be
consistent across the collection of work-items at all times.

Within a work-item:

— Memory has load/store consistency to the work-item’s private view of
memory, i.e. it sees its own reads and writes correctly

Within a work-group:

— Local memory is consistent between work-items at a barrier.
Global memory is consistent within a work-group at a
barrier, but not guaranteed across different work-groups!!

— This is a common source of bugs!

Consistency of memory shared between commands (e.g.
kernel invocations) is enforced by synchronization (barriers,
events, in-order queue)

Work-Item Synchronization

Ensure correct order of memory operations
to local or global memory (with flushes or

Within a work-group queuing a memory fence)

void barrier ()
— Takes optional flags
CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE
— A work-item that encounters a barrier() will wait until ALL work-
items in its work-group reach the barrier()
— Corollary: If a barrier() is inside a branch, then the branch must be
taken by either:
* ALL work-items in the work-group, OR

* NO work-item in the work-group

» Across work-groups

— No guarantees as to where and when a particular work-group will be
executed relative to another work-group

— Cannot exchange data, or have barrier-like synchronization
between two different work-groups! (Critical issue!)

— Only solution: finish the kernel and start another

Exercise 8: C=A*B, share B column between work-items

* Goal:
— To give you experience working with local memory.

* Procedure:

— Start from you last matrix multiplication program (the row-based method
using private memory). Modify it so each work group copies a column of B
into local memory and shares it between work-items in a work-group.

« Expected output:
— Verify that your result is correct. Output the runtime and the MFLOPS.

Tell the kernel an argument 1s local
local

Find a work-item’s ID in a work-group and size of a work-group:
int iloc = get local 1d(0);
int nloc = get local size(0);

Work items copy global into local data, so you need to

synchronize them
barrier (CLK LOCAL MEM FENCE) ;

Allocate local memory on the host and pass it i1into the kernel
cl::LocalSpaceArg localmem = cl::Local (sizeof(float) * N);
auto rowcol = cl::make kernel<int, cl::Buffer,
cl::LocalSpaceArg> (program, “mmul”);

Matrix multiplication: B column shared between work-items

__kernel void mmul (
const int Order,
__global float *A,
__global float *B,
__global float *C,
__local float *Bwrk)
{
int j, k;
int 1 =
get global id(0);

int iloc =
get local id(0);

int nloc =
get local size(0);

float tmp;
float Awrk[1024];

for (k = 0; k < Order; k++)
Awrk[k] = A[i*Order+k];
for (j = 0; j < Order; j++) {
for (k=iloc; k< Order; k+=nloc)
Bwrk([k] = B[k* Order +j];
barrier (CLK_LOCAL MEM FENCE) ;

tmp = 0.0£;
for (k = 0; k < Order; k++)
tmp += Awrk[k]*Bwrk[k];

C[i*Order+]j] += tmp;
barrier (CLK_LOCAL MEM FENCE) ;

Matrix multiplication: B column shared between work-items

__kernel void mmul (
const int Order,
__global float *a,
__global float *B,
__global float *C,

.CZEE;al float *Bwrk)
Iy

{
int j, k;
int i

get global id(0);
t iloc =

get local id(0);
int nloc =
get_loca{:iiffig}f/

float tmp;

float Awrk[1024];

for (k = 0; k < Order; k++)
Awrk[k] = A[i*Order+k];
for (j = 0; j < Order; j++) {

for (k=iloc; k< Order; ;:;;1227\\\\\

Bwrk[k] B[k* Order +j];

barrier (CLK_LOCAL MEM FENCE) ;

tmp = 0.0£;
for (k 0; k < Order; k++)
tmp += Awrk[k]*Bwrk[k];

C[i*Order+]j] += tmp;
barrier (CLK_LOCAL MEM FENCE) ;

Pass a work array in local memory to hold a

column of B. All the work-items do the copy

“in parallel” using a cyclic loop distribution
(hence why we need iloc and nloc)

Mat. Mul. host Program (Share a column of B within a work-group)

#define DEVICE CL_DEVICE_TYPE_DEFAULT
int main(void)
{ // declarations (not shown)

sz =N*N;

std::vector<float> h_A(sz);

std::vector<float> h_B(sz);
std::vector<float> h_C(sz);

cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup
// the problem (not shown)

cl::Context context(DEVICE);

cl::Program program(context,
util::loadProgram(“mmulCrow.cl®,
true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel

}

<int, cl::Buffer, cl::Buffer, cl::Buffer,
cl::LocalSpaceArg > (program, "mmul”);

d_A = cl::Buffer(context, begin(h_A), end(h_A),true);
d_B = cl::Buffer(context, begin(h_B), end(h_B),true);
d_C = cl::Buffer(context,

CL_MEM_WRITE_ONLY, sizeof(float) * sz);

cl::LocalSpaceArg Bwrk =
cl::Local(sizeof(float) * Pdim);

mmul(cl::EnqueueArgs(queue,
cl::NDRange(N), cl::NDRange(64)),
N, d_A, d_B, d_C, Bwrk);

cl::copy(queue, d_C, begin(h_C), end(h_C));

// Timing and check results (not shown)

Mat. Mul. host Program (Share a column of B within a work-group)

#define DEVICE CL_DEVICE_TYPE_DEFAULT
int main(void)
{ // declarations (not shown)

sz =N*N;

std::vector<float> h_A(sz);

Change host program to pass
local memory to kernels.
« Add an arg of type
(LocalSpaceArg is needed.
» Allocate the size of local
memory
« Update argument list in
kernel functor

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel

<int, cl::Buffer, cl::Buffer, cl::Buffer,
cl::LocalSpaceArg > (program, "mmul”};

d_A = cl::Buffer(context, begin(h_A), end(h_A),true);
d_B = cl::Buffer(context, begin(h_B), end(h_B),true);
d_C = cl::Buffer(context,

CL_MEM_WRITE_ONLY, sizeof(float) * sz);

! cl::LocalSpaceArg Bwrk =]

cl::Local(sizeof(float) * Pdim);

cl::Context context(DEVICE);

cl::Program program(context,
util::loadProgram(“mmulCrow.cl®,
true));

(mmul(cl::EnqueueArgs(queue,

cl::NDRange(N), cl::NDRange(64)),

_ N, d_A, d_B, d_C, Bwrk);

cl::copy(queue, d_C, begin(h_C), end(h_C));

// Timing and check results (not shown)

}

Matrix multiplication performance

* Matrices are stored in global memory.

Case MFLOPS

CPU GPU
Sequential C (not OpenCL) 887.2 N/A
C(i,j) per work-item, all global 3,926.1 3,720.9
C row per work-item, all global 3,379.5 4,195.8
C row per work-item, A row private 3,385.8 8,584.3
C row per work-item, A private, B local 10,047.5 8,181.9

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

These are not official benchmark results. You may
observe completely different results should you run

Third party names are the property of their owners. these tests on your own system.

HIGH PERFORMANCE OPENCL

Execution Model: How do kernels execute?

Transitions
observable
from the
host
program

Enqueue
Queued> Kernel placed in queue
Submit
Kernel moves to the
GubmitteD device and once
prerequisites are
Launch met, launched
Ready) V_/ork-groups are placed into a
virtual work-pool
Start
<Running> Work-groups execute in any order
from the work-pool
End
All the work-groups for a kernel have
(E”ded> finished
Complete

@omplete Host and other kernels are notified

High Performance OpenCL

* Agood OgefnCII_qprlg)gLam]'Sh Enqueue
optimized for high throughput ...
work-groups are scheduled from _ Q”e”edD
tRe on:k-r[])ocgjl and str:eamf ’ Submit
through the device, hopefully _
without observable stalls. Submitted

Launch

« By having more work than
processing elements, you can
hide memory latencies and Start

keep all the hardware busy. Running >

Ready

 Instruction overhead minimized =nd <
... work-groups broken down Ended)
into collections that execute
together in “SIMD mode” from a Complete
single stream of instructions. ool t)
g\;\ll\a[\)r)p for NVIDIA, Wavefront for ompete

Work-item divergence

What happens when work-items branch?

Work-items are gathered into collections that run together on the
hardware (This is the concept of a “Warp” from CUDA).

The hardware runs this collection in a SIMD data parallel model with all
the work-items starting together from the same program address.

Each work-item has its own instruction address counter and register
state

— Each work-item is free to branch and execute independently (diverge)
— Provide the MIMD abstraction
Branch behavior
— Each branch will be executed serially
— Work-items not following the current branch will be disabled (masked)

> > —_—

— ——

Awarp - 3 3
L ’ E Time

—
Start Branch1 Branch2 Branch3 Converge 94

Keep the processing elements (PE) busy

You need uniform execution of the work-items scheduled to
execute together. Avoid divergent control flows.

Occupancy: a measure of the fraction of time during a
computation when the PE’s are busy. Goal is to keep this
number high (well over 50%).

Pay attention to the number of work-items and work-group sizes

— Rule of thumb: On a modern GPU you want at least 4 work-items
per PE in a Compute Unit

— More work-items are better, but diminishing returns, and there is
an upper limit

e Each work item consumes PE finite resources (registers etc)

Use the Memory Hierarchy effectively

« Organize your computation so it puts the most frequently used data
in faster memory ... optimized of course around the available size.

Bandwidths Sizes
Private memory Private memory
0O(2-3) words/cycle/WI 0(10) words/WiI
Local memory Local memory
0O(10) words/cycle/WG 0(1-10) KBytes/WG
Global memory Global memory
0O(100-200) GBytes/s O(1-10) GBytes
Host memory Host memory
O(1-100) GBytes/s O(1-100) GBytes

*Size and performance numbers are approximate and for a high-end discrete GPU, circa 2011

Optimization issues

« Efficient access to memory

— Memory coalescing

 Ideally get work-item i to access data[i] and work-item j to access
data[j] at the same time etc.

— Memory alignment

» Padding arrays to keep everything aligned to multiples of 16, 32 or
64 bytes

» Registers per Work-ltem- ideally low and a nice divisor of
the number of hardware registers per Compute Unit

— E.g. 32,768 on M2050 GPUs

— These are statically allocated and shared between all Work-
ltems and Work-Groups assigned to each Compute Unit

— Four Work-Groups of 1,024 Work-ltems each would result in
just 8 registers per Work-ltem! Typically aim for 16-32
registers per Work-ltem

Memory layout is critical to
performance

“Structure of Arrays vs. Array of Structures” problem:
struct { float x, y, z, a; } Point;

Structure of Arrays (SoA) suits memory coalescence
on GPUs

Adjacent work-items
like to access
adjacent memory

Array of Structures (AoS) may suit cache hierarchies
on CPUs

X X X X...YyyVyyl..zzzz..aaaa..

Individual work-

items like to access
Xy za..xyza..xyza..xyza.. adjacent memory

Portable performance in OpenCL

 Don’t optimize too much for any one platform, e.g.

Don’t write specifically for certain warp/wavefront sizes etc
Be careful not to max out specific sizes of local/global memory

OpenCLl’s vector data types have varying degrees of support - faster
on some devices, slower on others

Some devices have caches in their memory hierarchies, some don’t,
and it can make a big difference to your performance without you
realizing

Choosing the allocation of Work-ltems to Work-Groups and
dimensions on your kernel launches

Performance differences between unified vs. disjoint host/global
memories

Double precision performance varies considerably from device to
device

« Recommend trying your code on several different platforms to see
what happens (profiling is good!)

— At least two different GPUs (ideally different vendors!) and at least

one CPU

Consider our matrix multiplication example

« So far, we’ve used matrix multiplication to explore the
memory hierarchy, but we haven’t really thought about
what the algorithm needs to run REALLY fast?

C(H)

C(,j) :
d 4 [X B(:,j)

Dot product of a row of A and a column of B for each element of C

* To make this fast, you need to break the problem down
into chunks that do lots of work for sub problems that fit in
fast memory (OpenCL local memory).

Matrix multiplication: sequential code

void mat mul (int Order, float *A, float *B, float *C)
{
int 1, 3j, k;
for (1 = 0; 1 < Order; i++) {
for (3 = 0; 73 < Order; j++) {
for (k = 0; k < Order; k++) {
C[i1*Order+]] += A[i*Order+k] * B[k*Order+3];
}

Matrix multiplication: sequential code

void mat mul (int Order, float *A, float *B, float *C)
{
int 1, 3j, k;
for (1 = 0; 1 < Order; i++)
for (3 = 0; 3 < Order; j++)
for (k = 0; k < Order; k++) {
C[i1*Order+]] += A[i*Order+k] * B[k*Order+3];

Let’s get rid of all
those ugly brackets

Matrix multiplication: sequential code

void mat mul (int Order, float *A,

{

int i, 3, k;

float *B,

float *C)

int NB=Order/block size; // assume Order3block size=0

Break each loop
into chunks with a
size chosen to
match the size of
your fast memory

for (ib = 0; ib < NB; ib++)
for (i=ib*NB;i< (ib+1) *NB;i++)
for (jb = 0; Jb < NB; jb++)
for (J=Jb*NB;j<(jb+1l) *NB;j++)
for (kb = 0; kb < NB; kb++)
for (k=kb*NB; k< (kb+1)*NB; k++)

C[i*Order+j] += A[i*Order+k]

* B[k*Order+3];

Matrix multiplication: sequential code

void mat mul (int Order, float *A, float *B, float *C)
{
int i, 3, k;
int NB=Order/block size; // assume Order3block size=0
for (ib = 0; 1b < NB; ib++)
for (i=ib*NB;i<(ib+1) *NB;i++)

Rearrange loop nest
to move loops over
for (jb = 0; jb < NB; Jbtt) blocks “out” and
for (kb = 0; kb < NB; kb++) leave loops over a
single block together

for (1=ib*NB;i<(ib+1) *NB;i++)
for (j=Jb*NB;Jj<(jb+1) *NB; j++)
for (k=kb*NB; k< (kb+1) *NB; k++)
C[i1*Order+]] += A[i*Order+k] * B[k*Order+3];

Matrix multiplication: sequential code

void mat mul (int Order, float *A, float *B, float *C)
{
int 1, 3j, k;

int NB=Order/block size; // assume Order3block size=0

for (ib = 0; 1b < NB; 1ib++) s Tust 3 local
is is just a loca
for (i=ib*NB;i< (ib+1) *NB;i++) > 1S JUST a 106

| | | matrix multiplication

tor (Jb = 0; Jb < NB; Jb++) of a single block

for (kb = 0; kb < NB; kb++) Z///
for (jJ=Jb*NB;j<(jb+1) *NB; j++)

|

|

: for (k=kb*NB;k<(kb+1l) *NB; k++)

! C[i*Order+j] += A[i*Order+k] * B[k*Order+j];

Matrix multiplication: sequential code

void mat mul (int Order, float *A, float *B, float *C)
{
int i, 3, k;
int NB=Order/block size; // assume Order3block size=0
for (ib = 0; ib < NB; ib++)
for (1i=1ib*NB;i<(ib+1) *NB;i++)
for (jb = 0; Jb < NB; jb++)
for (kb = 0; kb < NB; kb++)

sgemm (C, A, B, ...)

Note: sgemm is the name of the level three BLAS routine to multiply two matrices

Matrix multiplication: sequential code

void mat mul (int Order, float *A, float *B, float *C)
{
int i, 3, k;
int NB=Order/block size; // assume Order3block size=0
for (ib = 0; ib < NB; ib++)
for (1i=1ib*NB;i<(ib+1) *NB;i++)
for (jb = 0; Jb < NB; jb++)
for (kb = 0; kb < NB; kb++)

sgemm (C, A, B, ...)

Note: sgemm is the name of the level three BLAS routine to multiply two matrices

Exercise 9: The C = A* B Competition

e Goal:

— To see who can get the best performance from their
matrix multiplication program.

 Procedure:

— Start from which ever matrix multiplication program you
choose.

— Make it fast. But TEST OUTPUT You must get correct
results.

— Remember ... block your algorithms to exploit the
natural execution widths of your hardware, make good
use of local and private memory.

« Expected output:

— Test your result and verify that it is correct. Output the
runtime and the MFLOPS.

Blocked matrix multiply: kernel

#define blksz 16

__kernel void mmul(
const unsigned int N,
__global float* A,
__global float* B,
__global float* C,
__local float* Awrk,

/I upper-left-corner and inc for Aand B
int Abase = Iblk*N*blksz; int Ainc = blksz;
int Bbase = Jblk*blksz; int Binc = blksz*N;

/I C(Iblk,Jblk) = (sum over Kblk) A(Iblk,Kblk)*B(Kblk,Jblk)
for (Kblk = 0; Kblk<Num_BLK: Kblk++)

local float* Bwrk {
{ —local float” Bwrk) /ILoad A(Iblk,Kblk) and B(Kblk,Jblk).
: : /[Each work-item loads a single element of the two
int kloc, Kblk; /lblocks which are shared with the enti Kk
float Ctmp=00f, OCKS wnich are snharea wi € entire work-group

. Awrk[iloc*blksz+jloc] = A[Abase+iloc*N+jloc];
I/ compute element C(i,j) . : _ et e 1,
inti = get_global_id(0): Bwrk[iloc*blksz+jloc] = B[Bbase+iloc*N+jloc];
int j = get_global_id(1);
intj = get_global_id(1); barrier(CLK_LOCAL_MEM_FENCE);
/I Element C(i,j) is in block C(Iblk,Jblk)
int Iblk = get_group _id(0);
int Jblk = get_group_id(1);

#pragma unroll
for(kloc=0; kloc<blksz; kloc++)
Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

/Il C(i,j) is element C(iloc, jloc)

s i
int iloc = get_local _id(0); } ; ;
int jloc = get_local_id(1); oy _

int Num_BLK = N/blksz: C[*N+i] = Ctmp;

}

It’s getting the indices
right that makes this hard

Blocked matrix multiply: kernel

#define blksz 16

__kernel void mmul(
const unsigned int N,
__global float* A,

lobal float* B
_glgEZI fIEZt* C, Il C(Iblk,Jblk) = (sum over Kblk) A(Iblk,Kblk)*B(Kblk,Jblk)

_local float* Awrk, IEOI' (Kblk = 0; Kblk<Num_BLK; Kblk++)

| | float* Bwrk

{ —local float” Bwrk) //Load A(Iblk,Kblk) and B(Kblk,Jblk).
int kloc. Kblk: Load A and B blocks, | //Each work-item loads a single element of the two

~ | wait for all work- //blocks which are shared with the entire work-group
float Ctmp=0.0f, | jtems to finish)

/I upper-left-corner and inc for Aand B
int Abase = Iblk*N*blksz; int Ainc = blksz;
int Bbase = Jblk*blksz; int Binc = blksz*N;

[Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc];)

Il te el t C(ij - ' '
compute element C(i,j) Bwrk([jloc*blksz+lloc] = B[Bbase+jloc*N+iloc];

int i = get_global_id(0);
int j = get_global _id(1);

 barrier(CLK_LOCAL_MEM_FENCE); y

// Element C(i,j) is in block C(Iblk,Jblk)

int Iblk = get_group_id(0);
int Jblk = get_group_id(1);

/Il C(i,j) is element C(iloc, jloc)
/I of block C(Iblk, Jblk)

int iloc = get_local _id(0);

int jloc = get_local _id(1);

int Num_BLK = N/blksz;

#pragma unroll
for(kloc=0; kloc<blksz; kloc++)
Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

barrier(CLK_LOCAL _MEM_FENCE);
Abase += Ainc; Bbase += Binc;
¥

Wait for everyone to finish before
going to next iteration of Kblk loop.

C[j*N+i] = Ctmp;

Mapping into A, B, and C from each work item

16 x 16 NDRange with
workgroups of size 4x4

ocl_get global ID(1) =16

ry

| €

ocl_get global ID(0) =16

| <

>

||

Map Matrices A, B and C
onto this NDRange in a
row major order (N =16

and Blksz = 4).

1 ocl_get local ID(1) =4

ocl _get local ID(0) =4

Mapping into A, B, and C from each work item

C(Iblk,Jblk)

C(Iblk, Jblk)

16 x 16 NDRange with
workgroups of size 4x4

ocl_get global ID(1) =16

ocl_get global ID(0) =16

Row Block Column Block
A(Iblk,:) B(:,Jblk)

(T

Map Matrices A, B and C

| <

A oeee
T
T
T

| €

> onto this NDRange ina
eeee row majororder (N=16
ceee andBlksz=4).
eeee oooe
eeee oooe
seee
seee
eeee oooe
eeee oooe
seee
seee
eeee oooe
s00e oo00e 4
ceee 1 ocl_get_local_ID(1) = 4
sooe Y
| <>

ocl_get local ID(0) =4

Mapping into A, B, and C from each work item
Row Block

C(Iblk, Jblk

C(Iblk, Jblk)

A(Iblk,:)

pEEEEk

16 x 16 NDRange with
workgroups of size 4x4

Bbase = Jblk*blksz = 1*4

Consider indices for eeee Js...

computation of the block :::: ::::
C(Iblk=2, Jblk=1) 0000 |\ 000e 0000
eeee 000e o000

Abase = Iblk*N*blksz ceee cese
=1*16*4 \:‘/‘-‘\;:“‘ (XXX)
P00 ‘e0ee o000

cece cece
T eeee 000e 0000
Subsequent A blocks 0000 0000 00060

by shifting index by ceee ooes

Ainc = blksz = 4 eeee oeee

Column Block
B(:,Jblk)

Map Matrices A, Band C
onto this NDRange in a

row major order (N =16
and Blksz = 4).

Subsequent B blocks

by shifting index by

Binc = blksz * N
=4*16=64

Blocked matrix multiply: Host

#define DEVICE CL_DEVICE_TYPE_DEFAULT
int main(void)
{ // declarations (not shown)

sz =N*N;

std::vector<float> h_A(sz);

std::vector<float> h_B(sz);
std::vector<float> h_C(sz);

cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup
// the problem (not shown)

cl::Context context(DEVICE);

cl::Program program(context,
util::loadProgram(“mmulCrow.cl®,
true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel

<int, cl::Buffer, cl::Buffer, cl::Buffer,
cl: :LocalSpaceArg, cl::LocalSpaceArg >

(program, "mmul”);

d_A = cl::Buffer(context, begin(h_A), end(h_A),true);
d_B = cl::Buffer(context, begin(h_B), end(h_B),true);

d_C = cl::Buffer(context,
CL_MEM_WRITE_ONLY, sizeof(float) * sz);

cl::LocalSpaceArg Awrk =
cl::Local(sizeof(float) * N);
cl::LocalSpaceArg Bwrk =
cl::Local(sizeof(float) * N);
mmul(cl::EnqueueArgs(queue,
cl::NDRange(N,N), cl::NDRange(16,16)),
N, d_A, d_B, d_C, Awrk, Bwrk);

cl::copy(queue, d_C, begin(h_C), end(h_C));

// Timing and check results (not shown)

Blocked matrix multiply: Host

#define DEVICE CL_DEVICE_TYPE_DEFAULT
int main(void)
{ // declarations (not shown)

sz =N*N;

std::vector<float> h_A(sz);

std::vector<float> h_B(sz);
std::vector<float> h_C(sz);

cl::Buffer d_A, d_B, d_C;

Setup local memory
// initializd with blocks of A and B
// the proH (16 by 16) that should
fit in local memory.

cl::Context context(DEVICE);

cl::Program program(context,
util::loadProgram(“mmulCrow.cl®,
true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel

<int, cl::Buffer, cl::Buffer, cl::Buffer,
cl: :LocalSpaceArg, cl::LocalSpaceArg >

(program, "mmul”);

d_A = cl::Buffer(context, begin(h_A), end(h_A),true);
d_B = cl::Buffer(context, begin(h_B), end(h_B),true);

d_C = cl::Buffer(context,
CL_MEM_WRITE_ONLY, sizeof(float) * sz);

fcl::LocalSpaceArg Awrk =)
cl::Local(sizeof(float) * 16*16);
cl::LocalSpaceArg Bwrk =

¢ cl::Local(sizeof(float) * 16*16);J

mmul(cl: EnguenieArgs(_quelie
cl::NDRange(N,N), cl::NDRange(16,16)),
N, d_A, d_b, d_(, AWrK, bwrk);

cl::copy(queue, d_C, begin(h_C), end(h_C));

// Timing and check results (not shown)

One work-item per element of the C matrix organized into 16 by 16 blocks.

Matrix multiplication performance

* Matrices are stored in global memory.

Case MFLOPS

CPU GPU
Sequential C (not OpenCL) 887.2 N/A
C(i,j) per work-item, all global 3,926.1 3,720.9
C row per work-item, all global 3,379.5 4,195.8
C row per work-item, A row private 3,385.8 8,584.3
C row per work-item, A private, B local 10,047.5 8,181.9
Block oriented approach using local 119304.6

Device is Tesla® M2090 GPU from
NVIDIA® with a max of 16 compute
units, 512 PEs

Device is Intel® Xeon® CPU, E5649
@ 2.53GHz

CuBLAS performance 283366.4 MFLOPS

These are not official benchmark results. You may observe completely

Third party names are the property of their owners. different results should you run these tests on your own system.

Matrix multiplication performance (CpPu)
* Matrices are stored in global memory.

Case MFLOPS
CPU
Sequential C (not OpenCL, compiled /03) 224.4
C(i,j) per work-item, all global 841.5
C row per work-item, all global 869.1
C row per work-item, A row private 1038.4
C row per work-item, A private, B local 3984.2
Block oriented approach using local (blksz=8) 7482.5
Block oriented approach using local (blksz=16) 12271.3
Block oriented approach using local (blksz=32) 16268.8
Intel MKL SGEMM 63780.6

Device is Intel® Core™ i5-2520M CPU @2.5 GHz (dual core) Windows 7 64 bit OS, Intel
compiler 64 bit version 13.1.1.171, OpenCL SDK 2013, MKL 11.0 update 3.

These are not official benchmark results. You may observe completely

Third party names are the property of their owners. different results should you run these tests on your own system.

THE OPENCL 200

The OpenCL Zoo

* We will have a range of systems available
(either online or physically in the room).
Time will be made available for Students
to take the code they wrote over the
course of the day and run on these
different systems. The goal is to explore
the concept of performance portability.

SOME CONCLUDING REMARKS

Conclusion

OpenCL has widespread industrial support

OpenCL defines a platform-APl/framework for heterogeneous
computing, not just GPGPU or CPU-offload programming

OpenCL has the potential to deliver portably performant code;
but it has to be used correctly

The latest C++ and Python APIs makes developing OpenCL
programs much simpler than before

The future is clear:

— OpenCL is the only parallel programming standard that enables
mixing task parallel and data parallel code in a single program while

load balancing across ALL of the platform’s available resources.

Other important related trends

* OpenCLl’s Standard Portable Intermediate
Representation (SPIR)

— Based on LLVM’s IR

— Makes interchangeable front- and back-ends
straightforward

 OpenCL 2.0
— Adding High Level Model (HLM)
— Lots of other improvements

« For the latest news on SPIR and new OpenCL
versions see:

— http://www.khronos.org/opencl/

Third party names are the property of their owners.

http://www.khronos.org/opencl/
http://www.khronos.org/opencl/

Resources:
https://www.khronos.org/opencl/

OpenCL Programming Guide:
Aaftab Munshi, Benedict Gaster, Timothy G. Mattson and
James Fung, 2011

_Fii" =
= £

Beredict B, Ga zef

Heteuge eous Computing

0penC|_ Heterogeneous Computing with OpenCL
Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry
and Dana Schaa, 2011

Other OpenCL resources

* New OpenCL user group
— http://comportability.org

— Forums { ComPorTabIUTY"
— Downloaded examples

— Training
— Launched SC’12 in November

— ACTION: register and become part of the
community!!

Thank you for coming!

Appendix A

SYNCHRONIZATION IN OPENCL

Consider N-dimensional domain of work-items

* Global Dimensions:
— 1024x1024 (whole problem space)

» Local Dimensions:
— 128x128 (work-group, executes together)

1024

Synchronization between
— possible only
EEEEE within :
HEEEEN and
HEEEN
EEEE

1024

Cannot synchronize
between work-groups
within a kernel

Synchronization: when multiple units of execution (e.g. work-items) are
brought to a known point in their execution. Most common example is a
barrier ... i.e. all units of execution “in scope” arrive at the barrier before
any proceed.

Work-Item Synchronization

Ensure correct order of memory operations
to local or global memory (with flushes or

- Within a work-group queuing a memory fence)

void barrier ()
— Takes optional flags
CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE
— A work-item that encounters a barrier() will wait until ALL work-
items in its work-group reach the barrier()
— Corollary: If a barrier() is inside a branch, then the branch must be
taken by either:
* ALL work-items in the work-group, OR

* NO work-item in the work-group

» Across work-groups

— No guarantees as to where and when a particular work-group will be
executed relative to another work-group

— Cannot exchange data, or have barrier-like synchronization
between two different work-groups! (Critical issue!)

— Only solution: finish the kernel and start another

Where might we need
synchronization?

 Consider a reduction ... reduce a set of
numbers to a single value

—E.g. find sum of all elements in an array
» Sequential code

int reduce (int Ndim, int *A)
{
int sum = 0;
for(int 1 = 0; 1 < Ndim; i++)
sum += A[1];

Simple parallel reduction

* Areduction can be carried out in three steps:
1. Each work-item sums its private values into a local array
indexed by the work-item’s local id

2. When all the work-items have finished, one work-item sums
the local array into an element of a global array (indexed by

work-group id).
3. When all work-groups have finished the kernel execution,
the global array is summed on the host.

* Note: this is a simple reduction that is straightforward to
implement. More efficient reductions do the work-group
sums in parallel on the device rather than on the host.
These more scalable reductions are considerably more

complicated to implement.

A simple program that uses a reduction

Numerical Integration

4.0/(1+x2)

F(x)

4.0

N
o

0.0

Mathematically, we know that
we can approximate the integral
as a sum of rectangles.

Each rectangle has width and
height at the middle of interval.

Numerical integration source code

The serial Pi program

static long num steps = 100000;
double step;
void main ()

{

int i; double x, pi, sum = 0.0;
step = 1.0/ (double) num steps;

for (1 = 0; i < num steps; i++) {
x = (i+0.5) *step;
sum = sum + 4.0/ (1.0+4x*x) ;

}

pi = step * sum;

}

Numerical integration source code

The serial Pi program

static long num steps = 100000;

float step;

void main () Let.’s do this

{ with float
int i; float x, pi, sum = 0.0; | just to keep
GPUs happy.

step = 1.0f/(float) num steps;

for (1 = 0; i < num steps; i++) {
x = (i+0.5f) *step;
sum = sum + 4.0/ (1.0+4x*x) ;

}

pi = step * sum;

}

Exercise 10: The Pi program
« Goal:

— To understand synchronization between work-items in
the OpenCL C kernel programming language.

— To get more practice writing kernel and host code.

 Procedure:

— Start with the provided serial program to estimate Pi
through numerical integration

— Write a kernel and host program to compute the
numerical integral using OpenCL

— Note: You will need to implement a reduction

« Expected output:
— Output result plus an estimate of the error in the result
— Report the runtime

Hint: you will want each work-item to do many iterations of the loop, i.e. don’t
create one work-item per loop iteration. To do so would make the reduction so
costly that performance would be terrible.

The Pi program: kernel

void reduce(_ local float*,
__global float*);

___kernel void pi(
const int niters,
const float step_size,
__local float* local sums,
__global float* partial_sums)

{
int num_wrk_items = get_local_size(0);
int local_id = get_local_id(0);
int group _id = get_group_id(0);
float x, accum = 0.0f;
int i,istart,iend;

istart = (group_id * num_wrk_items
+ local_id) * niters;
iend = istart+niters;

for(i= istart; i<iend; i++){
x = (i+0.5f)*step_size;
accum += 4.0f/(1.0f+x*x);

}

local_sums[local_id] = accum;
barrier(CLK_LOCAL_MEM_FENCE);

reduce(local_sums, partial_sums);

}

__local float* local sums,
__global float* partial_sums)

void reduce(

{

int num_wrk_items = get_local_size(0);

int local_id = get_local_id(0);
int group _id = get_group_id(0);
float sum; int i;

if (local_id == 0) {
sum = 0.0f;
for (i=0; i<num_wrk_items; i++) {
sum += local_sums]i];
}
partial_sums[group_id] = sum,;
}
}

The Pi program: Host (1/2)

// various include files (not shown)
#define INSTEPS (512*512*512)
#define ITERS (262144)

int main(void) This host program is more

{ complicated than the others
float *h_psum; . rv th tem to
int in_nsteps = INSTEPS; _smce we query the sys
int niters = ITERS; find the best match between the
int nsteps; . .
float step. size: total number of integration
::size_t nwork_groups; steps and the preferred work-
::size_t max_size, work _group_size = 8; .
float pi_res; group size.

cl::Buffer d_partial _sums;

cl::Context context(DEVICE);

cl::Program program(context, util::loadProgram("pi_ocl.cl"), true);
cl::CommandQueue queue(context);

cl::Kernel ko_pi(program, "pi");

std::vector<cl::Device> devices = context.getinfo<CL_CONTEXT DEVICES>();
cl::Device device = devices[0];

}

The Pi program: Host (2/2)

Il Get the devices preferred work group size
work_group_size = ko_pi.getWorkGroupinfo<CL_KERNEL_WORK_GROUP_SIZE>(device);

auto pi = cl::make_kernel<int, float, cl::LocalSpaceArg, cl.:Buffer>(program, "pi");

Il Set num. of work groups, num. of steps, and the step size based on the work group size
nwork_groups = in_nsteps/(work_group_size*niters);

if (nwork_groups <1) {

nwork_groups = device.getinfo<CL_DEVICE_MAX_COMPUTE_UNITS>();

work _group_size=in_nsteps / (hwork_groups*niters);

}

nsteps = work_group_size * niters * nwork_groups; step_size = 1.0f/static_cast<float>(nsteps);
std::vector<float> h_psum(nwork_groups);

d_partial_sums = cl::Buffer(context, CL_ MEM_WRITE_ONLY, sizeof(float) * nwork groups);

pi(cl::EnqueueArgs(queue, cl::NDRange(nwork_groups * work_group_size),
cl::NDRange(work_group_size)), niters,step_size,
cl::Local(sizeof(float) * work_group_size),d_partial_sums);

cl::copy(queue, d_partial_sums, begin(h_psum), end(h_psum));

/I complete the sum and compute final integral value
for (unsigned int i = 0, pi_res=0.0f; i< nwork_groups; i++) pi_res += h_psum([i] * step_size;

Appendix B

VECTOR OPERATIONS WITHIN
KERNELS

Before we continue...

 The OpenCL device compilers are good at
auto-vectorizing your code

— Adjacent work-items may be packed to
produce vectorized code

* By using vector operations the compiler
may not optimize as successfully

* S0 think twice before you explicitly
vectorize your OpenCL kernels, you might
end up hurting performance!

Vector operations

* Modern microprocessors include vector units:
Functional units that carry out operations on blocks of numbers

« For example, x86 CPUs have over the years introduced
MMX, SSE, and AVX instruction sets ...

characterized in part by their widths (e.g. SSE operates on 128
bits at a time, AVX 256 bits etc)

« To gain full performance from these processors it is
important to exploit these vector units

« Compilers can sometimes automatically exploit vector
units.

Experience over the years has shown, however, that you all too
often have to code vector operations by hand.

« Example using 128 bit wide SSE:

#include "xmmintrin.h " // vector intrinsics from gcc for SSE (128 bit wide)

__ml28 ramp = mm setr ps(0.5, 1.5, 2.5, 3.5); // pack 4 floats into vector register

__ml28 vstep = mm loadl ps(&step); // pack step into each of r 32 bit slots in a vector
register

__ml28 xvec; = mm mul ps(ramp,vstep); // multiple corresponding 32 bit floats and assign to xvec

Third party names are the property of their owners.

Vector intrinsics challenges

« Requires an assembly code style of programming:
— Load into registers

— Operate with register operands to produce values in another
vector register

« Non portable

— Change vector instruction set (even from the same vendor)
and code must be re-written. Compilers might treat them
differently too

« Consequences:
— Very few programmers are willing to code with intrinsics

— Most programs only exploit vector instructions that the
compiler can automatically generate - which can be hit or miss

— Most programs grossly under exploit available performance.

Solution: a high level portable vector instruction set ...
which is precisely what OpenCL provides.

Vector Types

The OpenCL C kernel programming language provides
a set of vector instructions:

— These are portable between different vector instruction
sets

These instructions support vector lengths of 2, 4, 8,
and 16 ... for example:

— char2, ushort4, int8, floatlé, double?2, ..
Properties of these types include:

— Endian safe

— Aligned at vector length

— Vector operations (elementwise) and built-in functions

Remember, double (and hence vectors
of double) are optional in OpenCL

Vector Operations

 Vector literal
vi0 = () -7;

vil = () (0, 1, 2, 3);

* Vector components

viO.lo = vil.hi;

v8=() (viO,vil.s01l,vil.odd) ;

* Vector ops

vi0 += wvil;

vi0 = abs(vi0) ;

7 |-

PN

2 |3 |-

vd

+

N

1
N

2
0
y
2
3

Nl €™

S b4

Using vector operations

* You can convert a scalar loop into a vector loop using
the following steps:

— Based on the width of your vector instruction set and
your problem, choose the number of values you can pack
into a vector register (the width):

« E.g. for a 128 bit wide SSE instruction set and float data (32 bit),
you can pack four values (128 bits =4*32 bits) into a vector
register

— Unroll the loop to match your width (in our example, 4)

— Set up the loop preamble and postscript. For example, if
the number of loop iterations doesn’t evenly divide the
width, you’ll need to cover the extra iterations in a loop
postscript or pad your vectors in a preamble

— Replace instructions in the body of the loop with their
vector instruction counter parts

Third party names are the property of their owners.

Vector instructions example

Scalar loop:
for (1 = 0; i < 34; i++) x[i] = y[i] * yI[i]:;
Width for a 128-bit SSE is 128/32=4

Unroll the loop, then add postscript and premable as needed:
NLP = 34+2; x[34]=x[35]=y[34]=y[35]=0.0f // preamble to zero pad

arrays
for (1 = 0; i < NLP; i =1+ 4) {
x[i] = y[i] * y[i]; =x[i+1] = y[i+1] * y[i*1];

x[1+2] = y[i+2] * y[i*2]; =x[i+3] = y[i+3] * y[1i*3];
}

Replace unrolled loop with associated vector instructions:
x4 [DIM], y4[DIM];
// DIM set to hold 34 values extended to multiple of 4 (36)
zero = {0.0£, 0.0£, 0.0£, 0.0f};
NLP = 34 $4 + 1 // 9 values .. to cover the fact 34 isn’'t a
multiple of 4
x4 [NLP-1] = 0.0f; y4[NLP-1] = 0.0f; // zero pad arrays

for (i = 0; i < NLP; i++) x4[i] = y4[i] * y4[i]; // actual
vector operations

Third party names are the property of their owners.

Exercise A: The vectorized Pi program

e Goal:
— To understand the vector instructions in the kernel
programming language
 Procedure:
— Start with your best Pi program

— Unroll the loops 4 times. Verify that the program still
works

— Use vector instructions in the body of the loop

« Expected output:
— Output result plus an estimate of the error in the result

— Report the runtime and compare vectorized and scalar
versions of the program

— \éoPuUcould try running this on the CPU as well as the

Appendix C

THE OPENCL EVENT MODEL

OpenCL Events

* An event is an object that communicates the status
of commands in OpenCL ... legal values for an event:

command has been enqueued.

: command has been submitted to
the compute device

: compute device is executing the command
command has completed

: a negative value indicates an error
condition occurred.

« Can query the value of an event from the host ... for
example to track the progress of a command.

Examples:
 CL_EVENT_CONTEXT
CL_EVENT_COMMAND_EXECUTION_STATUS
cl_int clGetEventInfo (« CL_EVENT_COMMAND_TYPE

cl event event, cl event info param name,
size_t param value size, void *param value,
size_t *param value_size_ ret)

Generating and consuming events

* Consider the command to enqueue a kernel. The last three
arguments optionally expose events (NULL otherwise).

cl int clEnqueueNDRangeKernel (

cl command queue command queue, this command
cl kernel kernel, is waiting to complete before
cl uint work dim, executing

const size t *global work offset,
const size t *global work size
const size t *local work si
cl uint num events in waiT list,
const cl event *event wait list,

cl event *event) €
T ... Command
. queue and events must share a
Pointer to an context.

generated by this command

Event: basic event usage

* Events can be used to impose order
constraints on kernel execution.

* Very useful with out-of-order queues.

cl event k events[2];
err = clEnqueueNDRangeKernel (commands, kernell, 1, Enqueue
NULL, &global, &local, 0, NULL, &k events[0]); two
kernels
err = clEnqueueNDRangeKernel (commands, kernel2, 1, that
NULL, &global, &local, 0, NULL, &k events[l]); €Xpose
— events

err = clEnqueueNDRangeKernel (commands, kernel3, 1,

NULL, &global, &local, 2, k events, NULL);
Wait to execute

until two previous
events complete

OpenCL synchronization: queues & events

Events connect command invocations. Can be used to synchronize
executions inside out-of-order queues or between queues

Example: 2 queues with 2 devices

Kernel 2 starts
before the results
from Kernel 1 are
ready

Kernel 2 waits for
an event from
Kernel 1 and does
not start until the
results are ready

Enqueue Kernel 1
Enqueue Kernel 2
Enqueue Kernel 1
Enqueue Kernel 2

Kernel 2 Kernel 2

| I—

GPU Kernel 1 GPU

Time =— Time =—

Why Events? Won’t a barrier do?

* A barrier defines a synchronization
point ... commands following a
barrier wait to execute until all
prior enqueued commands complete

clEnqueueBarrier (
queue)

« Events provide fine grained control
... this can really matter with an
out-of-order queue.

« Events work between commands in
the different queues ... as long as
they share a context

« Events convey more information | Bt
than a barrier ... provide info on
state of a command, not just
whether it’s complete or not.

-

Queue

Queue

Barriers between queues: clEnqueueBarrier doesn’t work

1St (:()rr]nnzar]ci (21]€3LJ€3 :!nd (:()FTHTTEif](j (QLJE?LHE

clEnqueueNDRangeKernel (
clEnqueueWriteBuffer ()
clEnqueueWriteBuffer ()
clEnqueueNDRangeKernel (
clEnqueueReadBuffer ()
clEnqueueReadBuffer ()
clEnqueueWriteBuffer ()
clEnqueueNDRangeKernel (
clEnqueueReadBuffer ()

clEnqueueNDRangeKernel ()
clEnqueueWriteBuffer ()
clEnqueueWriteBuffer ()
clEnqueueNDRangeKernel ()
clEnqueueReadBuffer ()
clEnqueueReadBuffer ()
clEnqueueWriteBuffer ()
clEnqueueNDRangeKernel ()
clEnqueueReadBuffer ()

clEnqueueBarrier ()

clEnqueueNDRangeKernel (
clEnqueueWriteBuffer ()
clEnqueueWriteBuffer ()
clEnqueueReadBuffer ()
clEnqueueReadBuffer ()
clEnqueueWriteBuffer ()

clEnqueueBarrig?TT
™

clEnqueueNDRangeKernel (
clEnqueueWriteBuffer ()
clEnqueueWriteBuffer ()
clEnqueueReadBuffer ()
clEnqueueReadBuffer ()

clEnqueueNDRangeKernel ()
clEnqueueReadBuffer ()
clEnqueueNDRangeKernel ()

clEnqueueWriteBuffer ()
clEnqueueNDRangeKernel ()
clEnqueueReadBuffer ()

clEnqueueNDRangeKernel ()

Barriers between queues: this works!

1St (:()rr]nnzar]ci (21]€3LJ€3 :!nd (:()FTHTTEif](j (QLJE?LHE

clEnqueueNDRangeKernel (
clEnqueueWriteBuffer ()
clEnqueueWriteBuffer ()
clEnqueueNDRangeKernel (
clEnqueueReadBuffer ()
clEnqueueReadBuffer ()
clEnqueueWriteBuffer ()
clEnqueueNDRangeKernel (
clEnqueueReadBuffer ()

clEnqueueNDRangeKernel (
clEnqueueWriteBuffer ()
clEnqueueWriteBuffer ()
clEnqueueNDRangeKernel (
clEnqueueReadBuffer ()
clEnqueueReadBuffer ()
clEnqueueWriteBuffer ()
clEnqueueNDRangeKernel (
clEnqueueReadBuffer ()

clEnqueueBarrier ()

clEnqueueWaitForEvent (event)

——

clEnqueueMarker (event)

/

clEnqueueNDRangeKernel ()
clEnqueueWriteBuffer ()
clEnqueueWriteBuffer ()
clEnqueueReadBuffer ()
clEnqueueReadBuffer ()
clEnqueueWriteBuffer ()

clEnqueueNDRangeKernel ()
clEnqueueReadBuffer ()
clEnqueueNDRangeKernel ()

clEnqueueNDRangeKernel ()
clEnqueueWriteBuffer ()
clEnqueueWriteBuffer ()
clEnqueueReadBuffer ()
clEnqueueReadBuffer ()

clEnqueueWriteBuffer ()
clEnqueueNDRangeKernel ()
clEnqueueReadBuffer ()
clEnqueueNDRangeKernel ()

Host generated events influencing execution of

commands: User

generate event objects

clCreateUserEvent (
*errcode ret)

* Created with value CL_SUBM
* |t’s just another event to enc

events

“user code” running on a host thread can

context,

TTED.
ueued commands.

 Can set the event toone of t

values

clSetUserEventStatus (
execution status)

« Example use case: Queue up

ne legal event

event,

block of commands

that wait on user input to finalize state of
memory objects before proceeding.

Command generated events influencing
execution of host code

* A thread running on the host can pause
waiting on a list of events to complete. This

can be done with the function:

cl int clWaitForEvents Number of events to
- } ((/wait on
cl uint num events,

const cl event *event list)

- An array of pointers
to event object

« Example use case: Host code waiting for an
event to complete before extracting
information from the event.

Profiling with Events

OpenCL is a performance oriented language ... Hence
performance analysis is an essential part of OpenCL
programming.

The OpenCL specification defines a portable way to
collect profiling data.

Can be used with most commands placed on the
command queue ... includes:

— Commands to read, write, map or copy memory objects
— Commands to enqueue kernels, tasks, and native kernels
— Commands to Acquire or Release OpenGL objects

Profiling works by turning an event into an opaque
object to hold timing data.

Using the Profiling interface

« Profiling is enabled when a queue is created with the
CL_QUEUE_PROFILING_ENABLE flag set.

* When profiling is enabled, the following function is used
to extract the timing data

Profiling data
to query (see
cl int clGetEventProfilingInfo(next slide)
cl event event,
cl profiling info param name,

Expected and __—»Size_t param value_ size, Pointer to
actual size of \VOld *param value, ¢ memory to
profiling data. size t *param value size ret) hold results

cl_profiling_info values

CL_PROFILING_COMMAND_QUEUED

— the device time in nanoseconds when the command is
enqueued in a command-queue by the host. (cl_ulong)

CL_PROFILING_COMMAND_SUBMIT

— the device time in nanoseconds when the command is
submitted to compute device. (cl_ulong)

CL_PROFILING_COMMAND_START

— the device time in nanoseconds when the command
starts execution on the device. (cl_ulong)

CL_PROFILING_COMMAND_END

— the device time in nanoseconds when the command has
finished execution on the device. (cl_ulong)

Profiling

prof event;
comm;

clCreateCommandQueue (
context, device id,

QZEUEUE_PROFILING_EN ,

\ .
X7

comm

err clEnqueueNDRangeKernel (

comm, kernel,

nd, NULL, global, NULL,

f of event);
clFinish (comm) ;

err clWaitForEvents (1,
&prof event);

Examples (C)

start time, end time;
size t return bytes;

clGetEventProfiling
prof event,

CL_PROFILING_ COMMAND QUEUED,
sizeof (),

&start time,

&return bytes);

GetEventProfily o (

prof event,

CL_ PROFILING COMMAND END,
sizeof (),
&end time,

&return bytes) ;

run_time =(double) (end_ time
start time);

Events inside Kernels ... Async. copy

// A, B, C kernel args .. global buffers.
// Bwrk is a local buffer . Compute arowof C=A*B

— 1 A column per work-item

f =0; im;
or (k=0;k<Pdim;k++) — Work group shares rows of B

Awrk[k] = A[i*Ndim+k];
Start an async. copy
for row of B returning

for (j=0;j<Mdim; j++) { an event to track

event t ev_cp = async work group copy (progress.
(float*) Bwrk, (float*) B,
(size t) Pdim, () 0);

Wait for async. copy to
&— complete before

wait group events(l, &ev_cp);

proceeding.
for (k=0 ’ tmp= 0.0 ;k<Pdim;k++) Compute element of C
tmp += Awrk[k] * Bwrk[k]; < usingAfrom private
C[i*Ndim+j] = tmp; memory and B from

local memory.

Events and the C++ interface
(for profiling)

* Enqueue the kernel with a returned event
event = vadd(EnqueueArgs (commands,
NDRange (count) , NDRange (local)), a in,
b in, c out, count);

« What for the command attached to the event to
complete

event.wait();
« Extract timing data from the event:

ev_start time =
event.getProfilingInfo<CL PROFILING COMMAND START>() ;

ev_end time =
event.getProfilingInfo<CL PROFILING COMMAND END> () ;

Appendix D

C++ FOR C PROGRAMMERS

C++ for C programmers

» This Appendix shows and highlights some of
the basic features and principles of C++.

* |t is intended for the working C programmer.

 The C++ standards:
— ISO/ANSI Standard 1998 (revision 2003)
— ISO/ANSI Standard 2011 (aka C++0x or C++11)

Comments, includes, and variable

definitions

 Single line comments:
// this is a C++ comment

* Cincludes are prefixed with “c”:
#include <cstdio>

» |/O from keyboard and to console

#include <iosteam>

int a; // variables can be declared inline
std::cin >> a; // input integer to a
std::cout << a; // outputs ‘a’ to console

Namespaces

Definitions and variables can be scoped with namespaces.
:: is used to dereference.

Using namespace opens names space into current scope.
Default namespace is std.

#include <iostream> // definitions in std namespace

namespace foo {
int id(int x) { return x; }

};

int x = foo::1d(10) ;
using namespace std;
cout << x; // no need to prefix with std::

References in C++ ...
a safer way to do pointers

References are non-null pointers. Since they can’t be NULL, you
Elc)m’t have to check for NULL value all the time (as you do with
For example, in C we need to write:
int foo(int * x) ({

if (x '= NULL) return *x;

else return 0;

}

In C++ we could write:
int foo(int & x) {
return x;

}

Note that in both cases the memory address of x is passed (i.e.
by reference) and not the value!

New/Delete Memory allocation

» C++ provides safe(r) memory allocation

* new and delete operator are defined for
each type, including user defined types. No
need to multlple by sizeof(type) as in C.

int * x = new 1int;
delete x;

« For multi element allocation (i.e. arrays) we
must use delete[].

int * array = new int[100];
delete[] array;

Overloading

 C++ allows functions to have the same name but
with different argument types.

int add(int x, int y) {
return x+y;

}

float add(float x, float y) {
return x+y;

}

float £ = add(10.4f, 5.0f);

// calls the float version of add

int i = add(100,20);

// calls the int wversion of add

Classes (and structs)

« C++ classes are an extension of C structs (and unions) that

can functions (called member functions) as well as data.
class Vector {
private:
int x , vy, z

public:

Vector (int x,int y,int z): x (x),y (y),z (z){}// constructor

.
4

~Vector // destructor
{

cout << “wector destructor”;

}

int getX() const { return x ; } // access member function

};

The keyword “const” can be applied to member functions such as getX() to state that
the particular member function will not modify the internal state of the object, i.e it
will not cause any visual effects to someone owning a pointer to the said object. This
allows for the compiler to report errors if this is not the case, better static analysis,
and to optimize uses of the object , i.e. promote it to a register or set of registers.

More information about constructors

Consider the constructor from the previous slide ...
Vector (int x, int y, int z): x (x), y _(y), z_(z) {}

- C++ member data local to a class (or struct) can be initialized using
the noation
: data name(initializer name),

* Consider the following two semantically equivalent structs in which
the constructor sets the data member x_ to the input value x:

struct Foo struct Foo
{ {
int X ; int X ;
Foo(int x) : x (x) {} Foo(int x) { x = x; }

} }

« Case B must use a temporary to read the value of x, while this is not
so for Case A. This is due to C’s definition of local stack allocation.

 This turns out to be very import in C++11 with its memory model
which states that an object is said to exist once inside the body of the
constructor and hence thread safety becomes an issue, this is not the
case for the constructor initalization list (case A). This means that
safe double locking and similar idioms can be implemented using this
approach.

Classes (and structs) continued

« Consider the following block where we construct an object
(the vector “v”), use it and then reach the end of the block

Vector v (10,20,30);
// vector {x =10, y =20 , z_ = 30}
// use v
} // at this point v’s destructor would be called!

* Note that at the end of the block, v is no longer accessible

and hence can be destroyed. At this point, the destructor
for v is called.

Classes (and structs) continued

* There is a lot more to classes, e.g.
inheritance but it is all based on this
basic notion.

* The previous examples adds no additional
data or overhead to a traditional C
struct, it has just improved software
composibility.

Function objects

* Function application operator can be
overloaded to define functor classes

struct Functor

{

int operator() (int x) { return x*x; }

};

Functor f£(); // create an object of type Functor
int value = £(10); // call the operator()

Template functions

* Don’t want to write the same function many times for different
types?
« Templates allow functions to be parameterized with a type(s).

template<typename T>
T add(T x, T y) { return x+y; }

float £ = add<float>(10.4f, 5.0f); // float version
int i = add<int>(100,20); // int version

* You can use the templatized type, T, inside the template function

Template classes

« Don’t want to write the same class many times
for different types?

* Templates allow class to be parameterized

with a type(s) too.
template <typename T>

class Square

{
T operator() (T x) { return x*x; }
};
Square<int> £ int();
int value = £ int(10);

C++11 defines a function template

« C++ function objects can be stored in the templated class
std::function. The following header defines the class
std::function

#include <functional>

* We can define a C++ function object (e.g. functor) and
then store it in the tempated class std::function

struct Functor

{

int operator() (int x) { return x*x; }
};
std: : function<int (int)> square (Functor()) ;

C++ function template: example 1

The header <functional> just defines the template std::function. This
can be used to warp standard functions or function objects, e.g.:

int foo(int x) { return x; } // standard
function

std: :function<int (int)> foo wrapper (foo) ;

struct Foo // function object
{
void operator () (int x)
{ return x;}
};
std: :function<int (int)> foo functor (Foo())

C++ function template: example 2

What is the point of function objects? Well they can of course

contain local state, which functions cannot, they can also contain
member functions and so on. A silly example might be:

struct Foo // function object
{ int y ;

Foo() : y (100) {}

void operator () (int x)

{ return x+100; }
};

std: : function<int (int)> addl00 (Foo()) ;
// function that adds 100 to its argument

Appendix E

MEMORY COALESCENCE:
MATRIX MULTIPLICATION CASE STUDY

Performance issues with matrix
multiplication
» Consider the following version of the

blocked matrix multiplication kernel from
exercise 9.

Blocked matrix multiply: kernel

#define blksz 16

__kernel void mmul(
const unsigned int N,
__global float* A,
__global float* B,
__global float* C,
__local float* Awrk,

/I upper-left-corner and inc for Aand B
int Abase = Iblk*N*blksz; int Ainc = blksz;
int Bbase = Jblk*blksz; int Binc = blksz*N;

/I C(Iblk,Jblk) = (sum over Kblk) A(Iblk,Kblk)*B(Kblk,Jblk)
for (Kblk = 0; Kblk<Num_BLK: Kblk++)

local float* Bwrk {
{ —local float” Bwrk) /ILoad A(Iblk,Kblk) and B(Kblk,Jblk).
: : /[Each work-item loads a single element of the two
int kloc, Kblk; /lblocks which are shared with the enti Kk
float Ctmp=00f, OCKS wnich are snharea wi € entire work-group

. Awrk[iloc*blksz+jloc] = A[Abase+iloc*N+jloc];
I/ compute element C(i,j) . : _ et e 1,
inti = get_global_id(0): Bwrk[iloc*blksz+jloc] = B[Bbase+iloc*N+jloc];
int j = get_global_id(1);
intj = get_global_id(1); barrier(CLK_LOCAL_MEM_FENCE);
/I Element C(i,j) is in block C(Iblk,Jblk)
int Iblk = get_group _id(0);
int Jblk = get_group_id(1);

#pragma unroll
for(kloc=0; kloc<blksz; kloc++)
Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

/Il C(i,j) is element C(iloc, jloc)

s i
int iloc = get_local _id(0); } ; ;
int jloc = get_local_id(1); oy _

int Num_BLK = N/blksz: C[*N+i] = Ctmp;

}

Blocked matrix multiply: kernel (performance bug)

#define blksz 16
__kernel void mmul(
const unsigned int N,
__global float* A,
__global float* B,
__global float* C,
__local float* Awrk,
__local float* Bwrk)
{
int kloc, Kblk;
float Ctmp=0.0f;

Note that the pattern of indices
loaded differ from the
patterned used.

This mistake means that the
memory is not coalesced.
Performance was around
76695.8 MFLOPS on an NVIDIA
M2090 GPU. We were expecting

almost twice that many FLOPS.
e oo goTTToeeT e e s
int jloc = get_local _id(1);
int Num_BLK = N/blksz;

AN

/I upper-left-corner and inc for Aand B
int Abase = Iblk*N*blksz; int Ainc = blksz;
int Bbase = Jblk*blksz; int Binc = blksz*N;

/Il C(Iblk,Jblk) = (sum over Kblk) A(Iblk,Kblk)*B(Kblk,Jblk)
for (Kblk = 0; Kblk<Num_BLK; Kblk++)
{
//Load A(Iblk,Kblk) and B(Kblk,Jblk).
/[Each work-item loads a single element of the two
//blocks which are shared with the entire work-group

(Awrk[iloc*blksz+jloc] = A[Abase+iloc*N+jloc];)
Bwrk[iloc*blksz+jloc] = B[Bbase+iloc*N+jloc];

 barrier(CLK_LOCAL_MEM_FENCE); y

#pragma unroll
far(kloc=0" kloc<hlksz: klnr‘++)

\[Ctmp+=Awrk]jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc]:

barrier(CLK_LOCAL_MEM_FENCE);
Abase += Ainc; Bbase += Binc;

}

C[[*N+i] = Ctmp;
}

Blocked matrix multiply: kernel (fixed)

#define blksz 16

__kernel void mmul(
const unsigned int N,
__global float* A,
__global float* B,
__global float* C,
__local float* Awrk,
__local float* Bwrk)

int kloc, Kblk;
float Ctmp=0.0f;

=~

We fixed this by making sure
the pattern of indices on the
load matched the later block
of code where we used these

_/ arrays.
'
With that small change, the
performance on an NVIDIA
/I M2090 GPU hit the expected
/ value of around 119304.6

':| MGFLOPS.
I —_ \"/

S

int Num_BLK = N/blksz;

/I upper-left-corner and inc for Aand B
int Abase = Iblk*N*blksz; int Ainc = blksz;
int Bbase = Jblk*blksz; int Binc = blksz*N;

/Il C(Iblk,Jblk) = (sum over Kblk) A(Iblk,Kblk)*B(Kblk,Jblk)
for (Kblk = 0; Kblk<Num_BLK; Kblk++)
{
//Load A(Iblk,Kblk) and B(Kblk,Jblk).
/[Each work-item loads a single element of the two
//blocks which are shared with the entire work-group

(Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc];)
Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc];

/kbarrier(CLK_LOCAL_MEM_FENCE); y

#pragma unroll
fnr(klnr‘:ﬂ' kloc<hlksz: klnr‘++)

| Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

barrier(CLK_LOCAL_MEM_FENCE);
Abase += Ainc; Bbase += Binc;

}

C[[*N+i] = Ctmp;
}

Performance issues with matrix
multiplication

This is a good object lesson on the importance of
paying attention to memory coalescence.

How did | make this mistake? Getting the indices right
In this code was tough. | developed my code on a
CPU. On a CPU, the effect was not apparent ... | got
the expected performance with the memory
coalescence bug when running on a CPU. IT only
shows up on the GPU.

This points to the importance of exploring a range of
platforms during the debug and optimization phase of
software development.

Still, after making the change on my CPU, the
performance went from 9.8 GFLOPS to 12 GFLOPS.

Course materials

In addition to these slides, C++ APl header files, a set of exercises,
and solutions, we provide:

OpenCL AP 1.1 Quick Reherence Cand - Page 1
The Opendl Flatiorm Layer

Ao, b i SR Pl CORSAE1 L OF e SRR
Comts
© o g
“mwi cnig,
orat o Avek 5-«..;. M|m-r ey
oo char e, s e P

bt o, ke ®
md\urd:xdh‘wrm L

0, \'.l.llﬂl'.ll‘q'\' W‘u'
vl con s “acee b, ok 1

L
o et o |2 corea comas]

arcgarties , e i,
RN AT ¥ FaE T w E
= Irt i s |
O orvesed_ g cnmats jase]

[

LB S
L PR TR

b g Ut Uit gk, o Gt e T ikiem WO 1§y Ut it e 10 i

o e chhatiwskoninte jd_dsice i ko
o_sinskcn ik o naare, Ch_ parae_ ok ts,
ke e, tm_t S, vkod_ia_ree]

= L
S e Y

Bufier Dbjects

B o S T S 3 Rl 7 S AR B
] LA T i L b iy B
9 bt i STELEY L b S e TT 8 Sk
e P— AW 1 B e ey o b

3

g-:gumuuummpc.

3l _ T, -u.q_uqu
Ll e, R TR MO TR

foed, Wrhe, Copy Buffer Objecta juas
J’I
o Ertind pe s g oraa b,
o o biaing ver e o
ol o peaiey
=
ant

Map Sufler Objects ey

Mg Suffer Objects [Leag

H ez e e igas] mam)

o e el b | s
Ty Lt FE

d':_rvnt\.nﬂ. ol 101, CALLIACK “of_mof]

ety vl et ez
P e

i £ Sl g i |
e e, o] meew T,

OpenCL C 1.2 Reference Card
OpenCL C++ 1.2 Reference Card

These cards will help you keep track
of the API as you do the exercises:

https://www.khronos.org/files/opencl-

1-2-quick-reference-card.pdf

it Progrem Object L)
< prgarn
o _comasar compen,]t o, cone
o g, ol " ervcacie
e e
5.-.:--." -n‘:’{{ n-m‘:r-r n'm
2 i e Pogem _prgam progor|
2 e clsimmepvngran icl_progran segrew|

Builld Opiond g
e -
5 Fr———

[s
e ek L

- P
o Opanl ¢ g vk

L LR TSP R P S

Pregrarn b mcts s
Lﬁnp-h gy
-

L _tavrn
e iy, MRS A, MR
[Pcigrar Dkt Consinass 51

The v1.2 spec is also very readable
and recommended to have on-hand:

https://www.khronos.orag/reqistry/cl/s

pecs/opencl-1.2.pdf

https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

