
Computer Architecture and
Performance Tuning

“Recent Changes in Processor
Architectures and the 7 Dimensions

of Performance”

 Sverre Jarp
CERN

Honorary Staff

ESC 2014 – Bertinoro, Italy – October 2014

Sverre Jarp

Computer Architecture and Performance Tuning

2

Goal of these lectures

1. Give an understanding of modern computer
architectures from a performance point-of-view
 Processor, Memory subsystem, Caches
 Use x86-64 as a de-facto standard
 But keep an eye on ARM64, as well as

GPUs/accelerators

2. Explain hardware factors that improve or degrade
program execution speed
 Prepare for writing well-performing software

Sverre Jarp

Computer Architecture and Performance Tuning

3

Contents

 Introduction:
 Setting the Scene; Scaling “laws”
 Complexity in Computing

 Basic Architecture

 Memory subsystem

 Performance Dimensions:
 Vectorisation
 Instruction level parallelism
 Multi-core parallelisation

 Conclusion

Sverre Jarp

Computer Architecture and Performance Tuning

4

The Big Issues
(from an architectural viewpoint)

Sverre Jarp

Computer Architecture and Performance Tuning

5

Where are we coming from?
 Von Neumann architecture (since forever)

 Memory:
 Single, homogeneous memory
 Low latency

 Primitive machine code (assembly)

 CPU scaling:
 Moore’s law (1965)
 Dennard scaling (1974)

 Little or no parallelism

John von Neumann (1903 – 57)
Source : Wikipedia

Robert Dennard (IBM)
Source : Wikipedia

Sverre Jarp

Computer Architecture and Performance Tuning

6

Where are we today ?
 Von Neumann architecture (unchanged)

 Memory:
 Multi-layered, complex layout
 Non-uniform; even disjoint
 High latency

 Primitive machine code (unchanged)

 CPU scaling:
 Moore’s law: Slowing down
 Dennard scaling: Practically gone

 Extreme parallelism at all levels
 Instruction, Chip, System

Things
have

become
worse!

Sverre Jarp

Computer Architecture and Performance Tuning

7

Von Neumann architecture
 From Wikipedia:
 The von Neumann

architecture is a computer
design model that uses a
processing unit and a
single separate storage
structure to hold both
instructions and data.

 It can be viewed as an
entity into which one
streams instructions and
data in order to produce
results

Data Instructions

Results

Algorithms and Data Structures

Input

Processing

Sverre Jarp

Computer Architecture and Performance Tuning

8

Caches

Von Neumann architecture (cont’d)

 The goal is to produce results
as fast as possible

 But, lots of problems can
occur:
 Instructions or data don’t

arrive in time
 Bandwidth issues?
 Latency issues?

 Clashes between input data
and output data

 Other “complexity-based”
problems inside an extreme
processing parallelism

Data Instructions

Results

Algorithms and Data Structures

Input

Processing

Many people think the architecture
is out-dated. But nobody has
managed to replace it (yet).

Sverre Jarp

Computer Architecture and Performance Tuning

9

Moore’s “law”
 A marching order established

~50 years ago
 “Let’s continue to double the

number of transistors every
other year!”

 First published as:
 Moore, G.E.: Cramming more

components onto integrated
circuits. Electronics, 38(8), April
1965.

 Accepted by all partners:
 Semiconductor manufacturers
 Hardware integrators
 Software companies
 Us, the consumers From Wikipedia

Sverre Jarp

Computer Architecture and Performance Tuning

10

Moore’s “law” (cont’d)
 The consequences: An incredible

level of integration
 CPUs: Many-core, Hardware vectors,

Hardware threading
 GPUs: Enormous number of floating-

point units

 Today, we commonly acquire chips
with more than 1’000’000’000 (109)
transistors!
 Apple A8X (just announced) has 3 !
 Server chips and high-end GPU

devices have even more

 Kepler GK110:

– 7.1 billion transistors

From Wikipedia

Sverre Jarp

Computer Architecture and Performance Tuning

11

Semiconductor evolution
 Today’s silicon processes:
 28, 22 nm

 Being introduced:
 14 nm (2013/14)

 In research:
 10 nm (2015/16)
 7 nm (2017/18)
 5 nm (2019/20)

– Source: Intel

 By the end of this decade we will have chips with
~100’000’000’000 (1011) transistors!
 And, this will continue to drive innovation

LHC data

We are here

S. Borkar et al. (Intel), "Platform 2015: Intel Platform Evolution for the Next Decade", 2005.

2 nm (2028?) TSMC

Sverre Jarp

Computer Architecture and Performance Tuning

12

Real consequence of Moore’s law
 We are being “snowed under” by “innovation”:

 More (and more complex) execution units

 Hundreds of new instructions

 Longer SIMD/SSE hardware vectors
 More and more cores
 Specialised accelerators
 Complex cache hierarchies

 In order to profit we need to “think parallel”

 Data parallelism
 Task parallelism

“Data Oriented Design”

Sverre Jarp

Computer Architecture and Performance Tuning

13

Frequency scaling

 The 7 “fat” years of frequency scaling:

 The Pentium Pro in 1996: 150 MHz
 The Pentium 4 in 2003: 3.8 GHz (~25x)

 Since then
 Core 2 systems:

 ~3 GHz
 Multi-core

 Recent CERN purchase:
 Intel Xeon E5-2650 v2

 “only” 2.60 GHz
From A. Nowak/openlab

Sverre Jarp

Computer Architecture and Performance Tuning

14

Complexity in Computing

Sverre Jarp

Computer Architecture and Performance Tuning

15

Archaic Computing Units
 As “stupid” as 50 years ago

 Based on the Von Neumann
architecture

 Primitive “machine language”

 Ferranti Mercury:
 Floating-point calculations

– Add: 3 cycles
– Multiply: 5 cycles

 Today:
 Programming for performance

is the same headache as in the
past

Sverre Jarp

Computer Architecture and Performance Tuning

16

And the language is ancient, too!
 Assembly/machine code!

__Z6matmulv (snippet):
 vmovlhps %xmm0, %xmm3, %xmm3
 vmovss +_b(%rip), %xmm4
 vinsertf128 $1, %xmm3, %ymm3, %ymm3
 vinsertps $0x10, 44+_b(%rip), %xmm7, %xmm0
 vmovss 48+_b(%rip), %xmm6
 vinsertps $0x10, 36+_b(%rip), %xmm1, %xmm2
 vmovlhps %xmm0, %xmm2, %xmm2
 vinsertps $0x10, 60+_b(%rip), %xmm4, %xmm0
 vxorps %xmm4, %xmm4, %xmm4
 vinsertf128 $1, %xmm2, %ymm2, %ymm2
 vinsertps $0x10, 52+_b(%rip), %xmm6, %xmm1
 vmovlhps %xmm0, %xmm1, %xmm1
 vmovaps _a(%rip), %ymm0
 vinsertf128 $1, %xmm1, %ymm1, %ymm1
 vpermilps $0, %ymm0, %ymm7
 vmulps %ymm5, %ymm7, %ymm7
 vaddps %ymm4, %ymm7, %ymm7
 vpermilps $85, %ymm0, %ymm6

Sverre Jarp

Computer Architecture and Performance Tuning

17

Even assembly is “too high level”

 Intel translates “CISC” x86 assembly instructions
 into “RISC” µ-operations

 which can vary with each CPU generation

 NVIDIA translates PTX (parallel thread execution, or
virtual assembly)
 into machine instructions

 which can vary with each GPU generation

 Even the brand-new ARM64 instruction set translates
into µ-operations

 So, what does it really mean (?) when the hardware tells
you:
 “XXN operations executed” CISC: Complex Instruction Set Computing

RISC: Reduced Instruction Set Computing

Sverre Jarp

Computer Architecture and Performance Tuning

18

In the days of the Pentium

 Life was really simple:

 Basically two dimensions
 The pipeline and its frequency
 The number of boxes

 The semiconductor industry

increased the frequency

 We acquired the right number of
(single-socket) boxes

Superscalar

Pipelining

Nodes

Sockets

Sverre Jarp

Computer Architecture and Performance Tuning

19

Performance: A complicated story!

 We start with a concrete, real-life problem to solve
 For instance, simulate the passage of elementary particles

through matter

 We write programs in high level languages
 C++, JAVA, Python, etc.

 A compiler (or an interpreter) transforms the high-level code to
machine-level code

 We link in external libraries

 A sophisticated processor with a complex architecture and
even more complex micro-architecture executes the code

 In most cases, we have little clue as to the efficiency of this
transformation process

Sverre Jarp

Computer Architecture and Performance Tuning

20

A Complicated Story (in 9 layers!)

Adapted from Y.Patt, U-Austin

 Computing problems are solved by
getting electrons to “dance”

Problem
Design, Algorithms, Data

Language, Source program

System architecture
Instruction set architecture

µ-architecture
Circuits

Electrons

Compilers, Libraries

Sverre Jarp

Computer Architecture and Performance Tuning

21

But, are we in control ?
 We want the process to complete in the shortest possible time
 Our compute job (a process) will require the execution of a given

number of (machine-level) instructions
 Dictated by the algorithms inside (and the compiler)

 This time corresponds to a given number of machine cycles

 Simple example:
 A program consists of 1010 instructions
 We measure an execution time of 6 seconds

on a processor running at 2.0 GHz
 We can now compute a key value:

 Cycles per Instruction (CPI): (6*2.0*109) / 1010 = 1.2

 This has to be seen as a “yardstick”:
 Cycles vary: Reference cycles, Actual cycles?
 Instructions vary: Vector/Scalar? Micro/Macro?
 Even worse: Useful/Superfluous instructions?

Data Instructions

Processing

Results Input

Sverre Jarp

Computer Architecture and Performance Tuning

22

Anyway, let’s start with the basics!

Sverre Jarp

Computer Architecture and Performance Tuning

23

Simple processor layout

 A simple processor with
four key components:
 Control Logic

 Instruction Counter
 Program Status Word

 Register File

 Functional Unit
 Data Transfer Unit

 Data bus
 Address bus

R1

R0

RNN

Registers

Data
transfer
unit

FU

Data

Address

Keeps the state of execution

IC

PSW

Control

Flags

Sverre Jarp

Computer Architecture and Performance Tuning

24

Simple server diagram

 Multiple components which
interact during the execution
of a program:
 Processors/cores

 w/private caches
– I-cache, D-cache

 Shared caches
 Instructions and Data

 Memory controllers
 Memory (non-uniform)
 I/O subsystem

 Network attachment
 Disk subsystem

Interconnect

I/O bus

Shared
cache

C2 C3
C4 C5

Mem-ctl

Shared
cache

C0 C1

C4 C5

Mem-ctl

Memory Memory

Socket 0 Socket 1

C0T0
C0T1 C0 C1
C2 C3

Intel Nahalem

Sverre Jarp

Computer Architecture and Performance Tuning

25

Memory Subsystem

Sverre Jarp

Computer Architecture and Performance Tuning

26

Optimal Memory Programming
 What needs to be understood:
 The memory hierarchy

 Main memory
– Physical layout
– Latency
– Bandwidth

 Caches
– Physical layout, Line sizes
– Levels/Sharing
– Latency

 Programmer/Compiler
– Data Layout
– Data Locality

 Execution environment:
– Affinity

Sverre Jarp

Computer Architecture and Performance Tuning

27

Cache/Memory Hierarchy

 From CPU to
main memory
on a recent
Haswell
processor
 With

multicore,
memory
bandwidth
is shared
between
cores in
the same
processor
(socket)

c = cycle

Processor Core
(Registers)

Local/remote memory
(large, but typically non-uniform)

R: 64B/1c
11c latency

~24 B/c for all cores
> 200c latency

(R:64B + W:32B)/1c
4c latency

Shared L3
(~20 MB)

32B/1c for all cores
> 21c latency

L2
(256 KB)

L1D
(32 KB)

L1I
(32 KB)

Sverre Jarp

Computer Architecture and Performance Tuning

28

Cache lines (1)

 When a data element or an instruction is requested by the
processor, a cache line is ALWAYS moved (as the
minimum quantity), usually to Level-1

 A cache line is a contiguous section of memory, typically
64B in size (8 * double) and 64B aligned
 A 32KB Level-1 cache can hold 512 lines

 When cache lines have to be moved come from memory
 Latency is long (>200 cycles)

 It is even longer if the memory is remote

 Memory controller stays busy (~8 cycles)

requested

Sverre Jarp

Computer Architecture and Performance Tuning

29

Cache lines (2)
 Good utilisation is vital
 When only one element (4B or 8B) element is used inside

the cache line:
 A lot of bandwidth is wasted!

 Multidimensional C arrays should be accessed with the last
index changing fastest:

 Pointer chasing (in linked lists) can easily lead to “cache
thrashing” (too much memory traffic)

requested

for (i = 0; i < rows; ++i)
 for (j = 0; j < columns; ++j)
 mymatrix [i] [j] += increment;

Sverre Jarp

Computer Architecture and Performance Tuning

30

Cache lines (3)
 Prefetching:
 Fetch a cache line before it is requested

 Hiding latency

 Normally done by the hardware
 Especially if processor executes Out-of-order

 Also done by software instructions
 Especially when In-order (IA-64, Xeon Phi, etc.)

 Locality is vital:
 Spatial locality – Use all elements in the line
 Temporal locality – Complete the execution whilst the

elements are certain to be in the cache

Programming the memory hierarchy is an art in itself.

Sverre Jarp

Computer Architecture and Performance Tuning

31

Cache/Memory Trends

 The trend is to
deepen and
diversify the
cache/memory
hierarchy:
 Additional

levels of
cache

 Multiple kinds
of large
memories

 Non-volatile
memories
(great for
databases,
etc.)

Processor Core

Local/remote
memory (1)

Larger, slower

Shared L3

L2

L1D L1I

Shared L4

Local/remote
memory (2)

Faster, smaller

Non-volatile
memory (3)

Sverre Jarp

Computer Architecture and Performance Tuning

32

Latency Measurements (example)
 Memory Latency on Sandy Bridge-EP 2690 (dual socket)
 90 ns (local) versus 150 ns (remote)

Sverre Jarp

Computer Architecture and Performance Tuning

33

Current GPU Memory Layout

 CPU and GPU memories
are separate

 What everybody wants is a
single unified view of
memory

 One vision is
“Heterogeneous Systems
Architecture”(HSA)
pushed by AMD, ARM, and
others

 Example:
 AMD Kaveri APU

CPU GPU

System
Memory

GPU
Memory Unified Memory

Sverre Jarp

Computer Architecture and Performance Tuning

34

CPU
Performance
Dimensions

Sverre Jarp

Computer Architecture and Performance Tuning

35

As we have already discussed

 Life in the days of the
Pentium was really simple:

 Basically two dimensions

 The pipeline and its frequency
 The number of boxes

 The semiconductor industry

increased the frequency

 We acquired the right number of
(single-socket) boxes

Superscalar

Pipelining

Nodes

Sockets

Sverre Jarp

Computer Architecture and Performance Tuning

36

Now: Seven dimensions of performance

 First three dimensions:
 Hardware vectors/SIMD
 Superscalar
 Pipelining

 Next dimension is a “pseudo”
dimension:
 Hardware multithreading

 Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes

SIMD = Single Instruction Multiple Data

Vector width

Superscalar

Pipelining

Multithreading

Nodes
Multicore

Sockets

Sverre Jarp

Computer Architecture and Performance Tuning

37

Seven multiplicative dimensions:
 First three dimensions:
 Hardware vectors/SIMD
 Superscalar
 Pipelining

 Next dimension is a “pseudo”
dimension:
 Hardware multithreading

 Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes

Data and Instruction
Level parallelism

(Vectors/Matrices)

Task parallelism
(Events/Tracks)

Task/process
parallelism

2x, 4x, 8x, 16x

1x – 10x

10x – 100x

Sverre Jarp

Computer Architecture and Performance Tuning

38

Simple, but illustrative example
 Xeon Phi has ~60 cores, 4-way hardware threading,

hardware vectors of size 8 (Double Precision):

 Program A: Threaded 60 x 4, vectorised 8x:
 Performance potential: 1920

 Program B: Not threaded: 1x, not vectorised: 1x
 Performance potential: 1

M
em

or
y

C
on

tro
lle

r

Sy
st

em

In
te

rfa
ce

D

is
pl

ay

In
te

rfa
ce

M
em

or
y

C
on

tro
lle

r

Te
xt

ur
e

Lo
gi

c
Fi

xe
d

Fu
nc

tio
n In Order, 4

threads, SIMD-
16 I$ D

$

In Order, 4
threads, SIMD-

16 I$ D
$

. . .

. . .

L2 Cache

Sverre Jarp

Computer Architecture and Performance Tuning

39

GPUs: 7 dimensions of performance

 First four dimensions:
 Superscalar (dual issue)
 Pipelining
 Threads (32)
 Instruction Schedulers (4)

 Then, there are:
 Warps

 Last dimensions:
 Multiple SMs
 Multiple accelerators

Threads

Superscalar

Pipelining

Warps

Instruction Schedulers

Cards

SM

Sverre Jarp

Computer Architecture and Performance Tuning

40

Streaming Multiprocessor Architecture

Source: NVIDIA white paper

Sverre Jarp

Computer Architecture and Performance Tuning

41

Part 1: Opportunities for scaling
performance inside a core
 Here are the first three dimensions

 The resources:
 HW vectors: Fill the computational

width
 Superscalar: Fill the ports
 Pipelining: Fill the stages

 Best approach: Data Oriented
Design

 In HEP today, we probably extract
(much?) less than 10% of peak
execution capability!

Superscalar

Pipelining

HW vector width

Sverre Jarp

Computer Architecture and Performance Tuning

42

First topic: Vector registers
 Until recently, Steaming SIMD Extensions (SSE):

 16 “XMM” registers with 128 bits each (in 64-bit mode)

 New (as of 2011): Advanced Vector eXtensions (AVX):
 16 “YMM” registers with 256 bits each

E3 E2 E1 E0

E7 E6 E5 E4 E3 E2 E1 E0

Bit 0 Bit 255

E15 E14 E13 E12 E11 E10 E9 E8 E7 E6 E5 E4 E3 E2 E1 E0 16 Words

8 Dwords/Single

4 Qwords/Double

256 bits (AVX 1/AVX 2)

128 bits (SSE)

32 Byte elements 32 Bytes

Future: 512 bits (AVX512)

Sverre Jarp

Computer Architecture and Performance Tuning

43

Four floating-point data flavours
 Single precision
 Scalar single (SS)
 Packed single (PS)

 Double precision
 Scalar Double (SD)
 Packed Double (PD)

 Note:
 Scalar mode (with AVX) means using only:

 1/8 of the width (single precision)
 1/4 of the width (double precision)

 Even longer vectors are coming! have been announced !
 Definitely 512 bits (already used in the Xeon Phi co-processors)

E3 E2 E1 E0

- - - E0

E7 E6 E5 E4 E3 E2 E1 E0

- - - - - - - E0

Sverre Jarp

Computer Architecture and Performance Tuning

44

Scalable programming
inside a core
 Easiest way to fill the

execution capabilities is to
program software vectors

 But, which ones?
 Standard C arrays

 Intel added C Extended Array
Notation (CEAN) in version
12.0 (icc)
 As well as CILK+

 STL vectors
 TBB vectors (thread-safe)
 Intrinsics
 etc.

float u[100], v[100];

for (int i = 0; i<50; ++i) u[i] = 0.0;

for (i = 0; i<50; ++i) u[i] = sin(v[i]);

for (int i = 0; i<50; ++i) u[i] = v[i*2+1];

CEAN example:

A[i:n] = 2.5 * B[j:n];

Courtesy: INTEL

Sverre Jarp

Computer Architecture and Performance Tuning

45

Inside-the-core: HEP and vectors
 Too little common ground!
 Practically all attempts in the past failed.

 w/CRAY, CYBER 205, IBM 3090-Vector Facility, etc.
 Interesting reading: Dekeyser J 1987 “Vectorization of the GEANT3

geometrical routines for a Cyber 205” Nuclear Instruments and Methods
in Physics Research Section A, Volume 264, Issue 2-3, p. 291-296

 From time to time, we see a good vector example
 For example: Track Fitting code from ALICE trigger

  Explained in the examples

 Interesting development from ALICE (Matthias Kretz):
 Vc (Vector Classes) now part of ROOT v.6

 http://compeng.uni-frankfurt.de/index.php?id=vc

 Hopefully, there will be renewed efforts to use vectors
efficiently (Geant-V and others)

Sverre Jarp

Computer Architecture and Performance Tuning

46

Second topic: Superscalar architecture

 In this simplified design,
instructions are decoded
in sequence, but
dispatched to two
Functional Units.
 The decoder and

dispatcher must be
able to handle two
instructions per cycle

 The FUs can have
identical or different
execution capabilities

Decode

Dispatch

FU 0 FU 1

Results

Instruction stream

Port 0 Port 1

Sverre Jarp

Computer Architecture and Performance Tuning

47

Enhanced superscalar architecture

 A more realistic
architecture will have
multiple FUs hanging
off the same port
 An instruction can be

dispatched to either
matching execution
unit on a given port,
but not to both units
on the same port in a
given cycle

Dispatch

FU 0
(i-add)

FU 1
(i-add)

Results

Instruction stream

Port 0 Port 1

FU 2
(i-shift)

FU 3
(i-mul)

Sverre Jarp

Computer Architecture and Performance Tuning

48

Latest superscalar architecture

 Intel’s Haswell micro-architecture can
execute four instructions in parallel
(across eight ports) in each cycle.

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Integer
Alu

Vec Int
ALU

x87 FP
Multiply

Vec FMA
Vec FMul

Vector
Logical

Vector
Shift

Integer
Alu

Integer
Alu

Vec Int
ALU

Vector
Logical

Vector
Shuffle

Load
Data

Store
Data

Branch
Unit

DIV
SQRT

x87 FP
Add

Vec FMA
Vec FMul
Vec FAdd

Integer
Shift

Integer
MUL

Integer
LEA

PSAD

String
Compare

Integer
LEA

Port 6 Port 7

Store
 Address

Load
Data

Store
 Address

Integer
Alu

Store
Address

Integer
Shift

Branch
Unit

Vector
Logical

Sverre Jarp

Computer Architecture and Performance Tuning

49

Matrix multiply example

 For a given algorithm, we can understand exactly which
functional execution units are needed
 For instance, in the innermost loop of matrix multiplication

for (int i = 0; i < N; ++i) {
 for (int j = 0; j < N; ++j) {
 for (int k = 0; k < N; ++k) {
 c[i * N + j] += a[i * N + k] * b[k * N + j];
 }
 }
}

Until Haswell (2012): Store Add Load Mult Load

As of Haswell (2013): Store Load FMA Load

Sverre Jarp

Computer Architecture and Performance Tuning

50

Apple A7/A8 (based on ARM A57)

 Nine ports

 Six instructions (on average)
decoded/executed/retired

 128-bit vectors

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Integer
Alu

Integer
Alu

Integer
Alu

Branch
Unit

FDIV
FSQRT

Vec FMA
Vec FMul
Vec FAdd

Integer
Shift

Integer
MUL

Port 6 Port 7

Load
Store

Integer
Alu

Integer
Shift

Port 8

Integer
DIV

Branch
Unit

Load
Store

Vec FMA
Vec FMul
Vec FAdd

And, this is for (no more than) a phone?
Based on an article on
“anandtech.com” and
discussions with ARM

Sverre Jarp

Computer Architecture and Performance Tuning

51

Third topic: Instruction pipelining

 Instructions are broken up into stages.
 With a one-cycle execution latency (simplified):

 With a three-cycle execution latency:

I-fetch I-decode Execute Write-back
I-fetch I-decode Execute Write-back

I-fetch I-decode Execute Write-back

I-fetch I-decode Exec-1 Write-back Exec-2 Exec-3
I-fetch I-decode Exec-1 Write-back Exec-2 Exec-3

Sverre Jarp

Computer Architecture and Performance Tuning

52

Real-life latencies
 Most integer/logic instructions have a one-cycle execution

latency:
 For example (on an Intel Xeon processor)::

 ADD, AND, SHL (shift left), ROR (rotate right)

 Amongst the exceptions:
 IMUL (integer multiply): 3
 IDIV (integer divide): 13 – 23

 Floating-point latencies are typically multi-cycle
 FADD (3), FMUL (5)

 Same for both x87 and SIMD double-precision variants

 Exception: FABS (absolute value): 1
 Many-cycle: FDIV (20), FSQRT (27)
 Other math functions: even more Latencies in the Core micro-architecture

(Intel Manual No. 248966-026 or later).
AMD processor latencies are similar.

As of Haswell:
FMA (5 cycles)

Sverre Jarp

Computer Architecture and Performance Tuning

53

Latencies and serial code (1)
 In serial programs, we

typically pay the penalty of a
multi-cycle latency during
execution:
 In this example:

 Statement 2 cannot be
started before statement 1
has finished
 Statement 3 cannot be

started before statement 2
has finished

double a, b, c, d, e, f;

b = 2.0; c = 3.0; e = 4.0;

a = b * c; // Statement 1

d = a + e; // Statement 2

f = fabs(d); // Statement 3

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - - W-B EX-1 EX-2 EX-3

I-F I-D - - - - W-B - - EX-1

Sverre Jarp

Computer Architecture and Performance Tuning

54

Latencies and serial code (2)

 Observations:
 Even if the processor can fetch and decode a new instruction

every cycle, it must wait for the previous result to be made
available
 Fortunately, the result takes a ‘bypass’, so that the write-back stage

does not cause even further delays

 The result: CPI is equal to 3
 9 execution cycles are needed for 3 instructions!

 A good way to hide latency is to [get the compiler to] unroll
(vector) loops !

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - - W-B EX-1 EX-2 EX-3

I-F I-D - - - - W-B - - EX-1

Sverre Jarp

Computer Architecture and Performance Tuning

55

Mini-example of real-life scalar, serial code
 Suffers long latencies:

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbe

 if (abs(point[0] - origin[0]) > xhalfsz) return FALSE;

movsd 16(%rsi), %xmm0
subsd 48(%rdi), %xmm0 // load & subtract
andpd _2il0floatpacket.1(%rip), %xmm0 // and with a mask
comisd 24(%rdi), %xmm0 // load and compare
jbe ..B5.3 # Prob 43% // jump if FALSE

High level C++ code 

Machine instructions 

Same
instructions
laid out
according to
latencies on
the Nehalem
processor 

NB: Out-of-
order
scheduling
not taken
into account.

Sverre Jarp

Computer Architecture and Performance Tuning

56

Out-of-order (OOO) scheduling

 Most modern processors use OOO scheduling
 This means that they will speculatively execute instructions

ahead of time (Xeon: inside a “window” of ~150 instructions)
 In certain cases the results of such executed instructions must

be discarded

 At the end, there is a difference between “executed
instructions” and “retired instructions”
 One typical reason for this is mispredicted branches

 Potential problem with OOO:
 A lot of extra energy is needed!

 Interestingly: ARM has two designs:
 A53 (low power, in-order), A57 (high power, OOO)

Sverre Jarp

Computer Architecture and Performance Tuning

57

Summary of Last Two Dimensions

 Commonly referred to as:
 Instruction level parallelism (ILP)

 Very dependent on algorithms and/or data structures

 Issues are equally valid for vector and scalar computing

 Multiplies with what we get from all the other dimensions
 Threading
 Vectorisation

 But, difficult to understand or manipulate
 Both micro-architecture and compilers get in the way

Sverre Jarp

Computer Architecture and Performance Tuning

58

Important performance measurements
(that can tell you if things go wrong)

 Related to what we have
discussed:
 The total cycle count (C)
 The total instruction count (I)
 Derived value: CPI

 Resource Stall count: Cycles

when no execution occurred

 Total number of executed
branch instructions

 Total number of mispredicted
branches

 Plus:
 The total number (and the

type) of computational
SSE/AVX instructions

 The total number of
SSE/AVX instructions

 Total number of cache
accesses

 Total number of (last-level)
cache misses

Sverre Jarp

Computer Architecture and Performance Tuning

59

Part 2: Parallel execution across
hw-threads and cores
 First a “pseudo” dimension:
 Hardware multithreading

 Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes

 Multiple nodes will not be
discussed here
 Our focus is scalability inside

a node Compute nodes

Processor cores

Sockets

Multithreading

Sverre Jarp

Computer Architecture and Performance Tuning

60

Definition of a hardware core/thread

 Core
 A complete ensemble

of execution logic, and
cache storage as well
as register files plus
instruction counter (IC)
for executing a
software process or
thread

 Hardware thread
 Addition of a set of

register files plus IC

Execution
logic

State: Registers, IC

Caches,
etc.

State: Registers, IC

The sharing of the execution logic can
be coarse-grained or fine-grained.

State: R
egisters, IC

 St
at

e:
 R

eg
is

te
rs

, I
C

Sverre Jarp

Computer Architecture and Performance Tuning

61

Definition of a software
process and thread
 Process (OS process):
 An instance of a computer program that is being executed

(sequentially). It typically runs as a program with its
private set of operating system resources, i.e. in its own
“address space” with all the program code and data, its
own file descriptors with the operating system
permissions, its own heap and its own stack.

 Thread:
 A process may have multiple threads of execution. These

threads run in the same address space, share the same
program code, the operating system resources as the
process they belong to. Each thread gets its own stack.

Adapted from Wikipedia

Sverre Jarp

Computer Architecture and Performance Tuning

62

Seven multiplicative dimensions:
 First three dimensions:
 Hardware vectors/SIMD
 Superscalar
 Pipelining

 Next dimension is a “pseudo”
dimension:
 Hardware multithreading

 Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes

Task parallelism
(Events/Tracks)

Task/process
parallelism

Data and Instruction
Level parallelism

(Vectors/Matrices)

Sverre Jarp

Computer Architecture and Performance Tuning

63

The move to many-core systems
 Examples of “CPU slots”: Sockets * Cores * HW-threads

 Basically what you observe in “cat /proc/cpuinfo”

 Conservative:
 Dual-socket AMD six-core (Istanbul): 2 * 6 * 1 = 12
 Dual-socket Intel six-core (Westmere-EP): 2 * 6 * 2 = 24

 More aggressive:
 Quad-socket AMD Interlagos (16-core) 4 * 16 * 1 = 64
 Quad-socket Westmere-EX “octo-core”: 4 * 10 * 2 = 80

 Already now: Hundreds (or thousands) of CPU slots !
 Octo-socket Oracle/Sun Niagara (T5) processors

w/16 cores and 8 threads (each): 8 * 16 * 8 = 1024

 So, if you write new software, think: Thousands !!

Sverre Jarp

Computer Architecture and Performance Tuning

64

HEP programming paradigm
 Event-level parallelism has been used for decades

 And, we should not lose this advantage:
 Large jobs can be split into N efficient “chunks”, each

responsible for processing M events
 Has been our “forward scalability”

 Disadvantage with current approach:
 Memory must be made available to each process

 A dual-socket server with eight-core processors needs 32 – 48 GB (or
more)

 The double (64 – 96 GB), if hardware multithreading is enabled!

 Although large memories are now coming, we must not let
memory limitations decide our ability to compute efficiently!

Sverre Jarp

Computer Architecture and Performance Tuning

65

Let’s briefly introduce parallelism

Sverre Jarp

Computer Architecture and Performance Tuning

66

Parallelization support (C++ and others)
 Large selection of tools (inside the compiler or as

additions):
 Native: pthreads/Windows threads
 New C++ standard: std::thread
 OpenMP
 Intel Threading Building Blocks (TBB; also open source)
 Intel CILK+
 OpenACC
 Thread wrapper classes
 MPI (from multiple providers), etc.
 CUDA (on GPUs from Nvidia)
 OpenCL

Sverre Jarp

Computer Architecture and Performance Tuning

67

Designing Threaded Programs
 Partition

 Divide problem into
tasks

 Communicate
 Determine amount

and pattern of
communication

 Agglomerate
 Combine tasks

 Map
 Assign

agglomerated tasks
to created threads

The
Problem

Initial tasks

Communication

Combined Tasks

Final Program

Sverre Jarp

Computer Architecture and Performance Tuning

68

Intel Xeon Phi: A “co-processor”
 Intel Many Integrated Cores (MIC):
 Announced at ISC10 (end-May 2010)
 Based on the x86 architecture, 22nm

 In-Order

 Many-core (up to 62 cores) + 4-way
multithreaded + 512-bit vector unit

 Limited memory: 8 – 16 Gigabytes



In Order, 4
threads, SIMD-16

M
em

or
y

C
on

tro
lle

r

S
ys

te
m

In

te
rfa

ce

D
is

pl
ay

In

te
rfa

ce

M
em

or
y

C
on

tro
lle

r

Te
xt

ur
e

Lo
gi

c
Fi

xe
d

Fu
nc

tio
n In Order, 4

threads, SIMD-16

I$ D$

In Order, 4
threads, SIMD-16

I$ D$

. . .

. . .

L2 Cache

In Order, 4
threads, SIMD-16

I$ D$

In Order, 4
threads, SIMD-16

I$ D$

48’000 such
accelerators are
used in the
world’s fastest
supercomputer
(Tianhe-2 Xeon-
cluster in China)

“Knights Corner”

Sverre Jarp

Computer Architecture and Performance Tuning

69

Next generation: “Knights Landing”
 Being prepared for (late?) 2015 using 14 nm

technology. 3 Tflops peak.

 Both as PCI-based coprocessor and bootable single-
socket system

 New ATOM based (out-of-order) core [72 in total]

 Memory: A combination of eDRAM (fast, small) and
DDR4 (slow, large)

 Mesh fabric interconnect
 Rather than ring bus

 Converged instruction set
 AVX-512 [aka AVX3.1]

Sverre Jarp

Computer Architecture and Performance Tuning

70

NVIDIA roadmap
 A promise of continued growth:

Adapted from Nvidia

Sverre Jarp

Computer Architecture and Performance Tuning

71

GPU Accelerators : Nvidia Kepler

 Made available in
4Q2012
 GK110 GPU
 3x DP performance:

 1 Teraflops

 Innovative design:
 SMX (streaming

multiprocessors)
 Dynamic parallelism

for spawning new
threads
 Hyper-Q enables

multiple CPU cores to
utilise CUDA cores

Adapted from Nvidia

18’688 such accelerators are used
in the world’s second-fastest
supercomputer (Titan Cray XK7)

Sverre Jarp

Computer Architecture and Performance Tuning

72

Some
Recommendations
(based on observations in openlab)

Sverre Jarp

Computer Architecture and Performance Tuning

73

A proposal for “agile” software:
1) Seek out parallelism at all levels

a. Events, tracks, vertices, etc.
b. Perform “chunk” processing (removing event separation)

2) Build forward scalability

3) Create compute-intensive kernels

4) Optimise the Memory Hierarchy

5) Create Performance-oriented Code

6) Combine broad programming talents

7) Use best-of-breed tools

Sverre Jarp

Computer Architecture and Performance Tuning

74

Concurrency in High Energy Physics
 We are “blessed” with lots of it:
 Entire events
 Particles, hits, tracks and vertices
 Physics processes
 I/O streams (ROOT trees, branches)
 Buffer handling (also data compaction, etc.)
 Fitting variables
 Partial sums, partial histograms
 and many others …..

 Usable for both data and task parallelism!

Sverre Jarp

Computer Architecture and Performance Tuning

75

The holy grail: Forward scalability

 Not only should a program be written in such a way that it
extracts maximum performance from today’s hardware

 On future processors, performance should scale
automatically
 In the worst case, one would have to recompile or relink

 Additional CPU/GPU hardware, be it cores/threads or
vectors, would automatically be put to good use

 Scaling would be as expected:
 If the number of cores (or the vector size) doubled:

 Scaling would be close to 2x, but certainly not just a few percent

 We cannot afford to “rewrite” our software for every
hardware change!

Sverre Jarp

Computer Architecture and Performance Tuning

76

Kernel-oriented Programming
 Take the whole program and its execution behaviour

into account
 Get yourself a global overview as soon as possible

 Via early prototyping with realistic algorithms/data
 Influence early the design and definitely the implementation

 Foster clear split:
 Prepare to compute
 Do the heavy computation

 In kernels, where you go after all the available parallelism

 Post-processing

 Often, a single kernel is not sufficient
 A sequence of kernels may be needed

Heavy compute Pre Post

The 90 – 10 rule

Sverre Jarp

Computer Architecture and Performance Tuning

77

CPU / GPU co-existence

 What I would like to see happen to a (possibly dusty,
sequential) x86 application:

 A strong porting effort to move it to the GPU
 A good “kernel-oriented design” that aims for a triple-digit

speed-up

 Then, a solid port back to the CPU servers
 Exploiting vectors and cores

 Outcome:
 Applications that can profit from new breakthroughs on

either side of the fence

Sverre Jarp

Computer Architecture and Performance Tuning

78

Data layout: SoA versus AoS

 In general, both GPUs and
CPUs prefer the former!

 Structure of Arrays (SoA):

 Array of Structures (AoS):

 Also possible: AoSoA

Z1 Z2 Z3 Z4 Z5 Z6

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6

SP1
X,Y, Z

SP2
X,Y, Z

SP3
X,Y, Z

SP4
X,Y, Z

SP5
X,Y, Z

SP6
X,Y, Z

Spacepoints

Sverre Jarp

Computer Architecture and Performance Tuning

79

Performance-oriented code

 C++ for performance
Use light-weight C++ constructs
Minimize virtual functions
 Inline whenever important
Optimize the use of math functions

– SQRT, DIV
– LOG, EXP, POW
– SIN, COS, ATAN2

Learn to inspect the compiler-generated assembly,
especially of kernels

Use vector
libraries
whenever
possible,
but master
the
accuracy!

Sverre Jarp

Computer Architecture and Performance Tuning

80

Performance tools

 Surround yourself with good tools:
 Compilers (not just one!)
 Libraries
 Profilers
 Debuggers
 Thread

checkers
 Thread

profilers
Image: software.intel.com

Sverre Jarp

Computer Architecture and Performance Tuning

81

Broad Programming Talent
 In order to cover as many layers as possible

Problem
Algorithms, abstraction

Source program

System architecture
Instruction set
µ-architecture

Circuits
Electrons

Compiled code, libraries

Solution
specialists

Technology
specialists

Sverre Jarp

Computer Architecture and Performance Tuning

82

Examples of good
scalability

Sverre Jarp

Computer Architecture and Performance Tuning

83

Scalability example:
CBM/ALICE track-fitting

 Extracted from the High
Level Trigger (HLT) Code
 Originally ported to IBM’s

Cell processor

 Tracing particles in a
magnetic field
 Embarrassingly parallel

code

 Re-optimization on x86-64
systems
 Using vectors instead of

scalars

I.Kisel/GSI: “Fast SIMDized Kalman filter based track fit”
http://www-linux.gsi.de/~ikisel/17_CPC_178_2008.pdf

“Compressed Baryonic Matter”

Sverre Jarp

Computer Architecture and Performance Tuning

84

CBM/ALICE track-fitting

 Details of the re-optimization on x86-64:
 Part 1: use SSE vectors instead of scalars

 Operator overloading allows seamless change of data types
 Intrinsics (from Intel/GNU header file): Map directly to

instructions:
– __mm_add_ps corresponds directly to ADDPS, the instruction

that operates on four packed, single-precision FP numbers
● 128 bits in total

 Classes
– P4_F32vec4 – packed single class with overloaded operators

● F32vec4 operator +(const F32vec4 &a, const F32vec4 &b) {
return _mm_add_ps(a,b); }

 Result: 4x speed increase from x87 scalar to packed SSE

(single precision)

Sverre Jarp

Computer Architecture and Performance Tuning

85

Examples of parallelism:
CBM track-fitting
 Re-optimization on x86-64 systems
 Step 1: Data parallelism using SIMD instructions
 Step 2: use TBB (or OpenMP) to scale across cores

From H.Bjerke/CERN openlab, I.Kisel/GSI

V T

Sverre Jarp

Computer Architecture and Performance Tuning

86

Analysis of Track-fitting speed-up

 From paper of I.Kisel (2008):

Stage Description Time/track Speed-up

Initial (unoptimised) scalar
version

12 ms -

1 Approximation of magnetic
field

240 µs 50

2 Optimisation of the algorithm 7.2 µs 33.3

3 Vectorisation 1.6 µs 4.5

4 Porting to IBM Cell/SPE 1.1 µs 1.45

5 Parallelisation on 16 SPEs 0.1 µs 10

Final SIMD parallel version 0.1 µs 120’000

72x

1667x

Don’t underestimate software optimisation!

Sverre Jarp

Computer Architecture and Performance Tuning

87

Track-fitting: Port to NVIDIA GPU
 David Rohr/ALICE:
 Integration: GPU and CPU tracker share a common set of

source files
 Performance Comparison: GTX580 GPU is almost three

times faster than a six-core Westmere processor

GPU Workshop in DESY (April 2013):

Sverre Jarp

Computer Architecture and Performance Tuning

88

Another scalability example:
Black-Scholes Calculations

 Example provided by Intel
 Starting with dual-socket server

with E5-2670 processor (2.6 GHz,
8 cores)

 Xeon Phi coprocessor with 61
cores at 1.05 GHz

 Five rounds of performance
improvements:
 Moving from gcc to icc:
 Scalar, serial optimisation
 Vectorisation
 Parallelisation
 Porting to Xeon Phi

Shuo Li/Intel: “Achieving Superior Performance
on Black-Scholes Valuation Computing using
Intel Xeon Phi Coprocessors”

Sverre Jarp

Computer Architecture and Performance Tuning

89

Black-Scholes Calculations (cont’d)

 Scaling obtained (compared to previous round):

Improvement step: Speed-up Expected
gcc  icc 4.14 ?
Scalar, serial optimisation 1.41 ?
Vectorisation 7.1x 8x
Parallelisation 19.2x 20x (16 * 1.25)
Moving to Xeon Phi 3.32x 3.07x

Scaling ratio Xeon  Xeon Phi:

Vector size: 2x
Core count increase: 3.81x
Frequency reduction: 2.48x
Result: 3.07x

Sverre Jarp

Computer Architecture and Performance Tuning

90

Examples of parallelism: GEANT4
 Initially:
 Experimental multithreaded version introduced by PhD

student Xin Dong/North-Eastern University in 2011
 Good collaboration with G4 team and openlab
 Lots of code changes (at least 10%)

– Preprocessor used for automating the work
– Convincing demos with FullCMS example

 Now:
 Official version as of G4 10.0 (Dec. 2013)

– G4MTRunManager introduced
– Thread safety via Thread Local Storage
– Good scalability
– Reduced memory consumption:

● Only 30-50 MB/thread
– Working out of the box:

● x86_64(Xeon and Atom), MIC, ARM32, IBM/Bluegene/Q

T

Further improvements
expected in release 10.1

Sverre Jarp

Computer Architecture and Performance Tuning

91

Summing Up

Sverre Jarp

Computer Architecture and Performance Tuning

92

So, what does it all mean?
 Here is what we tried to say in these

lectures:

 You must make sure your data and
instructions come from caches (not main
memory)

 You must parallelise across all “CPU slots”
 Hardware threads, Cores, Sockets

 You must get your code to use vectors

 You must understand if your ILP is seriously
limited by serial code, complex math
functions, or other constructs

2x, 4x, 8x, 16x

1x – 10x

10x – 100x

Sverre Jarp

Computer Architecture and Performance Tuning

93

If you think that all of this is “crazy”

 Please read:

 “Optimizing matrix multiplication for a short-vector
SIMD architecture – CELL processor”
 J.Kurzak, W.Alvaro, J.Dongarra
 Parallel Computing 35 (2009) 138–150

In this paper, single-precision matrix multiplication kernels
are presented implementing the C = C – A x BT operation and
the C = C – A x B operation for matrices of size 64x64
elements. For the latter case, the performance of 25.55
Gflop/s is reported, or 99.80% of the peak, using as little as
5.9 kB of storage for code and auxiliary data structures.

Sverre Jarp

Computer Architecture and Performance Tuning

94

Concluding remarks
 The aim of these lectures was to help understand:
 Changes in modern computer architecture
 Impact on our programming methodologies
 Keeping in mind that there is not always a straight

path to reach (all of) the available performance by
our programming community.

 Will you be ready for 1000 cores and long vectors?
 Are you thinking “parallel, parallel, parallel” ?

 It helps to have a good overview of the complexity
of the hardware and the seven hardware
dimensions in order to get close to the best
software design !

Sverre Jarp

Computer Architecture and Performance Tuning

95

Further reading:
 “Designing and Building Parallel Programs”, I. Foster, Addison-Wesley,

1995

 “Foundations of Multithreaded, Parallel and Distributed Programming”, G.R.
Andrews, Addison-Wesley, 1999

 “Computer Architecture: A Quantitative Approach”, J. Hennessy and D.
Patterson, 3rd ed., Morgan Kaufmann, 2002

 “Patterns for Parallel Programming”, T.G. Mattson, Addison Wesley, 2004

 “Principles of Concurrent and Distributed Programming”, M. Ben-Ari, 2nd
edition, Addison Wesley, 2006

 “The Software Vectorization Handbook”, A.J.C. Bik, Intel Press, 2006

 “The Software Optimization Cookbook”, R. Gerber, A.J.C. Bik, K.B. Smith
and X. Tian; Intel Press, 2nd edition, 2006

 “Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor
Parallelism”, J. Reinders, O’Reilly, 1st edition, 2007

 “Inside the Machine”, J. Stokes, Ars Technica Library, 2007

Sverre Jarp

Computer Architecture and Performance Tuning

96

Thank you!

	Slide Number 1
	Goal of these lectures
	Contents
	The Big Issues (from an architectural viewpoint)
	Where are we coming from?
	Where are we today ?
	Von Neumann architecture
	Von Neumann architecture (cont’d)
	Moore’s “law”
	Moore’s “law” (cont’d)
	Semiconductor evolution
	Real consequence of Moore’s law
	Frequency scaling
	Complexity in Computing
	Archaic Computing Units
	And the language is ancient, too!
	Even assembly is “too high level”
	In the days of the Pentium
	Performance: A complicated story!
	A Complicated Story (in 9 layers!)
	But, are we in control ?
	Anyway, let’s start with the basics!
	Simple processor layout
	Simple server diagram
	Memory Subsystem
	Optimal Memory Programming
	Cache/Memory Hierarchy
	Cache lines (1)
	Cache lines (2)
	Cache lines (3)
	Cache/Memory Trends
	Latency Measurements (example)
	Current GPU Memory Layout
	CPU Performance Dimensions
	As we have already discussed
	Now: Seven dimensions of performance
	Seven multiplicative dimensions:
	Simple, but illustrative example
	GPUs: 7 dimensions of performance
	Streaming Multiprocessor Architecture
	Part 1: Opportunities for scaling performance inside a core
	First topic: Vector registers
	Four floating-point data flavours
	Scalable programming inside a core
	Inside-the-core: HEP and vectors
	Second topic: Superscalar architecture
	Enhanced superscalar architecture
	Latest superscalar architecture
	Matrix multiply example
	Apple A7/A8 (based on ARM A57)
	Third topic: Instruction pipelining
	Real-life latencies
	Latencies and serial code (1)
	Latencies and serial code (2)
	Mini-example of real-life scalar, serial code
	Out-of-order (OOO) scheduling
	Summary of Last Two Dimensions
	Important performance measurements�(that can tell you if things go wrong)
	Part 2: Parallel execution across hw-threads and cores
	Definition of a hardware core/thread
	Definition of a software process and thread
	Seven multiplicative dimensions:
	The move to many-core systems
	HEP programming paradigm
	Let’s briefly introduce parallelism
	Parallelization support (C++ and others)
	Designing Threaded Programs
	Intel Xeon Phi: A “co-processor”
	Next generation: “Knights Landing”
	NVIDIA roadmap
	GPU Accelerators : Nvidia Kepler
	Some Recommendations�(based on observations in openlab)
	A proposal for “agile” software:
	Concurrency in High Energy Physics
	The holy grail: Forward scalability
	Kernel-oriented Programming
	CPU / GPU co-existence
	Data layout: SoA versus AoS
	Performance-oriented code
	Performance tools
	Broad Programming Talent
	Examples of good scalability
	Scalability example:�CBM/ALICE track-fitting
	CBM/ALICE track-fitting
	Examples of parallelism:�CBM track-fitting
	Analysis of Track-fitting speed-up
	Track-fitting: Port to NVIDIA GPU
	Another scalability example:�Black-Scholes Calculations
	Black-Scholes Calculations (cont’d)
	Examples of parallelism: GEANT4
	Summing Up
	So, what does it all mean?
	If you think that all of this is “crazy”
	Concluding remarks
	Further reading:
	Thank you!

