
1 1

GPUs and the Heterogeneous

programming problem
Tim Mattson (Intel Labs)

Intel Labs 80 core Research
processor

Intel labs 48 core SCC processor

VRC

2
1

.4
m

m

26.5mm

System Interface + I/O

D
D

R
3

 M
C

D
D

R
3

 M
C

D
D

R
3

 M
C

D
D

R
3

 M
C

PLL

TILE

TILE

JTAG

IBM Cell Broadband engine processor

NVIDIA GTX 480 processor

Intel “Sandybridge” processor

NVIDIA Tegra 3 (quad Arm
Corex A9 cores + GPU)

Other than the Intel lab’s research processors. Die photos from UC Berkeley CS194 lecture notes Third party names are the property of their owners

An Intel MIC processor

2 2

Disclaimer
READ THIS … its very important

• The views expressed in this talk are those of the
speakers and not their employer.

• This is an academic style talk and does not address
details of any particular Intel product. You will learn
nothing about Intel products from this presentation.

• This was a team effort, but if we say anything really
stupid, it’s our fault … don’t blame our collaborators.

Slides marked with this symbol were produced-with Kurt

Keutzer and his team for CS194 … A UC Berkeley course

on Architecting parallel applications with Design Patterns.

Third party names are the property of their owners.

3 3

Alt intro to GPU hardware

4

Hardware Architectures for High

Performance Computing (HPC)

Symmetric

Multiprocessor

(SMP)

Non-uniform

Memory

Architecture

(NUMA)

Massively

Parallel

Processor

(MPP)

Cluster

Single Instruction

Multiple Data (SIMD)
Multiple Instruction

Multiple Data (MIMD)

Parallel Computers

Shared Address Space Disjoint Address Space

Distributed

Computing

5

Hardware Architectures for High

Performance Computing (HPC)

Symmetric

Multiprocessor

(SMP)

Non-uniform

Memory

Architecture

(NUMA)

Massively

Parallel

Processor

(MPP)

Cluster

Single Instruction

Multiple Data (SIMD)
Multiple Instruction

Multiple Data (MIMD)

Parallel Computers

Shared Address Space Disjoint Address Space

Distributed

Computing

The dominant branch and

our focus earlier

Discussed now with

vectors and GPUs

Data Parallelism Pattern

Use when:

–Your problem is defined in terms of collections of data
elements operated on by a similar (if not identical)
sequence of instructions; i.e. the concurrency is in the
data.

Solution

–Define collections of data elements that can be updated in
parallel.

–Define computation as a sequence of collective operations
applied together to each data element.

Data 1 Data 2 Data 3 Data n

Tasks

……

SIMD Architecture

 Single Instruction Multiple Data (SIMD)

Central controller broadcasts instructions to multiple processing elements
(PEs)

– Only requires one controller for whole array

– Only requires storage for one copy of program

– All computations fully synchronized

Array

Controller

Inter-PE Connection Network

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

Control

Data

A classic SIMD Massively Parallel Processor:

Thinking machines CM-200:

 A Workstation hosted SIMD

machine.

 A node consists of a two

processor chip pair (32 PEs) and

an optional floating point

accelerator.

 Topology --- The nodes are

connected as a hypercube.

 Performance --- peak

performance of 40 GFLOPS for

the largest CM-200 (65536 PEs)

with floating point accelerators.

 Scalability --- 2K, 4K, 8K, 16K,

32K or 64K processors. Machines

may be partitioned
8

Connection machine CM200 … late 80’s early 90’s

Third party names are the property of their owners

9/38

Modern Data-Parallel Machines

 SIMD in CPUs: The CPU pipeline is the "frontend", executing a

sequential program and issuing commands to the SSE or AVX

processor "array"

 SIMD in CPU-GPU systems: The CPU Host is the "frontend

machine", issuing SIMD Kernel commands to the GPU "array" of

Streaming Multiprocessors

 SIMD in GPUs: The Warp Scheduler issues commands to the SIMD

arrays of Scalar Processors

 In none of these cases is the physical SIMD width (4-32) as large as

the Connection machine (16K)

Ctrl.

Proc.

Ctrl.

Proc.

...
UE UE UE UE UE UE UE UE

8/19/2013 Parallel Architecture: 10 John Kubiatowicz

Pseudo SIMD: (Poor-Man’s SIMD?)

+

• Scalar processing
– traditional mode

– one operation produces
one result

• SIMD processing (Intel)
– with SSE / SSE2

– one operation produces
multiple results

X

Y

X + Y

+

x3 x2 x1 x0

y3 y2 y1 y0

x3+y3 x2+y2 x1+y1 x0+y0

X

Y

X + Y

Slide Source: Alex Klimovitski & Dean Macri, Intel Corporation

11/38

High-end GPUs have historically been

programmable

Silicon Graphics RealityEngine GPU

1993

Intel i860

RISC CPU

Custom ASIC

for processor

interconnect

• I860 billed as a “Cray-on-a-chip”

0.80 micron technology

2.5M transistors
Third party names are the property of their owners

12/38

Programming GPUs

 Graphics
programming
 OpenGL

 DirectX

 General purpose
applications on GPUs
 It’s been done since

the mid-90s

 Why hot now?
1. Reasonable

programming models

2. Devices cost $300
instead of $3M

The Graphics vertex pipeline

13

Vertex assembly

Primitive assembly

Rasterization

Fragment operations

Display

Vertex operations

Application

Primitive operations

struct {

 float x,y,z,w;

 float r,g,b,a;

} vertex;

struct {

 vertex v0,v1,v2

} triangle;

struct {

 short int x,y;

 float depth;

 float r,g,b,a;

} fragment;

struct {

 int depth;

 byte r,g,b,a;

} pixel;

Frame buffer

Thanks to Kurt Akeley

Wouldn’t be cool to

make

these stages of the

graphics

pipeline

programmable?

Generation I: 3dfx Voodoo (1996)

14

• Did not do vertex transformations:

these were done in the CPU

• Did do texture mapping, z-buffering.

• 0.5 micron technology

• 1M transistors

Primitive
Assembly
Primitive
Assembly

Vertex
Transforms

Vertex
Transforms

Frame
Buffer
Frame
Buffer

Raster
Operations

Rasterization
and

Interpolation

CPU GPU
PCI

Slide adapted from Suresh Venkatasubramanian and Joe

Kider

Diamond Multimedia

Monster3D

Transistor counts and technology node information from:

www.maximumpc.com/article/features/graphics_extravaganza

_ultimate_gpu_retrospective

Generation I game: Quake2 (1997)

15

Generation II: GeForce 256/Radeon 7500
(1998)

16 Slide from Suresh Venkatasubramanian and Joe Kider

Vertex
Transforms

Vertex
Transforms

• Main innovation: shifting the

transformation and lighting

calculations to the GPU

• DirectX 7

• Allowed multi-texturing: giving bump

maps, light maps, and others..

• Faster AGP bus instead of PCI

• 0.22 micron technology (GeForce 256)

• 23M transistors

Primitive
Assembly
Primitive
Assembly

Frame
Buffer
Frame
Buffer

Raster
Operations

Rasterization
and

Interpolation

GPU
AGP

Image from “7 years of Graphics”

Generation II game: Quake3 (1999)

17

Quake3 now runs on mobile devices

Generation III: GeForce3/Radeon 8500(2001)

18 Slide from Suresh Venkatasubramanian and Joe Kider

Vertex
Transforms

Vertex
Transforms

• For the first time, allowed limited

amount of programmability in the

vertex pipeline

• DirectX 8

• Also allowed volume texturing and

multi-sampling (for antialiasing)

• 0.15 micron technology (GeForce3)

• 57M transistors (GeForce3)

Primitive
Assembly
Primitive
Assembly

Frame
Buffer
Frame
Buffer

Raster
Operations

Rasterization
and

Interpolation

GPU
AGP

Small vertex
shaders

Small vertex
shaders

Image from “7 years of Graphics”

Generation III game: UT2004 (2003)

19 Reproduced for educational purposes only

Generation IV: Radeon 9700/GeForce FX (2002)

20

Vertex
Transforms

Vertex
Transforms

• This generation is the first generation of

“fully-programmable” graphics cards

• DirectX 9 (shader model 2.0)

• Different versions have different resource

limits on fragment/vertex programs

• 0.13 micron technology node

• 80M transistors

Primitive
Assembly
Primitive
Assembly

Raster
Operations

Rasterization
and

Interpolation

AGP
Programmable
Vertex shader
Programmable
Vertex shader

Programmable
Fragment
Processor

Programmable
Fragment
Processor

Texture Memory

Slide from Suresh Venkatasubramanian and Joe Kider

Image from “7 years of Graphics”

Generation III game: Half-Life 2

21 Reproduced for educational purposes only

Generation IV: GeForce6/X800 (2004)

 Simultaneous rendering to multiple buffers

 DirectX 9 (shader model 3.0)

 True conditionals and loops

 PCIe bus

 Vertex texture fetch

 0.11 micron technology

 146M transistors

22 Slide adapted from Suresh Venkatasubramanian and Joe Kider

Vertex
Transforms

Vertex
Transforms

Primitive
Assembly
Primitive
Assembly

Frame
Buffer
Frame
Buffer

Raster
Operations

Rasterization
and

Interpolation

PCIe
Programmable
Vertex shader
Programmable
Vertex shader

Programmable
Fragment
Processor

Programmable
Fragment
Processor

Texture Memory Texture Memory

Generation IV game: FarCry (2004)

23 Reproduced for educational purposes only

Generation V: GeForce8800/HD2900 (2006)

 Ground-up GPU redesign
 Support for Direct3D 10
 Geometry Shaders
 Stream out / transform-feedback
 Unified shader processors
 0.09 micron technology
 681M transistors!
 Support for General GPU

programming

24 Slide adapted from Suresh Venkatasubramanian and Joe Kider

Input
Assembler

Input
Assembler

Programmable
Pixel

Shader

Programmable
Pixel

Shader

Raster
Operations

Programmable
Geometry

Shader

PCIe

Programmable
Vertex shader
Programmable
Vertex shader

Output
Merger

Radically different microarchitecture

than Generation 1 GPU to support

3 programmable stages =>

General purpose data-parallel processor

Generation V game: Crysis (2007)

25 Reproduced for educational purposes only

GPGPU arrives: 2006

Third party names are the property of their owners

• Support for General GPU
programming

• But how will programmers write
code for this GPU?

• Fortunately for NVIDIA, the academic community had been working on
GPGPU programming for almost a decade.

• Ian Buck at Stanford was wrapping up his dissertation “Stream computing
on Graphics Hardware” and the language “Brook”.

• He moved over to NVIDIA and led the effort to create CUDA.

• CUDA was extremely influential … Late in 2008 Apple, AMD, Intel, NVIDIA,
Imagination Technologies and several other companies released a vendor-
neutral, portable standard for stream computing called OpenCL.

CS194:
Keutzer/Mattson

27 27

The heterogeneous platform:
a Host (CPU) + a huge range of devices

FPGA
DSP

Many-core CPU

(MIC & Xeon PhiTM)

Integrated

CPU+ FPGA

(Intel® Atom™ Processor E6x5C Series)

… and who knows what

the future will bring?
*Other names and brands may be claimed as the property of others

Nvidia GPU Architecture
• Nvidia GPUs are a collection of “Streaming Multiprocessors”

– Each SM is analogous to a core of a Multi-Core CPU

• Each SM is a collection of SIMD execution pipelines that share control
logic, register file, and L1 Cache

29 29

Our HW future is clear:

GMCH
GPU

ICH

CPU
CPU

DRAM

GMCH = graphics memory control hub,
ICH = Input/output control hub

• A modern platform has:

– CPU(s)

– GPU(s)

– DSP processors

– … other?

• Current designs put
this functionality
onto a single chip …
mitigates the PCIe
bottleneck in
GPGPU computing!

Intel® Core™ i5-2500K Desktop Processor
(Sandy Bridge) Intel HD Graphics 3000 (2011)

Intel’s Ivy Bridge GPU

• 4 CPU cores + GPU
– All integrated on the same die
– GPU and aggregate CPUs have about the same peak performance

• 256 single-precision Gflops/sec
• GPU is fully programmable with OpenCL

– DirectX 11 too

4 Ivy Bridge

CPU Cores
Generation 7

GPU

8 Mbyte L3

Cache

Thanks to David Kanter of Real World Tech and Intel

Out-of-Order Execution Engine
Renaming happens at uOP level

(not original macro-x86 instructions)

Thanks to David Kanter of Real World Tech, Intel, and Krste Asanovic of UCB

Ivy Bridge System Architecture

Shared with CPU cores

GPU Core

Equivalent structure on a

NVIDIA GPU is called a

“streaming multiprocessor”

Hardware load balancing across

GPU Cores

GPUs include

special memories

for manipulating

textures (images)

Thanks to David Kanter of Real World Tech and Intel

Ivy Bridge GPU Core Microarchitecture

8 active threads per processing

lane to tolerate memory latency

Cache shared with 8 other

processing lanes

Pipeline hazards detected and

respected using a register

scoreboard

128 32-bit physical registers per thread

(about the same as

the Ivy Bridge CPU)

8-wide execution resources

Thanks to David Kanter of Real World Tech and Intel

So how do we program GPUs?

CUDA or OpenACC: if you are willing to restrict

yourself to a single vendor’s product (NVIDIA)

OpenCL or OpenMP 4.0: if you want portability

across devices and vendors

35 35

The BIG idea behind OpenCL

•OpenCL execution model … execute a kernel at each point in a
problem domain.

–E.g., process a 1024 x 1024 image with one kernel invocation
per pixel or 1024 x 1024 = 1,048,576 kernel executions

void

trad_vadd(int n,

 const float *a,

 const float *b,

 float *c)

{

 int i;

 for (i=0; i<n; i++)

 c[i] = a[i] + b[i];

 }

Traditional loops

kernel void

vec_add(global const float *a,

 global const float *b,

 global float *c)

{

 int id = get_global_id(0);

 c[id] = a[id] + b[id];

} // execute over “n” work-items

Kernel Parallelism OpenCL

Execution Model

• Host defines a command queue and associates it with a context

(devices, kernels, memory, etc).

• Host enqueues commands to the command queue

Gy

Gx

(wx, wy)

(wxSx + sx, wySy + sy)

(sx, sy) = (0,0)
(wxSx + sx, wySy + sy)

(sx, sy) = (Sx-1,0)

(wxSx + sx, wySy + sy)

(sx, sy) = (0, Sy-1)

(wxSx + sx, wySy + sy)

(sx, sy) = (Sx-1, Sy- 1)

Index Space Work items execute together as a work-group.

Kernel execution
commands launch
work-items: i.e. a
kernel for each point in
an abstract Index Space
called an NDRange

A (Gy by Gx)
index space

Single Instruction Multiple Data

• Individual threads of a warp start together at the same
program address

• Each thread has its own instruction address counter and
register state

– Each thread is free to branch and execute independently

– Provide the MIMD abstraction

• Branch behavior

– Each branch will be executed serially

– Threads not following the current branch will be disabled

37

A warp

Start Branch1 Branch2 Branch3 Converge

Time

Mapping OpenCL to Nvidia GPUs

 OpenCL is designed to be functionally forgiving

 First priority: make things work. Second: get performance.

 However, to get good performance, one must understand how
OpenCL is mapped to Nvidia GPUs

Mapping OpenCL to Nvidia GPUs

 Work item  SIMD Lane CUDA Thread

 Warp  SIMD execution granularity

 Work Group  Streaming Multiprocessor (SM)

 Index Space  Multiple SMs

40 40

The BIG idea behind OpenCL

•OpenCL execution model … execute a kernel at each point in a
problem domain.

–E.g., process a 1024 x 1024 image with one kernel invocation
per pixel or 1024 x 1024 = 1,048,576 kernel executions

void

trad_vadd(int n,

 const float *a,

 const float *b,

 float *c)

{

 int i;

 for (i=0; i<n; i++)

 c[i] = a[i] + b[i];

 }

Traditional loops

kernel void

vec_add(global const float *a,

 global const float *b,

 global float *c)

{

 int id = get_global_id(0);

 c[id] = a[id] + b[id];

} // execute over “n” work-items

Kernel Parallelism OpenCL

41 41

The BIG idea behind CUDA

•CUDA execution model … execute a kernel at each point in a
problem domain.

–E.g., process a 1024 x 1024 image with one kernel invocation
per pixel or 1024 x 1024 = 1,048,576 kernel executions

void

trad_vadd(int n,

 const float *a,

 const float *b,

 float *c)

{

 int i;

 for (i=0; i<n; i++)

 c[i] = a[i] + b[i];

 }

Traditional loops

void __global__

vec_add(float *a,

 float *b,

 float *c)

{

 int id = blockIdx.x * blockDim.x
 + threadIdx.x;

 c[id] = a[id] + b[id];

} // execute over “n” work-items

Kernel Parallelism CUDA

OpenCL vs. CUDA Terminology

• Host defines a command queue and associates it with a context

(devices, kernels, memory, etc).

• Host enqueues commands to the command queue

Gy

Gx

(wx, wy)

(wxSx + sx, wySy + sy)

(sx, sy) = (0,0)
(wxSx + sx, wySy + sy)

(sx, sy) = (Sx-1,0)

(wxSx + sx, wySy + sy)

(sx, sy) = (0, Sy-1)

(wxSx + sx, wySy + sy)

(sx, sy) = (Sx-1, Sy- 1)

Index Space Work items execute together as a work-group.

Kernel execution
commands launch
work-items: i.e. a
kernel for each point in
an abstract Index Space
called an NDRange

A (Gy by Gx)
index space

CUDA Stream

Grid

Threads
Thread Block

OpenCL or CUDA … they require massive

changes to existing code. There has got

to be a better way.

• OpenMP allows most Application programmers to ignore

pthreads (or C++’11 threads). Dramatically simplifies their

life.

• Can we use the same directive-oriented scheme we used

for OpenMP? Yes.

– OpenMP 4.0 (spec. released Nov’2013) includes constructs for

directive driven GPU programming

– OpenACC (a proprietary spec from Cray, PGI and Nvidia released

in June’2012) took an early version of the OpenMP 4.0 work and

released it as their own (with proper attribution… they aren’t bad

people)

43

44 44

The big idea behind OpenACC

•Let’s add two vectors together …. C = A + B

void vadd(int n,

 const float *a,

 const float *b,

 float *restrict c)

{

 int i;

 #pragma acc parallel loop

 for (i=0; i<n; i++)

 c[i] = a[i] + b[i];

}

int main(){

float *a, *b, *c; int n = 10000;

// allocate and fill a and b

 vadd(n, a, b, c);

}

Assure the

compiler that c is

not aliased with

other pointers

Assure the

compiler that c is

not aliased with

other pointers

Turn the loop

into a kernel,

move data to a

device, and

launch the

kernel.

Turn the loop

into a kernel,

move data to a

device, and

launch the

kernel.

Host waits here

until the kernel is

done. Then the

output array c is

copied back to

the host.

Host waits here

until the kernel is

done. Then the

output array c is

copied back to

the host.

A more complicated example:
Jacobi iteration: OpenACC (GPU)

while (err>tol && iter < iter_masx){

 err = 0.0;

 #pragma acc parallel loop reduction(max:err)

 for(int j=1; j< n-1; j++){

 for(int i=1; i<M-1; i++){

 Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+

 A[j-1][i] + A[j+1][i]);

 err = max(err,abs(Anew[j][i] – A[j][i]));

 }

 }

 #pragma acc parallel loop

 for(int j=1; j< n-1; j++){

 for(int i=1; i<M-1; i++){

 A[j][i] = Anew[j]i];

 }

 }

 iter ++;

}

Source: based on Mark Harris of NVIDIA®, “Getting Started with OpenACC”, GPU technology Conf., 2012

Turn the loop into a

kernel, move data

to a device, and

launch the kernel.

Turn the loop into a

kernel, move data

to a device, and

launch the kernel.

Host waits

here until

the kernel

is done.

Host waits

here until

the kernel

is done.

A more complicated example:
Jacobi iteration: OpenACC (GPU)

while (err>tol && iter < iter_max){

 err = 0.0;

 #pragma acc parallel loop reduction(max:err)

 for(int j=1; j< n-1; j++){

 for(int i=1; i<M-1; i++){

 Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+

 A[j-1][i] + A[j+1][i]);

 err = max(err,abs(Anew[j][i] – A[j][i]));

 }

 }

 #pragma acc parallel loop

 for(int j=1; j< n-1; j++){

 for(int i=1; i<M-1; i++){

 A[j][i] = Anew[j]i];

 }

 }

 iter ++;

}

A, and

Anew

copied

between the

host and the

GPU on

each

iteration

Performance was poor

due to excess memory

movement overhead

Source: based on Mark Harris of NVIDIA®, “Getting Started with OpenACC”, GPU technology Conf., 2012

The OpenACC data environment

• Data is moved as needed by the compiler on entry and exit

from a parallel or kernel region.

• Data copy overhead can kill performance.

• Solution?

– A data region to explicitly control data movement.

#pragma acc data

– Data movement is explicit …. Compiler no longer moves data for

you.

– Key clauses

– Copy, copyin, copyout: move indicated list of variables between host

and device on entry/exit form data region

– Create: create the data on the accelerator.

– Private, firstprivate: same meaning as with OpenMP …. Scalars are

made private by default.

47

A more complicated example:
Jacobi iteration: OpenACC (GPU)

#pragma acc data copy(A), create(Anew)

while (err>tol && iter < iter_max){

 err = 0.0;

 #pragma acc parallel loop reduction(max:err)

 for(int j=1; j< n-1; j++){

 for(int i=1; i<M-1; i++){

 Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+

 A[j-1][i] + A[j+1][i]);

 err = max(err,abs(Anew[j][i] – A[j][i]));

 }

 }

 #pragma acc parallel loop

 for(int j=1; j< n-1; j++){

 for(int i=1; i<M-1; i++){

 A[j][i] = Anew[j]i];

 }

 }

 iter ++;

}

Create a data region on

the GPU. Copy A once

onto the GPU, and

create Anew on the

device (no copy from

host)

Copy A back out to host

… but only once

Source: based on Mark Harris of NVIDIA®, “Getting Started with OpenACC”, GPU technology Conf., 2012

OpenMP 4.0
Jacobi iteration: OpenMP accelerator directives

#pragma omp target data map(A, Anew)

while (err>tol && iter < iter_max){

 err = 0.0;

 #pragma target

 #pragma omp parallel for reduction(max:err)

 for(int j=1; j< n-1; j++){

 for(int i=1; i<M-1; i++){

 Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+

 A[j-1][i] + A[j+1][i]);

 err = max(err,abs(Anew[j][i] – A[j][i]));

 }

 }

 #pragma omp target

 #pragma omp parallel for

 for(int j=1; j< n-1; j++){

 for(int i=1; i<M-1; i++){

 A[j][i] = Anew[j]i];

 }

 }

 iter ++;

}

Create a data region on

the GPU. Map A and

Anew onto the target

device

Copy A back out to host

… but only once

Uses existing OpenMP

constructs such as

parallel and for

Conclusion

• The hardware trends are clear: Throughput optimized

processors integrated with CPUs are here to stay.

• Software is evolving:

– OpenCL and CUDA today.

– Directive driven approaches (OpenACC and OpenMP 4.0)

tommorow.

• Advice:

– Stick to industry standards to force vendors to “play nice”

50

