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Goal of these lectures

1. Give an understanding of modern computer
architectures from a performance point-of-view

= Processor, Memory subsystem, Caches
= Use x86-64 as a de-facto standard

= But keep an eye on ARM64, as well as
GPUs/accelerators

2. Explain hardware factors that improve or degrade
program execution speed

= Prepare for writing well-performing software




Computer Architecture and Performance Tuning

Contents

= Introduction:
= Setting the Scene; Scaling “laws”

= Complexity in Computing
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= Vectorisation
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= Conclusion
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The Big Issues

(from an architectural viewpoint)
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Where are we coming from?

[
= Memory:
= Single, homogeneous memory e T e
Source : Wikipedia
= Low latency
[
= CPU scaling:
= Moore’s law (1965)
= Dennard scaling (1974)
= Little or no parallelism Robort Dennard (1BM)

Source : Wikipedia
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Where are we today ?

Memory:
= Multi-layered, complex layout

= Non-uniform; even disjoint
= High latency

Extreme parallelism at all levels
= |nstruction, Chip, System

Things
have
become
worse!
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Von Neumann architecture

= From Wikipedia:

Algorithms and Data Structures

= The von Neumann
architecture is a computer Instructions Data

design model that uses a
processing unit and a
single separate storage
structure to hold both
Instructions and data.

Results

= |t can be viewed as an
entity into which one
streams instructions and _
data in order to produce Processing
results

Input
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Von Neumann architecture (cont’d)

= The goal is to produce results
as fast as possible

= But, lots of problems can
occCur:

= |nstructions or data don't
arrive in time

= Bandwidth issues?
= Latency issues?

= Clashes between input data
and output data

= Other “complexity-based”
problems inside an extreme
processing parallelism

Algorithms and Data Structures

Instructions Data

Results

Input

Processing

Many people think the architecture
Is out-dated. But nobody has
managed to replace it (yet).




Moore’s “law”

= A marching order established
~50 years ago

= “Let’s continue to double the
number of transistors every
other year!”

= First published as:

= Moore, G.E.: Cramming more
components onto integrated
circuits. Electronics, 38(8), April
1965.

= Accepted by all partners:
= Semiconductor manufacturers

= Hardware integrators
= Software companies
= Us, the consumers
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Number of transistors doubling every 24 months.

nnnnnnn

,,,,,,,,

From Wikipedia
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Moore’s “law” (cont’d)

= The consequences: An incredible
level of integration

= CPUs: Many-core, Hardware vectors,
Hardware threading

= GPUs: Enormous number of floating-
point units

= Today, we commonly acquire chips
with more than 1’000’000’000 (109)
transistors!

= Apple A8X (just announced) has 3!

= Server chips and high-end GPU From Wikipedia
devices have even more

= Kepler GK110:
— 7.1 billion transistors

10




= 28,22 nm

= Being introduced:
= 14 nm (2013/14)

= |n research:
= 10 nm (2015/16)

= 7nm (2017/18)

= 5nm (2019/20)
—<Source: Intel
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Semiconductor evolution

= Today’s silicon processes:

We are here

1

Increasing HW
Threads
Per Socket

1004

HT

Multi-core Era
Scalar and

parallel applications

Many-core Era
Massively parallel

applications

I I T
2003 2005

L
2007

i
2009

LHC data

2013

S. Borkar et al. (Intel), *"Platform 2015: Intel Platform Evolution for the Next Decade'', 2005.

2 nm (2028?) TSMC

= By the end of this decade we will have chips with
~100’000°000’000 (10%) transistors!

= And, this will continue to drive innovation

11
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Real conseqguence of Moore’s law

= We are being “snowed under” by “innovation”:

= More (and more complex) execution units
= Hundreds of new instructions

= Longer SIMD/SSE hardware vectors
= More and more cores

= Specialised accelerators

= Complex cache hierarchies

= In order to profit we need to “think parallel”

= Data parallelism

“Data Oriented Design”

L, " Task parallelism
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Frequency scaling

= The 7 “fat” years of frequency scaling:

= The Pentium Pro in 1996: 150 MHz

= The Pentium 4 in 2003: 3.8 GHz (~25x)

= Since then

= Core 2 systems:
= ~3 GHz

= Multi-core

= Recent CERN purchase:

= |ntel Xeon E5-2650 v2
= “only” 2.60 GHz

13
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Pentium I

From A. Nowak/openlab




Complexity iIn Computing
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Archaic Computing Units
= As “stupid” as 50 years ago

= Based on the Von Neumann
architecture

—Primitive “machine language”

= Ferranti Mercury:

= Floating-point calculations
_ Add: 3 cycles
— Multiply: 5 cycles

= Today:

= Programming for performance
IS the same headache as in the
past

10
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And the language is ancient, too!

= Assembly/machine code!

16

__Z6matmulv (snippet):

vmov lhps %xmmO, %xmm3, %xmm3
VMOVSS +_b(%rip), %xmm4
vinsertfl28 $1, %xmm3, %ymm3, %ymm3
vinsertps $0x10, 44+ b(%rip), %xmm7,

VMOVSS 48+ b(%rip), %xmm6

vinsertps $0x10, 36+ b(%rip), %xmml, %xmm2
vmov Ihps %xmmO, %xmm2, %XxXmm2

vinsertps $0x10, 60+ _b(%rip), %xmm4, %xmmO
VXO0rps %xmm4, %xmm4, %xmm4

vinsertfl28 $1, %xmm2, %ymm2, %ymm2
vinsertps $0x10, 52+ b(%rip), %xmm6, %xmml
vmov lhps %xmmO, %xmml, %xmml

vmovaps _a(®rip), %ymmO
vinsertfl28 $1, %xmml, %ymml, %ymml
vpermilps $0, %ymmO, %ymm7

vmulps %ymmS, %ymm7, %ymm7

vaddps %ymm4, %ymm7, %ymm7

vpermilps $85, %ymmO, %ymm6
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Even assembly is “too high level”

= Intel translates “CISC” x86 assembly instructions
= Into “RISC” u-operations
= which can vary with each CPU generation

= NVIDIA translates PTX (parallel thread execution, or
virtual assembly)

= Into machine instructions
= which can vary with each GPU generation

= Even the brand-new ARM®64 instruction set translates
Into p-operations

= S0, what does it really mean (?) when the hardware tells
you:

CISC: Complex Instruction Set Computing

= “XXN operations executed”

RISC: Reduced Instruction Set Computing

17
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In the days of the Pentium

= Life was really simple:

Pipelining

= Basically two dimensions

= The pipeline and its frequency Superscalar

= The number of boxes

= The semiconductor industry
Increased the frequency

Nodes

= We acquired the right number of
(single-socket) boxes

Sockets

18
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Performance: A complicated story!

19

We start with a concrete, real-life problem to solve

= For instance, simulate the passage of elementary particles
through matter

We write programs in high level languages
= C++, JAVA, Python, etc.

A compiler (or an interpreter) transforms the high-level code to
machine-level code

We link in external libraries

A sophisticated processor with a complex architecture and
even more complex micro-architecture executes the code

In most cases, we have little clue as to the efficiency of this
transformation process
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A Complicated Story (In 9 layers!)

= Computing problems are solved by
getting electrons to “dance”

Problem
Design, Algorithms, Data
Language, Source program

Compilers, Libraries

System architecture
Instruction set architecture
u-architecture
Circuits
Electrons

Adapted from Y.Patt, U-Austin

20
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But, are we In control ?

= We want the process to complete in the shortest possible time

= Our compute job (a process) will require the execution of a given
number of (machine-level) instructions

= Dictated by the algorithms inside (and the compiler)

= This time corresponds to a given number of machine cycles

= Simple example:
= A program consists of 10 instructions

= We measure an execution time of 6 seconds
on a processor running at 2.0 GHz

Instructions Data

= \We can now compute a key value: \ /

= Cycles per Instruction (CPI): (6*2.0*10%) / 1010 =1.2
= This has to be seen as a “yardstick™: Input ' Results
= Cycles vary: Reference cycles, Actual cycles? l

= Even worse: Useful/Superfluous instructions? Processing

= |nstructions vary: Vector/Scalar? Micro/Macro?

21




22

Computer Architecture and Performance Tuning

Anyway, let’s start with the basics!
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Simple processor layout

Keeps the state of execution

/N

= A simple processor with IC
four key components:

= Control Logic Flags
= |nstruction Counter

PSW

= Program Status Word

Control

= Register File

RO

R1

= Functional Unit Data

_ transfer
= Data Transfer Unit unit

= Data bus RNN
= Address bus Registers




Simple server diagram

= Multiple components which
Interact during the execution
of a program:

= Processors/cores
= w/private caches

Computer Architecture and Performance Tuning

Socket O Socket 1

- |-cache, D-cache '
= Shared caches
= |nstructions and Data L
= Memory controllers Memory

= Memory (non-uniform)

/O subsystem
= Network attachment

= Disk subsystem
24

CO|Cl| rgmqiCl
C2|C3 C2|C3
C4|C5 C4|C5
Shared Shared
cache cache
Mem-ctl Mem-ctl

N

Inte

rconnect

/O bus

Intel Nahalem




Memory Subsystem
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Optimal Memory Programming

= What needs to be understood:

= The memory hierarchy
= Main memory
- Physical layout

—- Latency
- Bandwidth

= Caches
- Physical layout, Line sizes

— Levels/Sharing
—- Latency

= Programmer/Compiler

- Data Layout
— Data Locality

= Execution environment:
_ Affinity

26
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Cache/Memory Hierarchy

Processor Core
(Registers)

= From CPU to 1
main memory . .
on a recent L1l L1D (R-6AAB TYV-?)ZB)/lC
Haswell (32 KB) (32 KB) c latency
processor I I
multicore, (256 KB) 11c latency
memory
:Jsagr?g\;féh 32B/1c for all cores
between > 21c latency
cores in Shared L3
the same (~20 MB)
gggf;s)or ~24 B/c for all cores
> 200c latency

Local/remote memory

(large, but typically non-uniform)

c =cycle

27
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Cache lines (1)

28

When a data element or an instruction is requested by the
processor, a cachelineis ALWAYS moved (as the
minimum quantity), usually to Level-1

[ requested | | | | | | | |

A cache line is a contiguous section of memory, typically
64B in size (8 * double) and 64B aligned

= A 32KB Level-1 cache can hold 512 lines

When cache lines have to be moved come from memory

= Latency is long (>200 cycles)
= |t is even longer if the memory is remote

= Memory controller stays busy (~8 cycles)
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Cache lines (2)

29

Good utilisation iIs vital

= When only one element (4B or 8B) element is used inside
the cache line:

= A |ot of bandwidth is wasted!

| requested | | | | | | | |

Multidimensional C arrays should be accessed with the last
Index changing fastest:

for (i=0; 1 <rows; ++i)
for (] =0; ] <columns; ++j)
mymatrix [i] []] +=increment;

Pointer chasing (in linked lists) can easily lead to “cache
thrashing” (too much memory traffic)
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Cache lines (3)

= Prefetching:
= Fetch a cache line before it is requested
= Hiding latency

= Normally done by the hardware
= Especially if processor executes Out-of-order

= Also done by software instructions
= Especially when In-order (IA-64, Xeon Phi, etc.)

= Locality is vital:
= Spatial locality — Use all elements in the line

= Temporal locality — Complete the execution whilst the
elements are certain to be in the cache

Programming the memory hierarchy is an art in itself.

30




31

The trend is to
deepen and
diversify the
cache/memory
hierarchy:

= Additional

levels of
cache

= Multiple kinds
of large
memories

= Non-volatile
memories
(great for
databases,
etc.)

Computer Architecture and Performance Tuning

Cache/Memory Trends

Processor Core

I I

L1l L1D
L2
Shared L3

Local/remote
memory (1)
Larger, slower

Local/remote
memory (2)
Faster, smaller

Non-volatile
memory (3)
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Latency Measurements (example)

= Memory Latency on Sandy Bridge-EP 2690 (dual socket)
= 90 ns (local) versus 150 ns (remote)

—
s e
-

#

5 e 8 e B e e e e e
i —
L

o — i — R—

o — - E— - . S S T S S E—
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Current GPU Memory Layout

= CPU and GPU memories
are separate

= What everybody wantsisa |[CPU GPU
single unified view of t t
memory

Unified Memory

= Onevision Is

“Heterogeneous Systems
Architecture” (HSA)
pushed by AMD, ARM, and
others

= Example:
= AMD Kaveri APU

33
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Dimensions
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As we have already discussed

= Life in the days of the
Pentium was really simple:

Pipelining

= Basically two dimensions Superscalar

= The pipeline and its frequency
= The number of boxes

= The semiconductor industry
Increased the frequency

Nodes

= We acquired the right number of
(single-socket) boxes

Sockets

35
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Now: Seven dimensions of performance

= First three dimensions:
= Hardware vectors/SIMD

= Superscalar
= Pipelining

= Next dimension is a “pseudo”
dimension:

= Hardware multithreading

= [Lastthree dimensions:
= Multiple cores

= Multiple sockets

= Multiple compute nodes

SIMD = Single Instruction Multiple Data

Vector width

Pipelining

Superscalar

Multithreading

Multicore

Nodes
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Seven multiplicative dimensions:

= First three dimensions:
= Hardware vectors/SIMD } 2x, 4x, 8x, 16x Data and Instruction

N Supersca|ar } - Level parallelism

1x — 10X (Vectors/Matrices)

= Pipelining

= Next dimension is a “pseudo”
dimension:

= Hardware multithreading i

Task parallelism

= Last th'_'ee dimensions: — | 10x —100x | [ | (Events/Tracks)
= Multiple cores
= Multiple sockets ) ]
. Task/process
= Multiple compute nodes pararﬂensm

37
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Simple, but illustrative example

= Xeon Phi has ~60 cores, 4-way hardware threading,
hardware vectors of size 8 (Double Precision):

= Program A: Threaded 60 x 4, vectorised 8x:
= Performance potential: 1920

= Program B: Not threaded: 1x, not vectorised: 1x
= Performance potential: 1

In Order, 4
threads, SIMD-
1$ 16 D

$

Memory Controller
Memory Controller

In Order, 4
threads, SIMD-
1$ 16/ p

$

38
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GPUs: 7 dimensions of performance

= First four dimensions:
= Superscalar (dual issue)

= Pipelining
= Threads (32)
= Instruction Schedulers (4)

= Then, there are:
= Warps

= Last dimensions:
= Multiple SMs

= Multiple accelerators

39

Pipelining

Threads

Warps

Superscalar

Instruction Schedulers

SM

Cards
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Streaming Multiprocessor Architecture
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Part 1: Opportunities for scaling

performance inside a core
= Here are the first three dimensions

= The resources:

= HW vectors: Fill the computational
width

= Superscalar: Fill the ports
= Pipelining: Fill the stages

= Best approach: Data Oriented
Design

= In HEP today, we probably extract
(much?) less than 10% of peak

. execution capability!

HW vector width

Superscalar

Pipelining




First topic: Vector registers

= Until recently, Steaming SIMD Extensions (SSE):
= 16 “XMM?” reqgisters with 128 bits each (in 64-bit mode)

Computer Architecture and Performance Tuning

= New (as of 2011): Advanced Vector eXtensions (AVX):
= 16 “YMM?” registers with 256 bits each

32 Bytes 32 Byte elements
16 Words E15|E14|(E13|E12|E11|E1O0| E9 |E8 |E7 |E6 | E5 | E4 | E3 | E2 [ E1 | EO
8 Dwords/Single E7 E6 ES E4 E3 E2 El EO
4 Qwords/Double E3 E2 El EO
Bit 255 Bit 0
\ 128 bits (SSE)
256 bits (AVX 1/AVX 2) )

42 Future: 51%“5 (AVX512)
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Four floating-point data flavours

= Single precision

EO

= Scalar single (SS)

o Packed S|ng|e (PS) E7 | E6 | E5S5 | E4 | E3 | E2 | El1

EO

= Double precision

EO

= Scalar Double (SD)

= Packed Double (PD) =5 E2 — EO0

= Note:
= Scalar mode (with AVX) means using only:
= 1/8 of the width (single precision)

= 1/4 of the width (double precision)

= Even longer vectors are-ceming! have been announced !

= Definitely 512 bits (already used in the Xeon Phi co-processors)
43
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Scalable programming
Inside a core

float u[100], v[100];

= Easiest way to fill the
execution capabilities is to
program software vectors for (i:= 05 1<50; ++1) ull] = sin(v[il)

for (int i = 0; i<50; ++i) u[i] = v[i*2+1];

for (int i = 0; i<50; ++i) u[i] = 0.0;

= But, which ones?

= Standard C arrays
* Intel added C Extended Array

CEAN example:

Afi:n] = 2.5 * B[j:n];

Notation (CEAN) in version Intel” Cilk™ Plus
. C/C++ compiler extension for simplified parallelism
12-0 (ICC) ( : educers rray Notation
Try these first
= As well as CILK+ e
cilk_sync =
cilk_for R
Math of erraltnrl -
= STL vectors e [OFT
T uniform and

linear

= TBB vectors (thread-safe) ol

reduction(op:var)

= |ntrinsics

Simplifies harnessing the power of
threading and vector processing =
on Windows?*, Linux* and 0S X* Cxeon i) Courtesy: INTEL

s " efc.
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Inside-the-core: HEP and vectors

= Too little common ground!

= Practically all attempts in the past failed.
= W/CRAY, CYBER 205, IBM 3090-Vector Facility, etc.

= Interesting reading: Dekeyser J 1987 “Vectorization of the GEANT3
geometrical routines for a Cyber 205” Nuclear Instruments and Methods
iIn Physics Research Section A, Volume 264, Issue 2-3, p. 291-296

= From time to time, we see a good vector example

= For example: Track Fitting code from ALICE trigger
= - Explained in the examples

= Interesting development from ALICE (Matthias Kretz):

= Vc (Vector Classes) now part of ROOT v.6
= http://compeng.uni-frankfurt.de/index.php?id=vc

= Hopefully, there will be renewed efforts to use vectors
. efficiently (Geant-V and others)
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Second topic: Superscalar architecture

= In this simplified design, Instruction stream
Instructions are decoded )
INn sequence, but Decode
dispatched to two ]
Functional Units. Dispatch

= The decoder and
dispatcher must be

Port O | | Port 1

able to handle two FU O FU 1

Instructions per cycle

= The FUs can have Results |
iIdentical or different l
execution capabilities

46
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Enhanced superscalar architecture

47

= A more realistic

Instruction stream

architecture will have |

multiple FUs hanging Dispatch

off the same port

= An Instruction can be Port 0 Port 1

dispatched to either FU O FU 1
matching execution (i-add) (i-add)
unit on a given port, =T =T
but not to both units (i-shift) (i-mul)

on the same port in a

given cycle

Results

|




Latest superscalar architecture

48
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Vec FM
Vec FM

ec FMA
ec FMul
ec FAdd

x87 FP
Multiply

Add

DIV
SQRT

Integer

MUL

= |ntel’s Haswell micro-architecture can

PortO | Portl | Port2 | Port3 | Port4 | Port5 | Port 6 | Port7
| . | | |
Integer Integer Load Load Store Integer Integer Store
Alu Alu Data Data Data Alu Alu Address
I | I 1
Integer Integer Store Store Integer Integer
Shift LEA Address Address LEA Shift
| | | | | |
Vec Int Vector Vec Int
ALU Logical ALU
1 | 1
Vector Vector
Shift FEAD Shuffle
| I 1
Vector String Vector
Logical Compare Logical

execute four instructions in parallel
(across eight ports) in each cycle.
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Matrix multiply example

= For agiven algorithm, we can understand exactly which

functional execution units are needed
= For instance, in the innermost loop of matrix multiplication

for (inti=0;1<N; ++1){
for (intj=0;]<N; ++){
for (intk =0; K <N; ++k ) {
C[I*N+j] += a[i*N+k] * b[K*N+];
}

}

Until Haswell (2012): Store Add Load Mult Load

As of Haswell (2013): Store Load FMA Load

49
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Apple A7/A8 (based on ARM A57)

.

And, this is for (no more than) a phone?

= 128-bit vectors

PortO | Portl | Port2 | Port 3| Port4 | Port5 | Port6 | Port7 | Port 8
I | | |
Integer Integer Integer Integer Load Load Vec FMA Vec FMA EDIV
|
Integer Integer Integer Integer .
MUL DIV Shift Shift - NI ne ports

= Six instructions (on average)
decoded/executed/retired

Based on an article on
“anandtech.com” and
discussions with ARM

50
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Third topic: Instruction pipelining

= Instructions are broken up into stages.
= With a one-cycle execution latency (simplified):

Execute

Execute

= With a three-cycle execution latency:

Exec-1 Exec-2 Exec-3
Exec-1 Exec-2 Exec-3

51
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Real-life latencies

= Most integer/logic instructions have a one-cycle execution
latency:

= For example (on an Intel Xeon processor)::
= ADD, AND, SHL (shift left), ROR (rotate right)

= Amongst the exceptions:
= IMUL (integer multiply): 3
= DIV (integer divide): 13 — 23

= Floating-point latencies are typically multi-cycle
= FADD (3), FMUL (5)
= Same for both x87 and SIMD double-precision variants

= EXxception: FABS (absolute value): 1 As of Haswell:
= Many-cycle: FDIV (20), FSQRT (27) FMA (5 cycles)

= Other math functions: even more

Latencies in the Core micro-architecture
(Intel Manual No. 248966-026 or later).
52 AMD processor latencies are similar.
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Latencies and serial code (1)

= In serial programs, we
typically pay the penalty of a

double a, b, c, d, e, f;

multi-cycle latency during b=20 c=30 e=40
execution:
= |n this example: a=Db*c; // Statement 1

= Statement 2 cannot be
started before statement 1 d=a+e: /Statement 2

has finished
= Statement 3 cannot be \

started before statement 2 f = fabs(d); // Statement 3

has finished

I-F | I-D |EX-1|EX-2|EX-3|EX-4|EX-5|W-B

I-F | I-D | - - - - |[EX-1|[EX-2|EX-3|W-B

-E|[ID| - | - | - | - | - | - |[EX1/W-B

53
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Latencies and serial code (2)

I-F | I-D |EX-1|EX-2|EX-3|EX-4|EX-5|W-B

I-F | I-D | - - - - |EX-1|EX-2|EX-3|W-B

-E[ID| - | - | - | - | - | - |[Ex-1|w-B

= Observations:

= Even if the processor can fetch and decode a new instruction
every cycle, it must wait for the previous result to be made
available

= Fortunately, the result takes a ‘bypass’, so that the write-back stage
does not cause even further delays

= The result: CPI is equal to 3
= 9 execution cycles are needed for 3 instructions!

= A good way to hide latency is to [get the compiler to] unroll

(vector) loops !
54
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Mini-example of real-life scalar, serial code

= Suffers long latencies:.

High level C++ code 2>

Machine instructions =

iIf (abs(point[0] - origin[0]) > xhalfsz) return FALSE;

movsd 16(%b6rsi), oxmmO

subsd 48(%ordi), 2oxmmO0O // load & subtract

andpd _2ilOfloatpacket.1(%6rip), %oxmmO // and with a mask
comisd 24(%rdi), 2oxmmO0 // load and compare

jbe ..B5.3 # Prob 43% // jump if FALSE
Cycle Port O Port 1 Port 2 Port 3 Port 4 Port 5
1 load point[0]
Same 2 load origin[0]
instructions 3
laid out 4
according to 5
latencies on
the Nehalem 6 subsd load float-packet
processor = 7
;
NB: Out-of- 5
order
scheduling | % andpd
not taken 11
13
55
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Out-of-order (OOO) scheduling

= Most modern processors use OOQO scheduling

= This means that they will speculatively execute instructions
ahead of time (Xeon: inside a “window” of ~150 instructions)

= |n certain cases the results of such executed instructions must
be discarded

= Atthe end, there is a difference between “executed
Instructions” and “retired instructions”

= One typical reason for this is mispredicted branches

= Potential problem with OOO:
= A lot of extra energy is needed!

= Interestingly: ARM has two designs:
= A53 (low power, in-order), A57 (high power, OOO)

56
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Summary of Last Two Dimensions

57

Commonly referred to as:
= |nstruction level parallelism (ILP)

Very dependent on algorithms and/or data structures
Issues are equally valid for vector and scalar computing

Multiplies with what we get from all the other dimensions
= Threading

= \ectorisation

But, difficult to understand or manipulate
= Both micro-architecture and compilers get in the way
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Important performance measurements

(that can tell you if things go wrong)

: R_elated to what we have = Plus:
discussed: = The total number (and the
= The total cycle count (C) type) of computational

SSE/AVX instructions

. _ = The total number of
= Derived value: CPI SSE/AVX instructions

= The total instruction count (1)

= Resource Stall count: Cycles

: = Total number of cache
when no execution occurred

aCCesses

= Total number of (last-level)
= Total number of executed cache misses
branch instructions

= Total number of mispredicted
branches
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Part 2: Parallel execution across

hw-threads and cores

= First a “pseudo” dimension:
= Hardware multithreading

= [ astthree dimensions:
= Multiple cores

= Multiple sockets

= Multiple compute nodes

= Multiple nodes will not be
discussed here

= Qur focus Is scalability inside
a node

59

Multithreading

Processor cores

Sockets

Compute nodes
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Definition of a hardware core/thread

= Core
= A complete ensemble
of execution logic, and State: Registers, IC
cache storage as well O W
as register files plus 2 =
instruction counter (IC) B8 | _ . Caches é
for executing a > loee S S
software process or o =
thread = [z
& O
= Hardware thread State: Registers, IC

= Addition of a set of
register files plus IC

The sharing of the execution logic can
be coarse-grained or fine-grained.
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Definition of a software
process and thread

= Process (OS process):

= An instance of a computer program that is being executed
(sequentially). It typically runs as a program with its
private set of operating system resources, I.e. In its own
*address space” with all the program code and data, its
own file descriptors with the operating system
permissions, its own heap and its own stack.

= Thread:

= A process may have multiple threads of execution. These
threads run in the same address space, share the same
program code, the operating system resources as the
process they belong to. Each thread gets its own stack.

Adapted from Wikipedia
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Seven multiplicative dimensions:

= First three dimensions:
= Hardware vectors/SIMD

= Next dimension is a “pseudo”
dimension:

= Hardware multithreading

= Superscalar

= Pipelining

= [ ast three dimensions:

62

= Mu
= Mu
= Mu

ti
ti
ti

D
D

D

e cores
e sockets
e compute nodes

Data and Instruction
Level parallelism
(Vectors/Matrices)

Task parallelism
(Events/Tracks)

Task/process
parallelism
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The move to many-core systems

= Examples of “CPU slots”: Sockets * Cores * HW-threads
= Basically what you observe in “cat /proc/cpuinfo”

= Conservative:
= Dual-socket AMD six-core (Istanbul):

2*6*1=12

= Dual-socket Intel six-core (Westmere-EP): 2*6*2=24

= More aggressive:

= Quad-socket AMD Interlagos (16-core) 4*16*1= 64
= Quad-socket Westmere-EX “octo-core”: 4*10*2 = 80

= Already now: Hundreds (or thousands) of CPU slots !
= Octo-socket Oracle/Sun Niagara (T5) processors

w/16 cores and 8 threads (each):

8*16*8 =1024

= S0, if you write new software, think: Thousands !
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HEP programming paradigm

= Event-level parallelism has been used for decades

= And, we should not lose this advantage:

= Large jobs can be split into N efficient “chunks”, each
responsible for processing M events

= Has been our “forward scalability”

= Disadvantage with current approach:

= Memory must be made available to each process

= A dual-socket server with eight-core processors needs 32 — 48 GB (or
more)

= The double (64 — 96 GB), if hardware multithreading is enabled!

Although large memories are now coming, we must not let
memory limitations decide our ability to compute efficiently!
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Let’s briefly introduce parallelism
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Parallelization support (C++ and others)

= Large selection of tools (inside the compiler or as
additions):

66

Native: pthreads/Windows threads

New C++ standard: std::thread

OpenMP

Intel Threading Building Blocks (TBB; also open source)
Intel CILK+

OpenACC

Thread wrapper classes

MPI (from multiple providers), etc.

CUDA (on GPUs from Nvidia)

OpenCL
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Designing Threaded Programs

DESIGNING ra BUILDING
PARALLEL PROGRAMS

= Partition ?@
= Divide problem into ‘."’JI:
tasks

= Communicate

= Determine amount
and pattern of
communication

Initial tasks

a3
B3

= Agglomerate
= Combine tasks Communication

= Map
= Assign
agglomerated tasks
to created threads

- Final Program
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Intel Xeon Phi: A “co-processor”

= |ntel Many Integrated Cores (MIC): “Knights Corner”

= Announced at ISC10 (end-May 2010) 48'000 such

= Based on the x86 architecture, 22nm accelerators are
= |n-Order used in the
world’s fastest
supercomputer
(Tianhe-2 Xeon-
cluster in China)

= Many-core (up to 62 cores) + 4-way
multithreaded + 512-bit vector unit

= Limited memory: 8 — 16 Gigabytes

In Order, 4

Memory Controller

In Order, 4
threads, SIMD-16

1$ D$

In Order, 4

threads, SIMD-16
$ D$

threads, SIMD-16
I$ D$

In Order, 4
threads, SIMD-16

1$ D$

Memory Controller
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Next generation: “Knights Landing”

= Being prepared for (late?) 2015 using 14 nm
technology. 3 Tflops peak.

= Both as PCl-based coprocessor and bootable single-
socket system

= New ATOM based (out-of-order) core [72 in total]

= Memory: A combination of eDRAM (fast, small) and
DDR4 (slow, large)

High-bandwidth In-Package Memory

Far Memory

= Mesh fabric interconnect
= Rather than ring bus

= Converged instruction set
= AVX-512 [aka AV X3.1]
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NVIDIA roadmap

= A promise of continued growth:

o
Q
N
©
=
=
o
=z
=
~
Ll
Q
v

Adapted from Nvidia
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GPU Accelerators : Nvidia Kepler

= Made available in
40Q2012

= GK110 GPU

= 3x DP performance:
= 1 Teraflops

= [nnovative design:

= SMX (streaming
multiprocessors)

= Dynamic parallelism
for spawning new

threads 18’688 such accelerators are used
= Hyper-Q enables in the world’s second-fastest
multiple CPU cores to supercomputer (Titan Cray XK7)

utilise CUDA cores
71 Adapted from Nvidia




Some
Recommendations

(based on observations in openlab)
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A proposal for “agile” software:

73

1)

2)
3)
4)
5)
6)
7)

Seek out parallelism at all levels
a. Events, tracks, vertices, etc.

b. Perform “chunk” processing (removing event separation)

Build forward scalability

Create compute-intensive kernels
Optimise the Memory Hierarchy
Create Performance-oriented Code
Combine broad programming talents

Use best-of-breed tools
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Concurrency Iin High Energy Physu:s

= We are “blessed” with lots of it:
= Entire events

= Particles, hits, tracks and vertices

= Physics processes

= |/O streams (ROOQOT trees, branches)
= Buffer handling (also data compaction, etc.)

= Fitting variables
= Partial sums, partial histograms
= and many others .....

= Usable for both data and task parallelism!
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The holy grail: Forward scalability

75

Not only should a program be written in such a way that it
extracts maximum performance from today’s hardware

On future processors, performance should scale
automatically

= In the worst case, one would have to recompile or relink

Additional CPU/GPU hardware, be it cores/threads or
vectors, would automatically be put to good use

Scaling would be as expected.:

= |f the number of cores (or the vector size) doubled:
= Scaling would be close to 2x, but certainly not just a few percent

We cannot afford to “rewrite” our software for every
hardware change!
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Kernel-oriented Programming

= Take the whole program and its execution behaviour
Into account

= Get yourself a global overview as soon as possible
= Via early prototyping with realistic algorithms/data

= Influence early the design and definitely the implementation

= Foster clear split:

H
= Prepare to compute eavy compute

= Do the heavy computation

= |n kernels, where you go after all the available parallelism

= Often, a single kernel is not sufficient
= A sequence of kernels may be needed

The 90 — 10 rule
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CPU / GPU co-existence

= What | would like to see happen to a (possibly dusty,
sequential) x86 application:

= A strong porting effort to move it to the GPU

= A good “kernel-oriented design” that aims for a triple-digit
speed-up

= Then, a solid port back to the CPU servers
= Exploiting vectors and cores

= Qutcome:

= Applications that can profit from new breakthroughs on
either side of the fence
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Data layout: SOA versus AoS

= |In general, both GPUs and
CPUs prefer the former!

= Structure of Arrays (S0A): (R T E Xo [ Xa [ X4 [ Xs

= Array of Structures (A0S):

SP1 SP2 SP3 SP4

= Also possible: AoSoA

)Y1
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Performance-oriented code

79

= C++ for performance
= Use light-weight C++ constructs
= Minimize virtual functions
| nenever importan
= Optimize the use of math function
- SORT, DIV
- LOG, EXP, POW
- SIN, COS, ATANZ2

Use vector
libraries
whenever
possible,
but master
the
accuracy!

especially of kernels

Learn to inspect the compiler-generated assembly,
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Performance tools

= Surround yourself with good tools:
= Compilers (not just one!)

- LI b rarl eS M |ocate Memory Problems Intel Inspector XE 2013

& Target Analysis Type || B Collection Log

L ]
- F rOfI Ie rS Problem Sources Modules Object Size State

Mismatched allocation/deallocat... find_and_fix_memory_errors.cpp find_and_fix_memory_errors.exe Be Mew
Invalid memory access find_and_fox_memory_errors.cpp  find_and_fix_rnemory_errors.exe
Memary leak api.cpp; asctime.c; util.cpp; vide ... MSYCRL00D.dIl; find_and_fix_me... Fe Confirmed

- D e b u g g e rS Memary leak find_and_fix_memory_errors.cpp find_and_fix_memory_errors.exe T84 Deferred
[

1of2 b

Description & Source Function Maodule Object Size  Offset
Allocation site  find_and_fix_memory_errors.cpp:l63 operator()  find_and_fix_memory_errors.exe 112
- Th re ad 161 unsigned int serial=l; find and fix memory errors.exel!operator() -
laz unsigned int mboxsize = sizeof (unsigned int)* (max_ob]j ||find_and fix memor .exelexecute - par
la3 unsigned int * local_mbox = (unsigned int *) malloc(m ||tbb_debug.dll!local wait_ for a custom 3c
lad thbh debug.dll!local_ spawn root_and wait - sc
C eC e rS 1la5 for (unsigned int i=0;i<=(mboxsize/(sizeof(unsigned i ||tbb_debug.dll!spawn_root_and_wait - schedule

Write find_and_fix_memory_errors.cppl®6 operator)  find_and_fix_rmemory_errors.exe 112

lad find and fix memory errors.exe!operator() -
[ for (unsigned int i=0;i<=(mboxsize/(sizeof(unsigned i ((find and fixX memory errors.exe!execute - Dar
6 local mbox[i]=0; //Memory Error: C declared array|tbb_debug.dll!local wait_ for all - custom 3c
67 tbb_debug.dll!local_ spawn_r and wait - sc
& : ¥y '=r.end(); Hv) { tbb_debug.dll!spawn_root_and wait - schedule

= Thread
profilers

Image: software.intel.com
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Broad Programming Talent

= |In order to cover as many layers as possible

Problem

Solution Algorithms, abstraction
specialists

P Source program

- Compiled code, libraries

System architecture
Instruction set
u-architecture

Circuits
Electrons

__ Technology
specialists
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Examples of good
scalability

]




Scalablility example:
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CBM/ALICE track-fitting

= Extracted from the High
Level Trigger (HLT) Code

= Originally ported to IBM’s
Cell processor

= Tracing particles in a
magnetic field

= Embarrassingly parallel
code

= Re-optimization on x86-64
systems

= Using vectors instead of
scalars

83

|.Kisel/GSI: “Fast SIMDized Kalman filter based track fit”
http://www-linux.gsi.de/~ikisel/17_CPC_178 2008.pdf

“Compressed Baryonic Matter”
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CBM/ALICE track-fitting

= Detalls of the re-optimization on x86-64:

= Part 1. use SSE vectors instead of scalars
= Operator overloading allows seamless change of data types
= |ntrinsics (from Intel/GNU header file): Map directly to
Instructions:

- ___mm_add_ps corresponds directly to ADDPS, the instruction
that operates on four packed, single-precision FP numbers

. 128 bits in total
= Classes

- P4_F32vec4 — packed single class with overloaded operators

. F32vec4 operator +(const F32vec4 &a, const F32vec4 &b) {
return _mm_add_ps(a,b); }

* Reqlt: 4x spead increase from x87 scalar to packed SSE
(singde_precisign)
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Examples of parallelism:
CBM track-fitting o ¢

= Re-optimization on x86-64 systems
= Step 1: Data parallelism using SIMD instructions

= Step 2: use TBB (or OpenMP) to scale across cores

A 2xCell SPE (1

6)

. Woodcrest ( 2
Data Stream Parallelism Task Level Parallelism zCIovertownIE 4§
6)

O Dunnington (

10.00

—
o
=]

Time/Track, s
>

z

0.10

SIMD Cores and Threads

001 lar d Ib| i I|
scalar ouble single -> 5 4 g

16 32
Threads
Scalability on different CPU architectures — speed-up 100

85 From H.Bjerke/CERN openlab, I.Kisel/GSI
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Analysis of Track-fitting speed-up

= From paper of I.Kisel (2008):

Initial (unoptimised) scalar 12 ms
version . 1667x
1 Approximation of magnetic 240 us 50
field 7
2 Optimisation of the algorithm 7.2 us 33.3
3 \Vectorisation 1.6 us 4.5 [ 72X
4 Porting to IBM Cell/SPE 1.1 us 1.45 _
5 Parallelisation on 16 SPES 0.1 us 10
Final SIMD parallel version 0.1 pus 120’000

Don’t underestimate software optimisation!
86
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Track-fitting: Port to NVIDIA GPU

= David Rohr/ALICE:

= Integration: GPU and CPU tracker share a common set of
source files

= Performance Comparison: GTX580 GPU is almost three
times faster than a six-core Westmere processor

. EEEEE CPU (Westmere, 3.8 GHz, 6 Cores) 3 . N
- EEEEW GPU (GTX285, Nehalem, 3 GHz) 5 = 2

— 8000  WENEE GPU (GTX480, Nehalem, 3 GHz) 500
B . EEEEE GPU (GTX580, Westmere 3.8, GHz)

2 _ £
£ E
= )
» 375 &
o =
5 250 S
O ki
& =
8 L
= 125

0
5 3 % W
; (@ C (o) &
% XY G%%x o"f,o%f %, 4’"@%4.
(ALY @/;.0 C}b G @%4
C‘/O -~ O”P

Tracker Component

d GPU Workshop in DESY (April 2013):
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Another scalablility example:
Black-Scholes Calculations

= Example provided by Intel

= Starting with dual-socket server

with E5-2670 processor (2.6 GHz,
8 cores)

= Xeon Phi coprocessor with 61

cores at 1.05 GHz

= Five rounds of performance
Improvements:

88

Moving from gcc to icc:
Scalar, serial optimisation
Vectorisation
Parallelisation

Porting to Xeon Phi

Shuo Li/Intel: “Achieving Superior Performance
on Black-Scholes Valuation Computing using
Intel Xeon Phi Coprocessors”

Sorrediabeny o Tl Pesom, seed aege-Dan ek Pros
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Black-Scholes Calculations (cont’d)

= Scaling obtained (compared to previous round):

Speed-up

gcc = icc

Scalar, serial optimisation
Vectorisation
Parallelisation

Moving to Xeon Phi

4.14
1.41
7.1x
19.2x
3.32X

Scaling ratio Xeon = Xeon Phi:

Vector size: 2x

Core count increase: 3.81x
Frequency reduction: 2.48x

Result: 3.07x

?
?
8X
20x (16 * 1.25)
3.07x
Black-Scholes Valuation Relative Speedup on
Intel(r) Xeon and Xeon Phi
2633.0
1.0
— p— P — — - l Z
ﬁé\@ o _\OQ & \\@. ..3.\4*

(,d_‘v%& 6@\\%‘%@ boe@? '}7} :’t\\'b 4@5}0‘ @* ,}\,‘ \'+ éaa\q

<& o
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Examples of parallelism: GEANT4

= Initially: *

= Experimental multithreaded version introduced by PhD
student Xin Dong/North-Eastern University in 2011

= Good collaboration with G4 team and openlab

= |Lots of code changes (at least 10%)

— Preprocessor used for automating the work
— Convincing demos with FUllCMS example

Intel Xeon L5520 @ 2.27GHz

= Now:
= Official version as of G4 10.0 (Dec. 2013)

- GAMTRunManager introduced

— Thread safety via Thread Local Storage
- Good scalability

- Reduced memory consumption: Further improvements

. Only 30-50 MB/thread expected in release 10.1
— Working out of the box:

%0 . X86_64(Xeon and Atom), MIC, ARM32, IBM/Bluegene/Q

W Threads
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Summing Up
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So, what does It all mean?

92

Here is what we tried to say in these
lectures:

You must make sure your data and
Instructions come from caches (not main
memory)

You must parallelise across all “CPU slots”
= Hardware threads, Cores, Sockets

10x — 100x

You must get your code to use vectors 2x, 4X, 8X, 16x

You must understand if your ILP is seriously
limited by serial code, complex math
functions, or other constructs

1x — 10x
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If you think that all of this is “crazy”

= Please read:

= “Optimizing matrix multiplication for a short-vector
SIMD architecture — CELL processor”

= J.Kurzak, W.Alvaro, J.Dongarra
= Parallel Computing 35 (2009) 138-150

In this paper, single-precision matrix multiplication kernels
are presented implementing the C=C — A x BT operation and
the C=C - A x B operation for matrices of size 64x64
elements. For the latter case, the performance of 25.55
Gflop/s is reported, or 99.80% of the peak, using as little as
5.9 kB of storage for code and auxiliary data structures.
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Concluding remarks

= The aim of these lectures was to help understand:
= Changes in modern computer architecture
= Impact on our programming methodologies

= Keeping in mind that there is not always a straight
path to reach (all of) the available performance by

our programming community.

= Will you be ready for 1000 cores and long vectors?
= Are you thinking “parallel, parallel, parallel” ?

= |t helps to have a good overview of the complexity
of the hardware and the seven hardware
dimensions in order to get close to the best

software design !
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Further reading:

“Designing and Building Parallel Programs”, I. Foster, Addison-Wesley,
1995

“Foundations of Multithreaded, Parallel and Distributed Programming”, G.R.
Andrews, Addison-Wesley, 1999

“Computer Architecture: A Quantitative Approach”, J. Hennessy and D.
Patterson, 3'9 ed., Morgan Kaufmann, 2002

“Patterns for Parallel Programming”, T.G. Mattson, Addison Wesley, 2004

“Principles of Concurrent and Distributed Programming”, M. Ben-Ari, 2nd
edition, Addison Wesley, 2006

“The Software Vectorization Handbook”, A.J.C. Bik, Intel Press, 2006

“The Software Optimization Cookbook”, R. Gerber, A.J.C. Bik, K.B. Smith
and X. Tian; Intel Press, 29 edition, 2006

“Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor
Parallelism”, J. Reinders, O'Reilly, 15t edition, 2007

“Inside the Machine”, J. Stokes, Ars Technica Library, 2007
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Thank you!
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