L
i3
’ 3L
i, ! - ~W
N =
3 |
A &
’ . "‘;; . cy
i °
. N

- . —

: . ' ._:.l
P - 3
"’J“ - - -er - f . - .
/ v {
i -’
N A : %
}] Y
) = 1 3
14 AR | 49 4 i)
“ ¥
N . . »

;) A 1}

Ffficient Memory Peter Elmer - Princeton University

M _t Lectures originally prepared b
aﬂagemeﬂ Lassi Tuura (FNAL, now Google

http://cern.ch/elmer/esc14
https://github.com/pelmer/esc14
git://github.com/pelmer/esc14.git

All the exercise material for these lectures

About These Lectures

These lectures will address memory use and management in large
scale scientific computing applications, with Linux/C++ focus.

I will introduce general concepts mainly through specific concrete
examples common to everyday developer work. I will focus on
common aspects on commodity hardware, 1n areas I am personally

experienced 1n — this 1s not a tour of absolutely everything there 1s to
know about memory management.

Additional Reading

J. Hennessy, D. Patterson, H” 'URE

Computer Architecture: A Quantitative Approach,
5t edition (2011), ISBN 978-0-12-383872-8

U. Drepper,
What Every Programmer Should Know About
Memory,

http://people.redhat.com/drepper/cpumemory.pdf

D. Bovet, M. Cesati,
Understanding the Linux Kernel,
3rd Edition, O’Reilly 2005, ISBN 0-596-00565-2

http://techreport.com, reviews with technical detail

Memory Crisis

Living on the edge
of the performance
cliff

Why Memory Management Matters?

So, you’ve got a problem to solve. You’ve designed an algorithm to
solve 1t. Now all you need 1s it code 1t up and you are done, right?

Actually, you have just begun. Your algorithm will translate to real
machine code, which will run on very real physical systems, which
have very real practical limitations.

A complete design must account for the real world limitations. This
means ‘“‘the solution” will vary over time with technology evolution.

The Performance Gap

[Computer Architecture: A Quantitative Approach, 4 ed (lohn L. Hennessy, David A. Patterson)]

100,000

Processor

Performance

Memory

1 B 4 1 | 1 I

1980 1985 1990 1995 2000 2005 2010
Year

Memory performance evolution compared with processor performance

Why Memory Management Matters?

Different solutions to the same problem vary dramatically in real
life performance.

Algorithmic and data structure changes can easily result in several orders of
magnitude improvement and regression. Always research this option first.

In some cases, changes in memory use and management can also easily
produce orders of magnitude performance wins and losses — even without
major logical change to the underlying algorithms. Common critical factors
include memory churn, poor locality, and 1n multi-processing, memory
contention.

In other cases, simple, subtle changes can yield performance wins in the /-70%
range. When % of your computing capacity 1s counted in rows of racks and
days of processing, this still matters a great deal in practice! The small stuff still
directly affects how much science you get out of your funding.

Memory Management at 10’0001t
Physical hardware

CPU pipelines and out-of-order execution; memory management unit [MMU]
and physical memory banks and access properties; interconnect — front-side bus
[FSB] vs. direct path [AMD: HT, Intel: QPI]; cache coherence and atomic
operations; memory access non-uniformity [NUMA].

Operating system kernel

Per-process linear virtual address space; virtual memory translation from

logical pages to physical page frames; page allocation and swapping; file and
other caching; shared memory.

Run time

Code, data, heap, thread stacks; acquiring memory [sbrk/mmap]; sharing

memory [shmget/mmap/fork]; c/ct++ libraries and containers; application
memory management.

Key Memory Management Factors

Many factors at different levels: physical hardware, operating
system, in-process run-time, language run-time, and application
level.

#1: Correctness matters.
— If your results are incorrect, buggy, or unreliable, none of the rest matters.

#2: Memory churn matters.

— Badly coded good algorithm = bad algorithm. If you spend all the time 1n the
memory allocator, your algorithms may not matter at all.

#3: Locality matters, courtesy of the memory wall.
— Cache locality — stay on the fast hardware, away from the memory wall.
— Virtual address locality — address translation capacity 1s limited.
— Kernel memory locality — share memory across processes.
— Physical memory locality — non-uniform memory access issues.

Key Memory Management Factors

Many factors at different levels: physical hardware, operating
system, in-process run-time, language run-time, and application
level.

e I
#1: Correctness matters.

— If your results are incorrect, buggy, or unreliable, none of the rest matters.
- J

#2: Memory churn matters.

— Badly coded good algorithm = bad algorithm. If you spend all the time 1n the
memory allocator, your algorithms may not matter at all.

#3: Locality matters, courtesy of the memory wall.
— Cache locality — stay on the fast hardware, away from the memory wall.
— Virtual address locality — address translation capacity 1s limited.
— Kernel memory locality — share memory across processes.
— Physical memory locality — non-uniform memory access issues.

Key Factor #1: Correctness

VALGRIND 1s one of the most valuable tools to verify correctness
of any memory related operations. It will save you hours of work.

It’s not a toy — 1t’s one of the most useful software developer tools I have ever
used. Always verify your regression test suite under valgrind; if nothing 1s
flagged there’s reasonable chance there are no silent memory access problems.

Any time you run into a problem, and certainly if you have a memory fault
such as a segmentation violation, run the program under valgrind.

It will also provide useful leak data. It’s very slow just for that however.

The same suite has other tremendously useful associated tools.

HELGRIND for finding multi-threaded data races, MASSIF for generating
run time heap snapshot profiles and CACHEGRIND for CPU simulation.

Key Factor #1: Correctness

IgProf profiling suite 1s complementary to the Valgrind family.

IgProf can profile memory allocations, and can report the full stack trace for
every allocated memory block. It’s particularly useful for detecting leaks,
generating run-time heap snapshots, and generally tracking memory use.

Recommended use: check correctness with Valgrind, then use IgProf to create
heap profiles, in particular to 1dentify leaks. IgProf has much less overhead than
Valgrind (50-100% vs 1000%), but assumes correctness.

Memory leaks come 1n broadly two flavours: unreachable but still
allocated, and accumulated reachable garbage.

Unreachable memory 1s created by forgetting to free data past last reference. In
C++ 1t 1s usually a sign of fairly poor object ownership design — see talloc for
1deas. Accumulated garbage happens when object lifetime extends long beyond
the time the object is needed. Fattens virtual memory use and slows apps down.

Combating Memory Leaks

#1: Design clear object ownership — 1t won’t just happen!

The most common reason for leaks i1s developers don’t know who owns the
object or how long 1t will be live. Most likely to happen at API boundaries.
Design clear ownership rules; see for example talloc library. [Causes knock-on
1ssues: developers copy objects when they don’t know who owns them.]

#2: Use RAII idiom where possible (Resource Acquisition Is
Initialisation)

The owner object will release resources when destructed. Numerous idioms. A)
Prefer memory pools when you can define en-masse clear ownership; B) Use
by-value containers — std::string, std::vector; C) Use reference counting
smart pointers — std::auto ptr, boost::intrusive ptr, boost::shared ptr; good for
internal use, be cautious of using them in APIs: prefer #1 over #2.

#3: Proactively verity correctness using leak detection tools

Exercise

Catching Memory

Errors

Key Memory Management Factors

Many factors at different levels: physical hardware, operating
system, in-process run-time, language run-time, and application
level.

#1: Correctness matters.
— If your results are incorrect, buggy, or unreliable, none of the rest matters.

(#2: Memory churn matters. h

— Badly coded good algorithm = bad algorithm. If you spend all the time 1n the
. memory allocator, your algorithms may not matter at all. y

#3: Locality matters, courtesy of the memory wall.
— Cache locality — stay on the fast hardware, away from the memory wall.
— Virtual address locality — address translation capacity 1s limited.
— Kernel memory locality — share memory across processes.
— Physical memory locality — non-uniform memory access issues.

Key Factor #2: Memory Churn

Memory churn 1s excessive reliance on dynamic heap allocation,
usually i the form of numerous very short-lived allocations.
Every HEP C++ application I have looked at has suffered from extreme

memory churn. Our software performs 1M memory allocations per second on
average, over hours of running. That’s a malloc() + free() every ~2500 cycles!

Memory churn has several highly undesirable side effects.

Time is spent in memory management, not in your algorithms. We’ve seen
up to 40% 1n malloc()+free(); 10%+ 1s a strong sign of bad problems.

Tends to cause poor heap locality and to increase heap fragmentation. Churn
on large allocations can cause frequent, costly page table updates.

Contaminates I, D and TLB caches with memory management code and data
structures. CPU performance counter profiling less useful because the caches
will seem to perform extremely well — they just contain the wrong data.

C, C++ Run Time Memory Management
“C++: The power, elegance and simplicity of a hand grenade.”

C/POSIX provides some very basic memory allocation primitives

malloc(); free(); realloc(); calloc(); memalign(); valloc(); alloca()

Various libraries provide alternatives, or higher-level managers

Some of the best alternatives: Google TCMalloc, FreeBSD jemalloc;
Managers: Boost Pool, Sun SLAB allocator + derivatives, SAMBA talloc,
GNU obstacks

C++ provides partially incompatible allocation technology

operator new/delete; object constructors, destructors and copy constructors;
standard library containers and allocator objects; smart pointers, etc.; does map
casily on top of malloc + free, somewhat painfully on anything else

| will not comment here on other languages, e.g. java, c# or scripting
languages like python.

Object Life Cycle Management

Object life cycle management defines who is responsible for
allocation, creation and destruction of objects.

The API specifies where objects are created, who owns and frees them, and
when. It may also specify hooks for memory allocation allowing client to
decide where memory gets allocated.

One policy 1s to take standard library like objects. It implies memory allocation
1s hard-wired to types, and copies happen frequently, and
as such 1s a very significant design choice.

Opt-1n approach to life cycle management doesn’t work.
The APIs define the object management policy. You cannot avoid this by
1ignoring 1t; you’ll just make your clients confused and guess (wrong).

Changing life cycle policy usually implies API + library rewrite.

Getting Hands Dirty: Logical Data

Structures
Scalar — Balanced Binary

Poi _ Tree, e.g. Red-Black
omter 7

Structure / Array L
T / i \
Linked list Y .
SN N NN ;
Hash — v

N
/|]
<|X|T|I|O
<X:D|_O\/

1
T
<|x|3||Of

.//\
<|X

"l.'
<|xX| ~

T
<|A|TIC1O

v K =key, V =value, C = color, L = left, R =right
= by far the most efficient

Getting Hands Dirty: C++ Type star
std::vector<double> finish

capacity

std::vector<double> vec:
vec.reserve(4):

vec.push _back(1.0);

vec.push_back(3.14); 1.0
vec.push_back(7.133); 3.14
A good and efficient data structure in general. 7138 |,
—Good locality usually, guaranteed contiguous allocation. [undef] |

— Avoid small vectors because of the overhead; more on this 1n a moment.

—Beware creating vectors incrementally without reserve(). Grows exponentially
and copies old contents on every growth step if there 1sn’t enough space!

—Beware making a copy, the dynamically allocated part 1s copied!

—Beware using erase(), 1t also causes incremental copying.

Getting Hands Dirty: C++ Types
std::vector<std::vector<std::vector<int>>>

typedef std::vector<int> VI;
typedef std::vector<VI> VVI;
std::vector<VVI> vvvi;

for (int i =0, j, k; 1 < 10; ++1i)
for (vvvi.push_back(VVI()), j = 0; j < 10; ++j)
for (vvvi.back().push_back(VI()), k = 0; k < 10; ++k)
vvvi.back().back().push_back(k);

A very common mistake. C++ vectors of vectors are expensive, and not contiguous

matrices. Let’s measure just how lethal this nested containment by value combined
with incremental growth is.

—Naively: 111 allocations, 6’640 bytes (64-bit; proper use of reserve() gets this.)
—Reality: 870 allocations, total 36’184 bytes alloc’d, 7’168 at end, 12’096 peak.
—+684% # allocs, +445% bytes alloc’d, 82% working and 8% residual overhead!

—Versus 1 allocation, 4’880 bytes and some pointer setup had we used a real
matrix.

Getting Hands Dirty: C++ Types
std::vector<std::vector<std::vector<int>>>

std: :vector<VVI> vvvi, vvvi2;

for (/% ... x/) { /*x ... x/ }
VVV1i2 = VvVvl;

Why you should avoid making container copies by value...

—+111 allocations, +6°640 bytes (= naive / full reserve() allocation).

—An allocation storm is inevitable if you copy nested containers by value.
Evil bonus: memory churn. Because of the allocation/free pattern, by-value
copies are an effective way to scatter the memory blocks all over the heap.

—“A nested container” does not have to be a standard library container. It can
refer to any object type which makes an expensive deep copy — for instance
almost any normal type with std::string, std::vector or std::map data members,
or objects which “clone” pointed-to objects on copy.

—The simple “=* line may also generate /ots of code.

Getting Hands Dirty: C++ Types
std::vector<uintl6 t>x

Typical std::vector<uint16 t> overhead 1s 40 bytes [64-bit system].

—3 pointers x 8 bytes for vector itself, plus average 2 words x 8 bytes malloc()
overhead for the dynamically allocated array data chunk.

—So, 1f x always has N < 20 elements, 1t’d better to just use a uintl6 t x[N].

—More generally, if 95+% of uses of x have only N elements for some small N,
it may be better to have a uintl6 t x[N] for the common case, and a separate
dynamically allocated “overflow” buffer for the rare N = large case. Somewhat
more complex code may be offset by reduction in overheads — measure to see!

—Even more generally, this applies to any small object allocated from heap.
Examples abound in almost any large code base — at one point our software
made many heap copies of 1-byte strings (yes, just the trailing null byte).

Exercise

Vector Memory Use

Getting Hands Dirty: C++ Types |+ ptr
const char * and std::string Ll R
o
const char arrayl] = “foo”; 0 capacity
const char *ptr_to_literal = “foo0”; refcount
std::string dynstr; dynstr.reserve(3); ———
dynstr += ‘f’; dynstr += ‘0’; dynstr += ‘0’; f"|'0’| 0’| \0

Character arrays are filled in by compiler — 1f local, at run-time.
String literals are statically allocated by compiler and linker.

—It’s foolish to copy string literals unmodified into std::strings — you store the
same character data twice, once 1n .rodata, another time on heap. Avoid defining
APIs taking a std::string 1f 99% of callers will use a string literal!

C++ std::string 1s a container much like std::vector<>.

—Same caveats apply. Even though strings may be reference-counted and copy-
on-write, avoid relying on that extensively as consequences are usually awful.

—Strings are highly overrated and spread like rats through bad interfaces.
Our apps have ~15% of dynamic std::string data, majority misguided use.

Exercise

String Memory Use

Getting Hands Dirty: C++ Types
std::map<std::string, X>

std::map<K,V> 1s a balanced binary tree, usually redgtilack tree
[Wikipedia /

—Each tree node 1s a separately allocated [R/B, LeftPtr, RightPtr, Key, Vihic]
tuple. Key comparison determines whether to follow left or right pointer. The
recursive pointer chasing is poison to modern CPUs if data 1s not in cache.

—Since the map 1s a balanced binary tree, 1t has log,(size) levels. If you have 1M

entries 1n the map, 1t will take up to 20 key comparisons to find a match. If
ecach key 1s a container such as std::string, every key comparison involves
another pointer dereference, then key data match — for 1M entries, up to 40
pointer dereferences and up to 20 key comparisons before you get to data. If
you fill the map slowly, the tree nodes and key and value data can be scattered
all over virtual address space. Avoid large maps and use inexpensive keys.

—Beware temporaries in x[“foo”] = abc(); x[*“foo”’].call()! Beware code growth
when using maps inside loops: for (...) { std:: map<K,V>mymap; ... }

Getting Hands Dirty: C++ Types

All C++ standard containers take an allocator template argument.

—Usually by default the containers just grab memory with operator new when
they need something. This can lead to highly inefficient memory layouts.

—We are meant to use the template argument and constructor parameter to
specify an alternate allocator, such as a pool allocator to improve locality.
Pointer-rich containers (maps, lists) do need pool allocators for performance.

—Do be advised this 1s even more invasive decision than starting to use slabs,
obstacks, talloc, or purpose-built areanas — it affects the fype. In general the
decision needs to be made early on, retrofitting custom allocators into a large
code base 1s a significant effort.

I personally have rarely customised C++ allocators, mainly because
it affects API types. I have used custom (= handwritten, non-std-
like) allocators and containers extensively, with great benefit.

Getting Hands Dirty: C++ Types
Hey wait, aren t you going to talk about objects!?

Peak performance requires effective cache use for low latency. How
that is achieved is less important. Understanding the language
mapping from high-level constructs to low-level behaviour helps.

With big data the answer tends to translate to hardware-aware and -friendly
Arrays of Structures (AoS) and Structures of Arrays (SoA) organisation, e.g.
partitioning problem so it fits in L1 cache, strides hardware can prefetch or 1s
vectorisation-friendly. Cache-defeating pointer chasing will simply not work.

Based on what we know of future processor roadmaps, the performance gap
between AoS/SoA and pointer chasing data structures will only stay or grow
bigger. If streaming units get prominent, code locality will also matter more.

Pointer-rich “proper objects” do remain immensely useful — as long as caches are
used very effectively, or performance simply doesn’t matter, for example in
GUISs, support data structures and rarely used infrastructure.

Combating Memory Churn

Eliminating churn tends to yield big gains — x10 1s not unusual.

Unless the code suffers from even greater algorithmic flaws, memory churn
tends to mask any other properties, rendering other profiling ineffective.

Detecting memory churn 1s relatively easy: memory use profiling, such as
IgProf MEM TOTAL stats, tends to flag the problems almost trivially.

Solving memory churn varies from trivial to very hard.

Easy to fix mistakes like passing / returning containers by value, std::vector
push back()/erase(), containers defined inside of loops rather than outside.

Maybe caching, a std::vector (“poor man’s arena”), replacing local variable
with a data member, or a proper pool allocator will provide sufficient relief,

Next hardest are changes to specific common types, ¢.g. replacing small heap-
allocated matrix objects with compile-time sized array matrices.

By far the hardest 1s to address systematic poor design — code ‘“‘thinks” too
locally and you have to touch tens to hundreds of thousands of lines of code to
cut string use or introduce new object ownership or pool / slab allocators.

+ Hazards Wrap-Up

C++ standard library 1s very easy to program.

With judicious use easy to write high performance
programs. With poor judgement easy to make terrible
uin the performance and require total rewrite to regain 1it.

C++ standard library types 1n interface = life cycle policy.

Passing C++ standard library like types in API interfaces effectively means
segregating memory management to library. In practice library users will have
little ability to manage library memory use.

Avoid containers nested by value and string abuse.

There are legitimate uses, but this 1s almost always a mistake.

Key Memory Management Factors

Many factors at different levels: physical hardware, operating
system, in-process run-time, language run-time, and application
level.

#1: Correctness matters.
— If your results are incorrect, buggy, or unreliable, none of the rest matters.

#2: Memory churn matters.

— Badly coded good algorithm = bad algorithm. If you spend all the time 1n the
memory allocator, your algorithms may not matter at all.

#3: Locality matters, courtesy of the memory wall. A
— Cache locality — stay on the fast hardware, away from the memory wall.
— Virtual address locality — address translation capacity 1s limited.
— Kernel memory locality — share memory across processes.

— Physical memory locality — non-uniform memory access issues.

CPU, Physical Memory and Interconnect

Old design: All CPUs linked via the Current design: memory controller
front side bus (FSB) to the north bridge, directly on each CPU, physical memory
which provides access to memory, and to partitioned per CPU, fast interconnect to
south bridge which attaches to 1/O. link CPUs to each other and to I/0.

Issues: FSB bottlenecks in SMP systems, Solves many issues in FSB design, but
device-to-memory bandwidth via north memory is no longer uniform — 30-50%
bridge, north bridge to RAM bandwidth overhead to accessing remote memory,
limitations. up to 50x 1n obscure multi-hop systems.

| CPU
T I LN pw EE__ N
T TN T T i), |

|

L)

CPU ll w u - m Interconnect | X | Memory
TR

)
North W - - - -

ide) (]

SATA —
o Yo
PCle 58 o=

Vi rtu al Me m O ry Today’s OSes give processes a flat* linear

virtual address space: the same linear address in
two different address spaces means two entirely
different physical addresses.

Process B Virtual
Address Space

Virtual and real physical memory is divided in

pages, usually 4kB, but optionally 1-4MB. The

OS provides the CPU per-process page tables to

map a virtual address to a contiguous physical
Page #137

page frame plus offset, which in turn translates to
Frame #937 | memory bank, row and column.

Page #123

Page tables themselves use memory, consume
Frame #629 | [.2+ cache space, and are never swapped out.

- Even 1f processes share physical page frames, the

4 A page tables are not shared. With 4kB pages,
large address spaces mean big page tables, even 1f

| Page#513 | the memory itself is shared: there’s over 2MB of
page tables for every 1GB of committed address

Physical

Pleimory space.”
Page #123 0S Kernel * CPUs also segment or otherwise divide
\. J Page Tables memory in regions; details in the references.
Process A Virtual g “Flat” does not mean “simple”, the address
space can be a fairly hairy object.
Address Space P y hairy Ob)

+2GB VSIZE x 128 processes requires 0.5GB
page tables.

Virtual Address Translation

Logical Address >

Segmentation
Unit

Linear Address >

Paging
nit

] Physical Address>

x86 64-bit Linear Address Mapping, 48-bit [9-9-9-9-12 / 9-9-9-21 / 9-9-30] Virtual Address Space, 40-bit Physical Address Space

(0/7) Index Index Index Index Offset
64 48 47 3938 3029 2120 1211 0
r h
4 ﬁ
f N ’L ’
Page Frame
4 h P y
Page Table
CE——
> y
Page Directory
’L y

Special cache hardware called TLB, A page which isn’t present or valid causes
translation look-aside butfer, accelerates a page fault. The OS handles these, e.g.
virtual-to-physical address mapping to avoid code page is read in from a file on disk on
a full page table walk on every memory op. first use. Some page table changes force

TLB fits only a limited number of pages. g synchronous update on all processors

CR3 ;

y

Page Map

Page Pointers

(“TLB shootdown”).

$ readelf —1 cmsRun

Starting PrOgramS ELf file type is EXEC (Executable file)

Entry point 0x80519f0
There are 8 program headers, starting at offset 52

$ cmsRun somecfg.py Progran Headers: | - |
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
PHDR 0x000034 0x08048034 0x08048034 0x00100 0x00100 R E 0x4
INTERP 0x000134 0x08048134 0x08048134 0x00013 0x00013 R 0Ox1
OS Creates d NCW process [Requesting program interpreter: /lib/ld-linux.so.2]
o e . . LOAD 0x000000 0x08048000 0x08048000 Oxlbbb3 0x1bbb3 R E
- create and 1nitialise a new address space, oxio00
o« e, e . ? LOAD 0x01c000 0x08064000 0x08064000 0x00bdc 0x00cld4 RW
initial thread stack, command line args /oxi000
{ DYNAMIC 0x01c0lc 0x0806401c 0x0806401c 0x00208 0x00208 RW 0x4
9 \
from the main executable, dynamic linker ‘s readets —a cnsrun
(Cl‘eatlng page tableS) Dynamic section at offset 0x1lc@lc contains 60 entries:
. . . Tag Type Name/Value
- 0x00000001 (NEEDED) Shared library: [libFWCoreFramework.so]
Start thread 1n the dynamlc llnker 0x00000001 (NEEDED) Shared library: [libFWCoreService...so]
. . . 0x00000001 (NEEDED) Shared library: [libFWCorePython...so]
- 0x00000001 (NEEDED) Shared library: [libDataFormatsCommon.so]
Dynamlc llnker ﬁnlSheS the Start up 0x00000001 (NEEDED) Shared library: [libFWCoreParameter...so]
. 0x00000001 (NEEDED) Shared library: [libDataFormats...so]
- mmap code, data segments recurswely fro1r oxeeo0e001 (NEEDED) Shared library: [libFWCoreMessage. ..so]
. . 0x00000001 (NEEDED) Shared library: [libFWCorePlugin...so]
all shared library dependencies [...]
0x0000000c (INIT) 0x8051278
- 141 1 0x0000000d (FINI) 0x8060084
relocate position independent code, data Dxpp0000nd (EIND) Ox8060084
. o« e . . 0x00000005 (STRTAB) 0x804a6d4
- 1nvoke 1nit sections, start executing @x00000006 (SYMTAB) 0x8048C34
0x0000000a (STRSZ) 24813 (bytes)
0x0000000b (SYMENT) 16 (bytes)
As process executes... 0x00000015 (DEBUG) 0x0
0x00000003 (PLTGOT) 0x806430cC
- ” 0x00000002 (PLTRELSZ) 936 (bytes)
page fault code, data 1n as needed Dxoou00008 (PLIRELSZ) 056
0x00000017 (JIMPREL) 0x8050ed0
0x00000011 (REL) 0x8050b88
0x00000012 (RELSZ) 840 (bytes)
0x00000013 (RELENT) 8 (bytes)
ox6ffffffe (VERNEED) 0x8050b18
oxe6fffffff (VERNEEDNUM) 3
ox6ffffff@ (VERSYM) 0x80507c2
0x00000000 (NULL) 0x0

After a while...

Process has loaded even more code and
has allocated quite a bit of heap space 4GB
- Invoked the dynamic linker to bring in even

more shared libraries, each of which
mmaped more code and data segments

- Called sbrk, mmap to acquire additional 268
heap memory from the operating system
Result: 1060MB VSIZE, 850 RSS, o

600 libraries, 1370 memory regions

- Each shared library has separate code and
data pages, which 1s bad for virtual
address space locality and stresses TLB 1GB

- Random scatter of mapped library pages (a
security feature) X lots of libraries
= dense address map with many holes

0GB
= fragmented address space and heap
- This produced 2.3MB new page tables 1024x1024 pixel image map of the
- Definitely not smart — dwarts the capacity address space of a 32-bit cmsRun
of even the latest hardware Process. Every pixel IS one 40968 page.

Orange = code, green = data, blue =
heap, stack. Total VSIZE 1060MB of
which 2230 MR ic code()

Exercise

Process Address Space

Operating System and Memory

The operating system manages processes and their address spaces.

Each process has a virtual linear address space to itself, 1solated from other
address spaces and the kernel itself. Each process has one or more threads,
which share the address space but have a separate stack and execution state.

In 32-bit, the 4GB address space 1s usually split 3:1 and sometimes 4:4 between
the user space and the kernel. In 64-bit the split does not matter.

The operating system manages memory allocation and sharing.

Memory 1s used for kernel itself and files in the buffer cache. Applications can
share memory by referring to shared physical pages: just memory blocks, buffer
cache regions, or special objects such as pipe memory with vmsplice().
Methods to share memory include fork(), mmap() or shmget().

On NUMA systems the OS also manages process-to-physical memory
mapping. In practice application affinity hinting 1s necessary (cf. numactl).

About Shared Memory

Shared memory 1s not special — 1t 1s completely natural and widely
used on modern systems, with many ways to 1nitiate sharing:

Calling mmap() on a file in multiple processes can be used to create shared
read-only or read-write mappings, on any file region. Example: shared library
position independent code. One way to share static read-only data 1s to wrap
and load 1t as a shared library. Suitable use of mmap() + {f,m}advise() can map
windows of the OS buffer cache and provide hints on future use.

Calling fork() without exec() makes copy-on-write shared memory of the
entire process address space; writing to a page after fork() creates a private
copy. One of the simplest ways to create writeable transient shared memory
without file association 1s to use anonymous mmap() and then call fork().

It’s also possible to create persistent named shared memory with shmget().

Pages can be shuffled around with vmsplice(), tee() and remap file pages().

Process B Virtual

Address Space

Page #137

Page #123

(

\

About Shared Memory

Page #543

Page #123

\.

.

Process A Virtual

Address Space

0S Kernel
Page Tables

B’s page #137 and A’s page
#123 are mapped to the same
physical frame #629, creating

shared memory.

#629 could be a read-only page
of common library code,
writeable memory created with
mmap() + fork() or shmget().

Memory Crisis

Closer look at
locality

[6-core AMD Opteron] Memory interface

Core + L1 Cache

L2 Cache

L3 Cache + Tags

North Bridge & Hyper Transport Switch

HyperTransport

Typical CPU
Architecture Today

2-6 cores per die, 1-2 dies per package,
1-N packages per system.

3 levels of cache

— Small [32kB] separate L1 I+D
caches for each core.

— Medium [256kB-3MB] combined L2
cache, perhaps shared among some cores.

— Large [4-16MB] combined L3 cache
shared between all cores on die.

2-3 channels to DDR2 or DDR3, 2-3
DIMMs per DDR channel, or up to 8 FB-
DRAM DIMMs per channel; practical
performance varies a lot depending on how
many DIMMSs there are on the channels.

High-speed interconnect to other CPUs:
HyperTransport (AMD) or QPI (Intel).
Cache snooping, cache tagging follow
memory use in other packages.

[Wikipedia / Intel Nehalem / By
“Appaloosa” / GFDL]

Intel Nehalem microarchitecture

quadruple associative Instruction Cache 32 KByte,
128-entry TLB-4K, 7 TLB-2/4M per thread

~ 128
Prefetch Buffer (16 Bytes) Bra-nc-h
Prediction
global/bimodal,
Predecode & loop, indirect
Instruction Length Decoder | jmp
Instruction Queue
18 x86 Instructions
Alignment
MacroOp Fusion
Complex Simple Simple Simple
Decoder Decoder Decoder Decoder

Loop
Stream |Decoded Instruction Queue (28 pOP entries) I Vits
Decoder Instruction
M|croOp Fu3|on Sequencer
2 X E:
Retirement | [75 Reglster AIIocatlon Table (RA
Register

| Reservation Station (128-entry) fused |
Port 3

Port 4 Port 2

Integer/
MMX ALU,
Branch

Integer/ FP
MMX ADD
ALU

SSE

SSE
ADD ADD MUL/DIV
Move Move Move

128

Result Bus

octruple associative Data Cache 32 KByte,
64-entry TLB-4K, 32-entry TLB-2/4M

GT/s: gigatransfers per second

File ijeorder Buffer (128-entry) fus

Integer/

256

Uncore

Quick Path
Inter-
connect

>

|

DDR3
Memory
Controller

>
4 x 20 Bit
6,4 GT/s

>

111

|

Common
L3-Cache
8 MByte

>
>

3 x 64 Bit
1,33 GT/s

256 KByte
8-way,
64 Byte
Cacheline,
private
L2-Cache

512-entry
L2-TLB-4K

Typical Core Memory
Architecture Today

Out-of-order, super-scalar, deep pipelines.

Significant capacity to reorder and buftfer
memory operations, will automatically
prefetch several different access patterns.

32kB LII + L1D caches, 128-entry LI
ITLB, 64-entry L1 DTLB = 512kB code,

256kB data addressing capacity.
512-entry L2 TLB = 2MB code + data

addressing capacity — less than fits n L3
cache, but more than one core share of L3.

All this exists to combat the memory wall.

BUT for all practical purposes a modern
CPU performs well on large data volumes
only if organised as arrays-of-structures
(AoS) or structures-of-arrays (SoA)
pointer-rich “objects” will perform poorly.

Latency in nanoseconds

70 —

60 —

50 —

40 —

30—

20—

10—

Memory latency, Linux 2.6.28 x86-64
Intel i7 940 2.93 GHz, 6GB

Wm‘.

-—
|

1K

' |
==\ F =+

I | | I | I | | I I
4K 16K 64K 256K 1M 4M 16M 64M 256M 1024M

Array size

[LMBENCH 2.5 results for array strides 16, 32, 64, 256, 512, 1024B]

The Memory Wall

Average memory access time
= Hit time + Miss rate < Miss penalty.

I/D$: L1 hit = 2-3 clock cycles.

I/D$: L1 miss, L2 hit =~ 10-15 cycles.

TLB: L1 miss, L2 hit =~ 8-10 cycles.

TLB: L1 miss, L2 miss =~ 30+ cycles.

What happens when you drop to memory?

Intel Netburst Xeon (Pentium-era) memory
latency was 400-700 clock cycles depending
on access pattern and architecture.

AMD Opteron, Intel Core 2 and later CPU
memory latency i1s ~200 cycles (times any
NUMA overhead if crossing interconnect).

Good cache efficiency matters.

Logical vs. Real Data Structures

This logical linked list... VeV VN
4GB
3GB \ ‘
Could be scattered in virtual / N\
r like this... o /
address space like this 7
1GB

0GB

And in physical
memory like this...

dii]

W &

Logical vs. Real Data Structures

The scatter is unimportant as
long as Ln and TLB caches e
hide all latencies. Otherwise i

you must explicitly arrange

for a better memory
ordering. 368X

4GB

- VA
There is no silver bullet to 2GB ,
make this problem go away. _

1GB

Custom application-aware
memory managers, such as °
pool / slab / arena allocators, ‘
other data structure £] |
changes, and affinity hints
are the tools.

N &

= J

[CMSSW on 4-core AMD Opteron 270, 2007]

Cycle capacity use estimate - cycles/instruction

Il Computation
[Speculative

[IMemory stalls _

[]Branch stalls
[CJ Resource stalls
A Measured 0.0

Memory stall analysis

CILII Miss
CILID Miss

A o8

0.5

1.0 1.5

[]L2 Miss

[]DTLB Miss | |
B ITLB Miss 0% 20%

Resource stall analysis
[1Other

40%

60% 80% 100%

[]Reorder buffer

[]Reservation
[JLoad / store

0% 20%

L2 cache accesses

[]Page table

40%

60% 80% 100%

[]Data

[l Instructions

0% 20%

40%

60% 80% 100%

A Typical Dilemma for
Scientific C++ App

Relatively resource-rich CPU, 4-core AMD
Opteron 270 from ~2007, but application is
nowhere near compute bound.

60% of clock cycles are completely stalled
and do not retire a single instruction.

60% of memory stalls are for instructions.

60% of memory stalls are for page tables.

L2 cache accesses are dominated by code

and page tables.

Oops?

60% % of cycles

23%
1 1% 7%
B == .
None | 2 3

instructions retired per cycle

Why Structures of Arrays?
class X {
vec3 pos_;
float boost._ ;
float dir ;
void update(vec3 target)

{ dir = dot3(pos , target) * boost ; }
}i

Why Structures of Arrays?

class X {

vec3 pos ;

éiéat boost ;

float dir ;

;éid update(vec3 target)

{ dir = dot3(pos , target) * boost ; } I-Cache

bi miss

Why Structures of Arrays?

class X {
vec3 pos ;
éiéat boost ;
float dir_;

volid update(vec3 target)

{ dir = dot3(pos_, target) * boost ; }
D-Cache

mISS

Why Structures of Arrays?

class X {

vec3 pos ;

Cache occupied

S P but not used
float dir ; ///’ here

.
.
.
L

float boost ;

volid update(vec3 target)
{ dir = dot3(pos , target) * boost ; }
}i

4 executions on 4 objects — how many cycles?

void update(vec3 target)

{ dir = dot3(pos_, target) * boost ;

S s - 200 math - 20

MISS -

~ D$ miss - 200 DS miss - 200 ¢ D$ miss - 200
_ D$miss-200 DS miss-200 | | DS miss - 200
DS miss-200 D$miss-200 | | DS miss - 200
DS miss-200 D$miss-200 | DS miss - 200

Change Abstraction to SoA

void update(float *dir, TargetData *data,
vec3 target, size t count)
{
for (size t 1 = 0; 1 < count; ++1)
dir[i] = dot3(data->pos[1i], target) * data->boost[i];

Change Abstraction to SoA

Update an array Minimal input data

v v

void update(float *dir, TargetData *data,
vec3 target, size t count) |

{
for (size t 1 = 0; 1 < count; ++1)
Adir[1] = dot3(data->pos[i], target) * data->boost[i];
| T
Loop over data Calculation mostly unchanged

Code has been separated out

Timings difference

void update(float *dir, TargetData *data,
vec3 target, size t count)

{

for (size t.i .= .0;.i < count;

dir[1] = dot3(data->pos[i]

+4+1)
4

target) * data->boost[i]; |

I$ miss - 200

/

math - 20

D$ miss - 200

Optional Exercise

Structure Layout

Structures of Arrays and Design

Try to view SoA vs. objects as a change in abstraction, not as a
“Do 1 really have to break everything I was taught about
encapsulation?”

When designing for SoA, you create higher-level abstractions with
operators and kernels which are applied to collections of data.

You apply SoA design to the largest masses of data 1n the most
computation intensive parts. There are still places for
polymorphisms and more complex data structures, e.g. graphs, but
they operate 1n different levels, or sections of code which are not
performance sensitive.

Wrapping Up

The CPU — memory performance difference has profound impact.

Memory management choices have orders of magnitude performance impact,
and among the most important design criteria after selection of algorithms. A
performance-oriented design must consider all the layers from application to
libraries/language to operating system to processor and memory interconnect.

Bandwidth is usually adequate for all but the most demanding applications. 1-3
layers of cache help hide a very significant memory access latency if and only
if you structure the application to have excellent locality for code, data and
virtual memory pages and their tables. Best performance for large data volumes
requires hardware-predictable access of structures-of-arrays /| arrays-of-
structures.

Memory access latency is non-uniform and depends on physical design and
interconnect distance to memory, thus operating system allocation strategy.
Application may need to guide operating system on strategy choices.

Wrapping Up

The CPU — memory performance difference has profound impact.

Operating systems create illusion of one flat virtual address space. In reality
the virtual memory is divided into pages, and pages are mapped to physical
memory. Performance critical application must account for this in their design
for both data and code management.

A process =~ file-backed page mappings for code and read-only data plus
anonymous page mappings for stack, heap and global data. Creating many
memory regions, for example by loading many shared libraries, harms
performance because good performance requires static page working set which
fits in TLB. Frequent page table changes are costly, some operations require a
system-wide stall to synchronise the memory views of all the processors.

Shared memory 1s created by pointing pages tables of several processes to the
same physical memory pages. Shared memory 1s common place, and there are
numerous convenient ways to create sharing.

Key Factor #3: Locality

Detecting, measuring and fixing poor locality: discussed extensively
in other sessions this week and somewhat already 1n this one.
Using suitable pool allocators is known to help, but no easy-to-use analysis
tools. You can try evaluate heap trashing and allocation size distribution to

some extent with e.g. 1gprof heap snapshots, even GLIBC’s memusage. In
general the better your unit and regression test collection, the easier the job.

Do pay attention to excessive virtual memory use — code and data.

A good rule of thumb 1s the larger the process, the slower 1t gets, with a few
well designed applications an exception to this. 200+ MB of machine code
from 500+ shared libraries 1s usually just preposterously bad packaging and/or
large-scale code bloat. Fix packaging, make big shared libraries only, use
coverage testing to figure out what you really need, fix coding problems, 1f
nothing else works, reorder binaries to separate “hot” and “cold” segments.

Exotic Efficiency Issues

Applications may need to become NUMA aware.

May have to if on NUMA hardware, and either make significant use of
concurrency and shared memory (multi-threading or multi-processing); or need
more memory than a single physical node has. Read up on numactl.

Poor cache use, not getting enough out of prefetching hardware.

Make sure you use SoA/AoS data structures, then see the other sessions this
week on cache awareness, proper strides, alignment, collision avoidance,
SIMD, and which tools to use identify problems and possible solutions.

Multi-threaded systems may suffer from cache line contention for heavily
accessed data (e.g. locks). Lots of research out there; typical solution is finer
grained locks, or eliminating locking using e.g. read-copy-update (RCU).

Killed by large page tables or TLBs? Look into using huge pages.

Summary

Real-world Iimitations of CPUs and programming languages make
memory management a significant factor in overall performance.

The solution will vary with technical evolution. If you missed everything else,
remember this: get the latency down. May mean you have to design to use
hardware-aware AoS/SoA data structures.

There’s no silver bullet for making your applications scream.
For top performance you have to invest in real understanding and custom
application-specific solutions. Beware memory churn 1n particular.

There are tools out there which will reduce the mysteries a lot.

Now we will combine several of them for more serious exercises!

Optional Exercise

Shared Libraries

Exercise

Word List Filter

Exercise

Large Application

