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Goal of these lectures 

1. Give an understanding of modern computer 
architectures from a performance point-of-view 
 Processor, Memory subsystem, Caches 
 Use x86-64 as a de-facto standard 
 But keep an eye on ARM64, as well as 

GPUs/accelerators 

2. Explain hardware factors that improve or degrade 
program execution speed 
 Prepare for writing well-performing software 
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 Performance Dimensions: 
 Vectorisation 
 Instruction level parallelism 
 Multi-core parallelisation 

 Conclusion 
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The Big Issues 
(from an architectural viewpoint) 
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Where are we coming from? 
 Von Neumann architecture (since forever) 

 Memory: 
 Single, homogeneous memory 
 Low latency 

 Primitive machine code (assembly) 

 CPU scaling: 
 Moore’s law (1965) 
 Dennard scaling (1974) 

 Little or no parallelism 

John von Neumann (1903 – 57) 
Source : Wikipedia 

Robert Dennard (IBM) 
Source : Wikipedia 
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Where are we today ? 
 Von Neumann architecture (unchanged) 

 Memory: 
 Multi-layered, complex layout  
 Non-uniform; even disjoint 
 High latency 

 Primitive machine code (unchanged) 

 CPU scaling: 
 Moore’s law: Slowing down 
 Dennard scaling: Practically gone 

 Extreme parallelism at all levels 
 Instruction, Chip, System 

Things 
have 

become 
worse! 
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Von Neumann architecture 
 From Wikipedia: 
 The von Neumann 

architecture is a computer 
design model that uses a 
processing unit and a 
single separate storage 
structure to hold both 
instructions and data. 

 It can be viewed as an 
entity into which one 
streams instructions and 
data in order to produce 
results 

 
 

Data Instructions 

Results 

Algorithms and Data Structures  

Input 

Processing 
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Caches 

Von Neumann architecture (cont’d) 

 The goal is to produce results 
as fast as possible 

 But, lots of problems can 
occur: 
 Instructions or data don’t 

arrive in time 
 Bandwidth issues? 
 Latency issues? 

 Clashes between input data 
and output data 

 

 Other “complexity-based” 
problems inside an extreme 
processing parallelism 
 

 

 
 

Data Instructions 

Results 

Algorithms and Data Structures  

Input 

Processing 

Many people think the architecture 
is out-dated. But nobody has 
managed to replace it (yet). 
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Moore’s “law” 
 A marching order established 

~50 years ago 
 “Let’s continue to double the 

number of transistors every 
other year!” 

 First published as: 
 Moore, G.E.: Cramming more 

components onto integrated 
circuits. Electronics, 38(8), April 
1965. 

 Accepted by all partners: 
 Semiconductor manufacturers 
 Hardware integrators 
 Software companies 
 Us, the consumers From Wikipedia 
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Moore’s “law” (cont’d) 
 The consequences: An incredible 

level of integration 
 CPUs: Many-core, Hardware vectors, 

Hardware threading 
 GPUs: Enormous number of floating-

point units 

 Today, we commonly acquire chips 
with more than 1’000’000’000 (109) 
transistors! 
 Apple A8X (just announced) has 3 ! 
 Server chips and high-end GPU 

devices have even more 
 
 Kepler GK110: 

– 7.1 billion transistors 

From Wikipedia 
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Semiconductor evolution 
 Today’s silicon processes:  
 28, 22 nm 

 Being introduced: 
 14 nm (2013/14) 

 In research: 
 10 nm (2015/16) 
   7 nm (2017/18) 
   5 nm (2019/20) 

– Source: Intel 

 By the end of this decade we will have chips with 
~100’000’000’000 (1011) transistors! 
 And, this will continue to drive innovation 

 

LHC data 

We are here 

S. Borkar et al. (Intel), "Platform 2015: Intel Platform Evolution for the Next Decade", 2005. 

2 nm (2028?) TSMC 
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Real consequence of Moore’s law 
 We are being “snowed under” by “innovation”: 

 
 More (and more complex) execution units 

 Hundreds of new instructions 

 Longer SIMD/SSE hardware vectors 
 More and more cores 
 Specialised accelerators 
 Complex cache hierarchies 

 

 In order to profit we need to “think parallel” 
 

 Data parallelism 
 Task parallelism 

 

“Data Oriented Design” 
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Frequency scaling 

 The 7 “fat” years of frequency scaling: 
 

 The Pentium Pro in 1996: 150 MHz 
 The Pentium 4 in 2003: 3.8 GHz (~25x) 

 Since then 
 Core 2 systems: 

 ~3 GHz 
 Multi-core 

 Recent CERN purchase: 
 Intel Xeon E5-2650 v2 

 “only” 2.60 GHz 
From A. Nowak/openlab 
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Complexity in Computing 
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Archaic Computing Units 
 As “stupid” as 50 years ago 

 Based on the Von Neumann 
architecture 

 Primitive “machine language” 

 Ferranti Mercury: 
 Floating-point calculations 

–  Add: 3 cycles 
– Multiply: 5 cycles 

 Today:  
 Programming for performance 

is the same headache as in the 
past 
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And the language is ancient, too!  
 Assembly/machine code! 

__Z6matmulv (snippet): 
 vmovlhps %xmm0, %xmm3, %xmm3 
 vmovss  +_b(%rip), %xmm4 
 vinsertf128 $1, %xmm3, %ymm3, %ymm3 
 vinsertps $0x10, 44+_b(%rip), %xmm7, %xmm0 
 vmovss  48+_b(%rip), %xmm6 
 vinsertps $0x10, 36+_b(%rip), %xmm1, %xmm2 
 vmovlhps %xmm0, %xmm2, %xmm2 
 vinsertps $0x10, 60+_b(%rip), %xmm4, %xmm0 
 vxorps  %xmm4, %xmm4, %xmm4 
 vinsertf128 $1, %xmm2, %ymm2, %ymm2 
 vinsertps $0x10, 52+_b(%rip), %xmm6, %xmm1 
 vmovlhps %xmm0, %xmm1, %xmm1 
 vmovaps  _a(%rip), %ymm0 
 vinsertf128 $1, %xmm1, %ymm1, %ymm1 
 vpermilps $0, %ymm0, %ymm7 
 vmulps  %ymm5, %ymm7, %ymm7 
 vaddps  %ymm4, %ymm7, %ymm7 
 vpermilps $85, %ymm0, %ymm6 
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Even assembly is “too high level” 

 Intel translates “CISC” x86 assembly instructions 
 into “RISC” µ-operations 

 which can vary with each CPU generation 

 NVIDIA translates PTX (parallel thread execution, or 
virtual assembly) 
 into machine instructions 

 which can vary with each GPU generation 

 Even the brand-new ARM64 instruction set translates 
into µ-operations  

 So, what does it really mean (?) when the hardware tells 
you: 
 “XXN operations executed” CISC: Complex Instruction Set Computing 

RISC: Reduced Instruction Set Computing 
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In the days of the Pentium 

 Life was really simple: 
 

 Basically two dimensions 
 The pipeline and its frequency 
 The number of boxes 

 
 The semiconductor industry 

increased the frequency 
 

 We acquired the right number of 
(single-socket) boxes  

Superscalar 

Pipelining 

Nodes 

Sockets 
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Performance: A complicated story! 

 We start with a concrete, real-life problem to solve 
 For instance, simulate the passage of elementary particles 

through matter 

 We write programs in high level languages 
 C++, JAVA, Python, etc. 

 A compiler (or an interpreter) transforms the high-level code to 
machine-level code 

 We link in external libraries 

 A sophisticated processor with a complex architecture and 
even more complex micro-architecture executes the code  

 In most cases, we have little clue as to the efficiency of this 
transformation process 
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A Complicated Story (in 9 layers!) 

Adapted from Y.Patt, U-Austin 

 Computing problems are solved by 
getting electrons to “dance” 

Problem 
Design, Algorithms, Data 

Language, Source program 

System architecture 
Instruction set architecture 

µ-architecture 
Circuits 

Electrons 

Compilers, Libraries 
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But, are we in control ? 
 We want the process to complete in the shortest possible time 
 Our compute job (a process) will require the execution of a given 

number of (machine-level) instructions 
 Dictated by the algorithms inside (and the compiler) 

 This time corresponds to a given number of machine cycles 

 Simple example: 
 A program consists of 1010 instructions 
 We measure an execution time of 6 seconds 

on a processor running at 2.0 GHz 
 We can now compute a key value: 

 Cycles per Instruction (CPI): (6*2.0*109) / 1010  = 1.2 

 This has to be seen as a “yardstick”: 
 Cycles vary: Reference cycles, Actual cycles? 
 Instructions vary: Vector/Scalar? Micro/Macro? 
 Even worse: Useful/Superfluous instructions? 

Data Instructions 

Processing 

Results Input 
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Anyway, let’s start with the basics! 



Sverre Jarp  

Computer Architecture and Performance Tuning 

23 

Simple processor layout 

 A simple processor with 
four key components: 
 Control Logic 

 Instruction Counter 
 Program Status Word 

 Register File 
 

 Functional Unit  
 Data Transfer Unit 

 Data bus 
 Address bus 

R1 

R0 

RNN 

Registers 

Data 
transfer 
unit 

FU 

Data 

Address 

Keeps the state of execution 

IC 

PSW 

Control 

Flags 
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Simple server diagram 

 Multiple components which 
interact during the execution 
of a program: 
 Processors/cores 

 w/private caches 
– I-cache, D-cache 

 Shared caches 
 Instructions and Data 

 Memory controllers 
 Memory (non-uniform) 
 I/O subsystem 

 Network attachment 
 Disk subsystem 

 

Interconnect 

I/O bus 

Shared 
cache 

C2 C3 
C4 C5 

Mem-ctl 

Shared 
cache 

C0 C1 

C4 C5 

Mem-ctl 

Memory Memory 

Socket 0 Socket 1 

C0T0 
C0T1 C0 C1 
C2 C3 

Intel Nahalem 
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Memory Subsystem 
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Optimal Memory Programming 
 What needs to be understood: 
 The memory hierarchy 

 Main memory 
– Physical layout 
– Latency 
– Bandwidth 

 Caches 
– Physical layout, Line sizes 
– Levels/Sharing 
– Latency 

 Programmer/Compiler 
– Data Layout 
– Data Locality 

 Execution environment: 
– Affinity 
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Cache/Memory Hierarchy 

 From CPU to 
main memory 
on a recent 
Haswell 
processor 
 With 

multicore, 
memory 
bandwidth 
is shared 
between 
cores in 
the same 
processor 
(socket) 

c = cycle 

Processor Core 
(Registers) 

Local/remote memory 
(large, but typically non-uniform) 

R: 64B/1c 
11c latency 

~24 B/c for all cores 
> 200c latency 

(R:64B + W:32B)/1c 
4c latency 

Shared L3 
(~20 MB) 

32B/1c for all cores 
> 21c latency 

L2 
(256 KB) 

L1D 
(32 KB) 

L1I 
(32 KB) 
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Cache lines (1) 

 When a data element or an instruction is requested by the 
processor, a cache line is ALWAYS moved (as the 
minimum quantity), usually to Level-1 

 

 A cache line is a contiguous section of memory, typically 
64B in size (8 * double) and 64B aligned 
 A 32KB Level-1 cache can hold 512 lines 

 When cache lines have to be moved come from memory 
 Latency is long (>200 cycles) 

 It is even longer if the memory is remote 

 Memory controller stays busy (~8 cycles) 

 

requested 
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Cache lines (2) 
 Good utilisation is vital 
 When only one element (4B or 8B) element is used inside 

the cache line: 
 A lot of bandwidth is wasted! 
 

 Multidimensional C arrays should be accessed with the last 
index changing fastest: 

 
 
 

 Pointer chasing (in linked lists) can easily lead to “cache 
thrashing” (too much memory traffic) 

 

requested 

for (i = 0; i < rows; ++i) 
 for (j = 0; j < columns; ++j)  
  mymatrix [i] [j]   += increment; 
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Cache lines (3) 
 Prefetching: 
 Fetch a cache line before it is requested 

 Hiding latency 

 Normally done by the hardware 
 Especially if processor executes Out-of-order 

 Also done by software instructions 
 Especially when In-order (IA-64, Xeon Phi, etc.)  

 Locality is vital: 
 Spatial locality – Use all elements in the line 
 Temporal locality – Complete the execution whilst the 

elements are certain to be in the cache 
 
 

Programming the memory hierarchy is an art in itself. 
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Cache/Memory Trends 

 The trend is to 
deepen and 
diversify the 
cache/memory 
hierarchy: 
 Additional 

levels of 
cache 

 Multiple kinds 
of large 
memories 

 Non-volatile 
memories 
(great for 
databases, 
etc.) 

Processor Core 

Local/remote 
memory (1) 

Larger, slower 

Shared L3 

L2 

L1D L1I 

Shared L4 

Local/remote 
memory (2) 

Faster, smaller 

Non-volatile 
memory (3) 
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Latency Measurements (example) 
 Memory Latency on Sandy Bridge-EP 2690 (dual socket) 
 90 ns (local) versus 150 ns (remote) 
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Current GPU Memory Layout 

 CPU and GPU memories 
are separate 

 What everybody wants is a 
single unified view of 
memory 

 One vision is 
“Heterogeneous Systems 
Architecture”(HSA) 
pushed by AMD, ARM, and 
others 

 Example:  
 AMD Kaveri APU 

CPU GPU 

System 
Memory 

GPU 
Memory Unified Memory 
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CPU 
Performance 
Dimensions 
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As we have already discussed 

 Life in the days of the 
Pentium was really simple: 

 
 Basically two dimensions 

 The pipeline and its frequency 
 The number of boxes 

 
 The semiconductor industry 

increased the frequency 
 

 We acquired the right number of 
(single-socket) boxes  

Superscalar 

Pipelining 

Nodes 

Sockets 
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Now: Seven dimensions of performance 

 First three dimensions: 
 Hardware vectors/SIMD 
 Superscalar 
 Pipelining 

 Next dimension is a “pseudo” 
dimension: 
 Hardware multithreading 

 Last three dimensions: 
 Multiple cores 
 Multiple sockets 
 Multiple compute nodes  

SIMD = Single Instruction Multiple Data 

Vector width 

Superscalar 

Pipelining 

Multithreading 

Nodes 
Multicore 

Sockets 
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Seven multiplicative dimensions: 
 First three dimensions: 
 Hardware vectors/SIMD 
 Superscalar  
 Pipelining 

 Next dimension is a “pseudo” 
dimension: 
 Hardware multithreading 

 Last three dimensions: 
 Multiple cores 
 Multiple sockets 
 Multiple compute nodes  

Data and Instruction 
Level parallelism 

(Vectors/Matrices) 

Task parallelism 
(Events/Tracks) 

Task/process 
parallelism 

2x, 4x, 8x, 16x 

1x – 10x 

10x – 100x 
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Simple, but illustrative example 
 Xeon Phi has ~60 cores, 4-way hardware threading, 

hardware vectors of size 8 (Double Precision): 

 Program A: Threaded 60 x 4, vectorised 8x: 
 Performance potential: 1920 

 Program B: Not threaded: 1x, not vectorised: 1x 
 Performance potential:       1  

M
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y 
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n In Order, 4 

threads, SIMD-
16 I$ D

$ 

In Order, 4 
threads, SIMD-

16 I$ D
$ 

. . . 

. . . 

L2 Cache 
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GPUs: 7 dimensions of performance 

 First four dimensions: 
 Superscalar (dual issue) 
 Pipelining 
 Threads (32) 
 Instruction Schedulers (4) 

 Then, there are: 
 Warps 

 Last dimensions: 
 Multiple SMs 
 Multiple accelerators 

Threads 

Superscalar 

Pipelining 

Warps 

Instruction Schedulers 

Cards 

SM 
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Streaming Multiprocessor Architecture 

Source: NVIDIA white paper 
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Part 1: Opportunities for scaling 
performance inside a core 
 Here are the first three dimensions 

 

 The resources: 
 HW vectors: Fill the computational 

width 
 Superscalar: Fill the ports 
 Pipelining: Fill the stages 

 Best approach: Data Oriented 
Design 

 In HEP today, we probably extract 
(much?) less than 10% of peak 
execution capability! 

 

Superscalar 

Pipelining 

HW vector width 
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First topic: Vector registers 
 Until recently, Steaming SIMD Extensions (SSE): 

 16 “XMM” registers with 128 bits each (in 64-bit mode) 

 New (as of 2011): Advanced Vector eXtensions (AVX): 
 16 “YMM” registers with 256 bits each 

E3 E2 E1 E0 

E7 E6 E5 E4 E3 E2 E1 E0 

Bit 0 Bit 255 

E15 E14 E13 E12 E11 E10 E9 E8 E7 E6 E5 E4 E3 E2 E1 E0 16 Words 

8 Dwords/Single 

4 Qwords/Double 

256 bits (AVX 1/AVX 2) 

128 bits (SSE) 

32 Byte elements 32 Bytes 

Future: 512 bits (AVX512) 
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Four floating-point data flavours 
 Single precision 
 Scalar single (SS) 
 Packed single (PS) 

 

 Double precision 
 Scalar Double (SD) 
 Packed Double (PD) 

 Note: 
 Scalar mode (with AVX) means using only: 

 1/8 of the width (single precision) 
 1/4 of the width (double precision) 

 Even longer vectors are coming! have been announced ! 
 Definitely 512 bits (already used in the Xeon Phi co-processors) 

 

E3 E2 E1 E0 

- - - E0 

E7 E6 E5 E4 E3 E2 E1 E0 

- - - - - - - E0 
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Scalable programming 
inside a core 
 Easiest way to fill the 

execution capabilities is to 
program software vectors 

 But, which ones? 
 Standard C arrays 

 Intel added C Extended Array 
Notation (CEAN) in version 
12.0 (icc) 
 As well as CILK+ 

 STL vectors 
 TBB vectors (thread-safe) 
 Intrinsics 
 etc. 

float  u[100], v[100]; 
 
for (int i = 0; i<50; ++i) u[i] = 0.0; 
 
for (i = 0; i<50; ++i) u[i] = sin(v[i]); 
 
for (int i = 0; i<50; ++i) u[i] = v[i*2+1]; 

CEAN example: 
 
A[i:n] = 2.5 * B[j:n]; 

Courtesy: INTEL 
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Inside-the-core: HEP and vectors 
 Too little common ground! 
 Practically all attempts in the past failed. 

 w/CRAY, CYBER 205, IBM 3090-Vector Facility, etc. 
 Interesting reading: Dekeyser J 1987 “Vectorization of the GEANT3 

geometrical routines for a Cyber 205” Nuclear Instruments and Methods 
in Physics Research Section A, Volume 264, Issue 2-3, p. 291-296  

 From time to time, we see a good vector example 
 For example: Track Fitting code from ALICE trigger 

  Explained in the examples 

 Interesting development from ALICE (Matthias Kretz): 
 Vc (Vector Classes) now part of ROOT v.6 

 http://compeng.uni-frankfurt.de/index.php?id=vc  

 Hopefully, there will be renewed efforts to use vectors 
efficiently (Geant-V and others) 
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Second topic: Superscalar architecture 

 In this simplified design, 
instructions are decoded 
in sequence, but 
dispatched to two 
Functional Units. 
 The decoder and 

dispatcher must be 
able to handle two 
instructions per cycle 

 The FUs can have 
identical or different 
execution capabilities 

Decode 

Dispatch 

FU 0 FU 1 

Results 

Instruction stream 

Port 0 Port 1 
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Enhanced superscalar architecture 

 A more realistic 
architecture will have 
multiple FUs hanging 
off the same port 
 An instruction can be 

dispatched to either 
matching execution 
unit on a given port, 
but not to both units 
on the same port in a 
given cycle 

Dispatch 

FU 0 
(i-add) 

FU 1 
(i-add) 

Results 

Instruction stream 

Port 0 Port 1 

FU 2 
(i-shift) 

FU 3 
(i-mul) 
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Latest superscalar architecture 

 Intel’s Haswell micro-architecture can 
execute four instructions in parallel 
(across eight ports) in each cycle. 

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 

Integer 
Alu 

Vec Int 
ALU 

x87 FP 
Multiply 

Vec FMA 
Vec FMul 

Vector 
Logical 

Vector 
Shift 

Integer 
Alu 

Integer 
Alu 

Vec Int 
ALU 

Vector 
Logical 

Vector 
Shuffle 

Load 
Data 

Store 
Data 

Branch 
Unit 

DIV 
SQRT 

x87 FP 
Add 

Vec FMA 
Vec FMul 
Vec FAdd 

Integer 
Shift 

Integer 
MUL 

Integer 
LEA 

PSAD 

String 
Compare 

Integer 
LEA 

Port 6 Port 7 

Store 
 Address 

Load 
Data 

Store 
 Address 

Integer 
Alu 

Store 
Address 

Integer 
Shift 

Branch 
Unit 

Vector 
Logical 
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Matrix multiply example 

 For a given algorithm, we can understand exactly which 
functional execution units are needed 
 For instance, in the innermost loop of matrix multiplication 

for ( int i = 0; i < N; ++i ) {  
 for ( int j = 0; j < N; ++j ) {  
  for ( int k = 0; k < N; ++k ) {  
   c[ i * N + j ]  +=   a[ i * N + k ]  *  b[ k * N + j ];  
  }  
 }  
} 

Until Haswell (2012):    Store            Add  Load          Mult  Load   

As of Haswell (2013): Store                     Load          FMA  Load 
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Apple A7/A8 (based on ARM A57) 

 Nine ports 

 Six instructions (on average) 
decoded/executed/retired 

 128-bit vectors 

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 

Integer 
Alu 

Integer 
Alu 

Integer 
Alu 

Branch 
Unit 

FDIV 
FSQRT 

Vec FMA 
Vec FMul 
Vec FAdd 

Integer 
Shift 

Integer 
MUL 

Port 6 Port 7 

Load 
Store 

Integer 
Alu 

Integer 
Shift 

Port 8 

Integer 
DIV 

Branch 
Unit 

Load 
Store 

Vec FMA 
Vec FMul 
Vec FAdd 

And, this is for (no more than) a phone? 
Based on an article on 
“anandtech.com” and 
discussions with ARM 
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Third topic: Instruction pipelining 

 Instructions are broken up into stages. 
 With a one-cycle execution latency (simplified): 

 
 
 
 
 

 With a three-cycle execution latency: 

I-fetch I-decode Execute Write-back 
I-fetch I-decode Execute Write-back 

I-fetch I-decode Execute Write-back 

I-fetch I-decode Exec-1 Write-back Exec-2 Exec-3 
I-fetch I-decode Exec-1 Write-back Exec-2 Exec-3 
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Real-life latencies 
 Most integer/logic instructions have a one-cycle execution 

latency: 
 For example (on an Intel Xeon processor)::  

 ADD, AND, SHL (shift left), ROR (rotate right) 

 Amongst the exceptions: 
 IMUL (integer multiply): 3 
 IDIV (integer divide): 13 – 23 

 Floating-point latencies are typically multi-cycle 
 FADD (3), FMUL (5) 

 Same for both x87 and SIMD double-precision variants 

 Exception: FABS (absolute value): 1 
 Many-cycle: FDIV (20), FSQRT (27) 
 Other math functions: even more  Latencies in the Core micro-architecture 

(Intel Manual No. 248966-026 or later). 
AMD processor latencies are similar. 

As of Haswell: 
FMA (5 cycles) 
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Latencies and serial code (1) 
 In serial programs, we 

typically pay the penalty of a 
multi-cycle latency during 
execution: 
 In this example: 

 Statement 2 cannot be 
started before statement 1 
has finished 
 Statement 3 cannot be 

started before statement 2 
has finished  

double a, b, c, d, e, f; 
 
b = 2.0; c = 3.0; e = 4.0; 
 
a = b * c;  // Statement 1 
 
 
d = a + e;  // Statement 2 
 
 
f = fabs(d);   // Statement 3 

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B 

I-F I-D - - - - W-B EX-1 EX-2 EX-3 

I-F I-D - - - - W-B - - EX-1 
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Latencies and serial code (2) 

 Observations: 
 Even if the processor can fetch and decode a new instruction 

every cycle, it must wait for the previous result to be made 
available 
 Fortunately, the result takes a ‘bypass’, so that the write-back stage 

does not cause even further delays 

 The result: CPI is equal to 3 
 9 execution cycles are needed for 3 instructions! 

 A good way to hide latency is to [get the compiler to] unroll 
(vector) loops ! 

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B 

I-F I-D - - - - W-B EX-1 EX-2 EX-3 

I-F I-D - - - - W-B - - EX-1 
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Mini-example of real-life scalar, serial code 
 Suffers long latencies: 

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 

1 load point[0] 

2 load origin[0] 

3 

4 

5 

6 subsd  load float-packet 

7 

8 load xhalfsz 

9 

10 andpd 

11 

12 comisd 

13 jbe 

  if (abs(point[0] - origin[0]) > xhalfsz) return FALSE; 

movsd 16(%rsi), %xmm0 
subsd 48(%rdi), %xmm0   // load & subtract 
andpd _2il0floatpacket.1(%rip), %xmm0 // and with a mask 
comisd 24(%rdi), %xmm0 // load and compare 
jbe ..B5.3      # Prob 43% // jump if FALSE 

High level C++ code  

Machine instructions  

Same 
instructions 
laid out 
according to 
latencies on 
the Nehalem 
processor  
 
NB: Out-of-
order 
scheduling 
not taken 
into account.  
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Out-of-order (OOO) scheduling 

 Most modern processors use OOO scheduling 
 This means that they will speculatively execute instructions 

ahead of time (Xeon: inside a “window” of ~150 instructions) 
 In certain cases the results of such executed instructions must 

be discarded 

 At the end, there is a difference between “executed 
instructions” and “retired instructions” 
 One typical reason for this is mispredicted branches 

 Potential problem with OOO: 
 A lot of extra energy is needed! 

 Interestingly: ARM has two designs: 
 A53 (low power, in-order), A57 (high power, OOO) 
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Summary of Last Two Dimensions 

 Commonly referred to as: 
 Instruction level parallelism (ILP) 

 Very dependent on algorithms and/or data structures 

 Issues are equally valid for vector and scalar computing 

 Multiplies with what we get from all the other dimensions 
 Threading 
 Vectorisation 

 But, difficult to understand or manipulate 
 Both micro-architecture and compilers get in the way 
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Important performance measurements 
(that can tell you if things go wrong) 

 Related to what we have 
discussed: 
 The total cycle count (C) 
 The total instruction count (I) 
 Derived value: CPI 

 
 Resource Stall count: Cycles 

when no execution occurred 
 

 Total number of executed 
branch instructions 

 Total number of mispredicted 
branches 

 
 

 Plus: 
 The total number (and the 

type) of computational 
SSE/AVX instructions 

 The total number of 
SSE/AVX instructions 
 

 Total number of cache 
accesses 

 Total number of (last-level) 
cache misses 

 
 



Sverre Jarp  

Computer Architecture and Performance Tuning 

59 

Part 2: Parallel execution across 
hw-threads and cores 
 First a “pseudo” dimension: 
 Hardware multithreading 

 Last three dimensions: 
 Multiple cores 
 Multiple sockets 
 Multiple compute nodes 

 Multiple nodes will not be 
discussed here 
 Our focus is scalability inside 

a node Compute nodes 

Processor cores 

Sockets 

Multithreading 
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Definition of a hardware core/thread 

 Core 
 A complete ensemble 

of execution logic, and 
cache storage as well 
as register files plus 
instruction counter (IC) 
for executing a 
software process or 
thread 

 Hardware thread 
 Addition of a set of 

register files plus IC 

Execution  
logic 

State: Registers, IC 

Caches, 
etc. 

State: Registers, IC 

The sharing of the execution logic can 
be coarse-grained or fine-grained. 

State: R
egisters, IC

 St
at

e:
 R

eg
is

te
rs

, I
C
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Definition of a software 
process and thread 
 Process (OS process): 
 An instance of a computer program that is being executed 

(sequentially). It typically runs as a program with its 
private set of operating system resources, i.e. in its own 
“address space” with all the program code and data, its 
own file descriptors with the operating system 
permissions, its own heap and its own stack. 

 Thread: 
 A process may have multiple threads of execution. These 

threads run in the same address space, share the same 
program code, the operating system resources as the 
process they belong to. Each thread gets its own stack. 

Adapted from Wikipedia 
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Seven multiplicative dimensions: 
 First three dimensions: 
 Hardware vectors/SIMD 
 Superscalar  
 Pipelining 

 Next dimension is a “pseudo” 
dimension: 
 Hardware multithreading 

 Last three dimensions: 
 Multiple cores 
 Multiple sockets 
 Multiple compute nodes  

Task parallelism 
(Events/Tracks) 

Task/process 
parallelism 

Data and Instruction 
Level parallelism 

(Vectors/Matrices) 
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The move to many-core systems 
 Examples of “CPU slots”: Sockets * Cores * HW-threads 

 Basically what you observe in “cat /proc/cpuinfo” 

 Conservative: 
 Dual-socket AMD six-core (Istanbul):   2 * 6 * 1 = 12 
 Dual-socket Intel six-core (Westmere-EP):  2 * 6 * 2 = 24 

 More aggressive: 
 Quad-socket AMD Interlagos (16-core)  4 * 16 * 1 =  64 
 Quad-socket Westmere-EX “octo-core”:  4 * 10 * 2 =  80 

 Already now: Hundreds (or thousands) of CPU slots ! 
 Octo-socket Oracle/Sun Niagara (T5) processors 

w/16 cores and 8 threads (each):    8 * 16 * 8 = 1024 

 So, if you write new software, think: Thousands !!  
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HEP programming paradigm 
 Event-level parallelism has been used for decades 

 And, we should not lose this advantage: 
 Large jobs can be split into N efficient “chunks”, each 

responsible for processing M events 
 Has been our “forward scalability” 

 Disadvantage with current approach: 
 Memory must be made available to each process 

 A dual-socket server with eight-core processors needs 32 – 48 GB (or 
more) 

 The double (64 – 96 GB), if hardware multithreading is enabled! 

 Although large memories are now coming, we must not let 
memory limitations decide our ability to compute efficiently! 
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Let’s briefly introduce parallelism 
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Parallelization support (C++ and others) 
 Large selection of tools (inside the compiler or as 

additions): 
 Native: pthreads/Windows threads 
 New C++ standard: std::thread 
 OpenMP 
 Intel Threading Building Blocks (TBB; also open source) 
 Intel CILK+ 
 OpenACC 
 Thread wrapper classes 
 MPI (from multiple providers), etc. 
 CUDA (on GPUs from Nvidia) 
 OpenCL 
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Designing Threaded Programs 
 Partition 

 Divide problem into 
tasks 

 Communicate 
 Determine amount 

and pattern of 
communication 

 Agglomerate 
 Combine tasks 

 Map 
 Assign 

agglomerated tasks 
to created threads 

The 
Problem 

Initial tasks 

Communication 

Combined  Tasks 

Final Program 
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Intel Xeon Phi: A “co-processor” 
 Intel Many Integrated Cores (MIC): 
 Announced at ISC10 (end-May 2010) 
 Based on the x86 architecture, 22nm 

 In-Order 

 Many-core (up to 62 cores) + 4-way 
multithreaded + 512-bit vector unit 

 Limited memory: 8 – 16 Gigabytes 

 

 

   

 

 

In Order, 4 
threads, SIMD-16 
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threads, SIMD-16 

I$ D$ 

In Order, 4 
threads, SIMD-16 

I$ D$ 

. . . 

. . . 

L2 Cache 

In Order, 4 
threads, SIMD-16 

I$ D$ 

In Order, 4 
threads, SIMD-16 

I$ D$ 

48’000 such 
accelerators are 
used in the 
world’s fastest 
supercomputer 
(Tianhe-2 Xeon-
cluster in China) 

“Knights Corner” 
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Next generation: “Knights Landing” 
 Being prepared for (late?) 2015 using 14 nm 

technology. 3 Tflops peak. 

 Both as PCI-based coprocessor and bootable single-
socket system 

 New ATOM based (out-of-order) core [72 in total] 

 Memory: A combination of eDRAM (fast, small) and 
DDR4 (slow, large) 

 Mesh fabric interconnect 
 Rather than ring bus 

 Converged instruction set 
 AVX-512 [aka AVX3.1] 
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NVIDIA roadmap 
 A promise of continued growth: 

Adapted from Nvidia 
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GPU Accelerators : Nvidia Kepler 

 Made available in 
4Q2012 
 GK110 GPU 
 3x DP performance: 

 1 Teraflops 

 Innovative design: 
 SMX (streaming 

multiprocessors) 
 Dynamic parallelism 

for spawning new 
threads 
 Hyper-Q enables 

multiple CPU cores to 
utilise CUDA cores 
 

Adapted from Nvidia 

18’688 such accelerators are used 
in the world’s second-fastest 
supercomputer (Titan Cray XK7) 
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Some 
Recommendations 
(based on observations in openlab) 
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A proposal for “agile” software: 
1) Seek out parallelism at all levels 

a. Events, tracks, vertices, etc. 
b. Perform “chunk” processing (removing event separation) 

2) Build forward scalability 

3) Create compute-intensive kernels 

4) Optimise the Memory Hierarchy 

5) Create Performance-oriented Code 

6) Combine broad programming talents 

7) Use best-of-breed tools 
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Concurrency in High Energy Physics 
 We are “blessed” with lots of it: 
 Entire events 
 Particles, hits, tracks and vertices 
 Physics processes 
 I/O streams (ROOT trees, branches) 
 Buffer handling (also data compaction, etc.) 
 Fitting variables 
 Partial sums, partial histograms 
 and many others ….. 

 Usable for both data and task parallelism! 
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The holy grail: Forward scalability 

 Not only should a program be written in such a way that it 
extracts maximum performance from today’s hardware 

 On future processors, performance should scale 
automatically 
 In the worst case, one would have to recompile or relink 

 Additional CPU/GPU hardware, be it cores/threads or 
vectors, would automatically be put to good use 

 Scaling would be as expected: 
 If the number of cores (or the vector size) doubled: 

 Scaling would be close to 2x, but certainly not just a few percent 

 We cannot afford to “rewrite” our software for every 
hardware change! 
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Kernel-oriented Programming 
 Take the whole program and its execution behaviour 

into account 
 Get yourself a global overview as soon as possible 

 Via early prototyping with realistic algorithms/data 
 Influence early the design and definitely the implementation 

 Foster clear split: 
 Prepare to compute 
 Do the heavy computation 

 In kernels, where you go after all the available parallelism 

 Post-processing 

 Often, a single kernel is not sufficient 
 A sequence of kernels may be needed 

Heavy compute Pre Post 

The 90 – 10 rule 
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CPU / GPU co-existence 

 What I would like to see happen to a (possibly dusty, 
sequential) x86 application: 

 A strong porting effort to move it to the GPU 
 A good “kernel-oriented design” that aims for a triple-digit 

speed-up 

 Then, a solid port back to the CPU servers 
 Exploiting vectors and cores 

 Outcome: 
 Applications that can profit from new breakthroughs on 

either side of the fence  
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Data layout: SoA versus AoS 

 In general, both GPUs and 
CPUs prefer the former! 

 Structure of Arrays (SoA): 

 

 Array of Structures (AoS): 

 

 

 Also possible: AoSoA 

Z1 Z2 Z3 Z4 Z5 Z6 

Y1 Y2 Y3 Y4 Y5 Y6 

X1 X2 X3 X4 X5 X6 

SP1 
X,Y, Z 

SP2 
X,Y, Z 

SP3 
X,Y, Z 

SP4 
X,Y, Z 

SP5 
X,Y, Z 

SP6 
X,Y, Z 

Spacepoints 
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Performance-oriented code 

 C++ for performance 
Use light-weight C++ constructs 
Minimize virtual functions 
 Inline whenever important 
Optimize the use of math functions 

– SQRT, DIV 
– LOG, EXP, POW 
– SIN, COS, ATAN2 

 
 

 
 
 

 

 

Learn to inspect the compiler-generated assembly, 
especially of kernels 

Use vector 
libraries 
whenever 
possible, 
but master 
the 
accuracy! 
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Performance tools 

 Surround yourself with good tools: 
 Compilers (not just one!) 
 Libraries 
 Profilers 
 Debuggers 
 Thread 

checkers 
 Thread 

profilers 
Image: software.intel.com 
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Broad Programming Talent 
 In order to cover as many layers as possible 

Problem 
Algorithms, abstraction 

Source program 

System architecture 
Instruction set 
µ-architecture 

Circuits 
Electrons 

Compiled code, libraries 

Solution 
specialists 

Technology 
specialists 



Sverre Jarp  

Computer Architecture and Performance Tuning 

82 

Examples of good 
scalability 
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Scalability example: 
CBM/ALICE track-fitting 

 Extracted from the High 
Level Trigger (HLT) Code 
 Originally ported to IBM’s 

Cell processor 

 Tracing particles in a 
magnetic field  
 Embarrassingly parallel 

code 

 Re-optimization on x86-64 
systems 
 Using vectors instead of 

scalars 

I.Kisel/GSI: “Fast SIMDized Kalman filter based track fit” 
http://www-linux.gsi.de/~ikisel/17_CPC_178_2008.pdf 

“Compressed Baryonic Matter” 
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CBM/ALICE track-fitting 

 Details of the re-optimization on x86-64: 
 Part 1: use SSE vectors instead of scalars 

 Operator overloading allows seamless change of data types 
 Intrinsics (from Intel/GNU header file): Map directly to 

instructions: 
– __mm_add_ps  corresponds directly to ADDPS, the instruction 

that operates on four packed, single-precision FP numbers 
● 128 bits in total 

 Classes 
– P4_F32vec4 – packed single class with overloaded operators 

● F32vec4 operator +(const F32vec4 &a, const F32vec4 &b) { 
return _mm_add_ps(a,b); } 

 
 Result: 4x speed increase from x87 scalar to packed SSE 

(single precision) 
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Examples of parallelism: 
CBM track-fitting 
 Re-optimization on x86-64 systems 
 Step 1: Data parallelism using SIMD instructions 
 Step 2: use TBB (or OpenMP) to scale across cores 

From H.Bjerke/CERN openlab, I.Kisel/GSI 

V T 
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Analysis of Track-fitting speed-up 

 From paper of I.Kisel (2008): 

Stage Description Time/track Speed-up 

Initial (unoptimised) scalar 
version 

12 ms - 

1 Approximation of magnetic 
field 

240 µs 50 

2 Optimisation of the algorithm 7.2 µs 33.3 

3 Vectorisation 1.6 µs 4.5 

4 Porting to IBM Cell/SPE 1.1 µs 1.45 

5 Parallelisation on 16 SPEs 0.1 µs 10 

Final SIMD parallel version 0.1 µs 120’000 

72x 

1667x 

Don’t underestimate software optimisation! 
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Track-fitting: Port to NVIDIA GPU 
 David Rohr/ALICE: 
 Integration: GPU and CPU tracker share a common set of 

source files 
 Performance Comparison: GTX580 GPU is almost three 

times faster than a six-core Westmere processor 

GPU Workshop in DESY (April 2013): 
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Another scalability example: 
Black-Scholes Calculations 

 Example provided by Intel 
 Starting with dual-socket server 

with E5-2670 processor (2.6 GHz, 
8 cores) 

 Xeon Phi coprocessor with 61 
cores at 1.05 GHz 

 Five rounds of performance 
improvements: 
 Moving from gcc to icc: 
 Scalar, serial optimisation 
 Vectorisation 
 Parallelisation 
 Porting to Xeon Phi 

 

Shuo Li/Intel: “Achieving Superior Performance 
on Black-Scholes Valuation Computing using 
Intel Xeon Phi Coprocessors” 
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Black-Scholes Calculations (cont’d) 

 Scaling obtained (compared to previous round): 
 

Improvement step: Speed-up Expected 
gcc  icc 4.14 ? 
Scalar, serial optimisation 1.41 ? 
Vectorisation 7.1x 8x 
Parallelisation 19.2x 20x (16 * 1.25) 
Moving to Xeon Phi 3.32x 3.07x 

Scaling ratio Xeon  Xeon Phi: 

Vector size: 2x 
Core count increase: 3.81x 
Frequency reduction: 2.48x 
Result: 3.07x 
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Examples of parallelism: GEANT4 
 Initially: 
 Experimental multithreaded version introduced by PhD 

student Xin Dong/North-Eastern University in 2011 
 Good collaboration with G4 team and openlab 
 Lots of code changes (at least 10%) 

– Preprocessor used for automating the work 
– Convincing demos with FullCMS example 

 Now: 
 Official version as of G4 10.0 (Dec. 2013) 

– G4MTRunManager introduced 
– Thread safety via Thread Local Storage 
– Good scalability 
– Reduced memory consumption: 

● Only 30-50 MB/thread 
– Working out of the box: 

● x86_64(Xeon and Atom), MIC, ARM32, IBM/Bluegene/Q 

T 

Further improvements 
expected in release 10.1 
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Summing Up 
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So, what does it all mean? 
 Here is what we tried to say in these 

lectures: 

 You must make sure your data and 
instructions come from caches (not main 
memory) 

 You must parallelise across all “CPU slots” 
 Hardware threads, Cores, Sockets 

 You must get your code to use vectors 

 You must understand if your ILP is seriously 
limited by serial code, complex math 
functions, or other constructs 

 

2x, 4x, 8x, 16x  

1x – 10x 

10x – 100x 



Sverre Jarp  

Computer Architecture and Performance Tuning 

93 

If you think that all of this is “crazy” 

 Please read: 

 “Optimizing matrix multiplication for a short-vector 
SIMD architecture – CELL processor” 
 J.Kurzak, W.Alvaro, J.Dongarra 
 Parallel Computing 35 (2009) 138–150 

 
In this paper, single-precision matrix multiplication kernels 
are presented implementing the C = C – A x BT operation and 
the C = C –  A x B operation for matrices of size 64x64 
elements. For the latter case, the performance of 25.55 
Gflop/s is reported, or 99.80% of the peak, using as little as 
5.9 kB of storage for code and auxiliary data structures. 
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Concluding remarks 
 The aim of these lectures was to help understand: 
 Changes in modern computer architecture 
 Impact on our programming methodologies 
 Keeping in mind that there is not always a straight 

path to reach (all of) the available performance by 
our programming community. 

 Will you be ready for 1000 cores and long vectors? 
 Are you thinking “parallel, parallel, parallel” ? 

 It helps to have a good overview of the complexity 
of the hardware and the seven hardware 
dimensions in order to get close to the best 
software design ! 
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Further reading: 
 “Designing and Building Parallel Programs”, I. Foster, Addison-Wesley, 

1995 

 “Foundations of Multithreaded, Parallel and Distributed Programming”, G.R. 
Andrews, Addison-Wesley, 1999 

 “Computer Architecture: A Quantitative Approach”, J. Hennessy and D. 
Patterson, 3rd ed., Morgan Kaufmann, 2002 

 “Patterns for Parallel Programming”, T.G. Mattson, Addison Wesley, 2004 

 “Principles of Concurrent and Distributed Programming”, M. Ben-Ari, 2nd 
edition, Addison Wesley, 2006 

 “The Software Vectorization Handbook”, A.J.C. Bik, Intel Press, 2006 

 “The Software Optimization Cookbook”, R. Gerber, A.J.C. Bik, K.B. Smith 
and X. Tian; Intel Press, 2nd edition, 2006 

 “Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor 
Parallelism”, J. Reinders, O’Reilly, 1st edition, 2007 

 “Inside the Machine”, J. Stokes, Ars Technica Library, 2007 
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