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GPUs and the Heterogeneous 

programming problem 
Tim Mattson (Intel Labs)  
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Other than the Intel lab’s research processors. Die photos from UC Berkeley CS194 lecture notes Third party names are the property of their owners 

An Intel MIC processor 
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Disclaimer 
READ THIS … its very important 

• The views expressed in this talk are those of the 
speakers and not their employer. 

• This is an academic style talk and does not address 
details of any particular Intel product.  You will learn 
nothing about Intel products from this presentation.   

• This was a team effort, but if we say anything really 
stupid, it’s our fault … don’t blame our collaborators. 

 

Slides marked with this symbol were produced-with Kurt 

Keutzer and his team for CS194 … A UC Berkeley course 

on Architecting parallel applications with Design Patterns. 

Third party names are the property of their owners. 
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Alt intro to GPU hardware 
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Hardware Architectures for High 

Performance Computing (HPC) 
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Distributed 

Computing 
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Hardware Architectures for High 

Performance Computing (HPC) 

Symmetric 

Multiprocessor 

(SMP) 

Non-uniform 

Memory 

Architecture  

(NUMA) 

Massively 

Parallel 

Processor  

(MPP) 

Cluster 

Single Instruction 

Multiple Data (SIMD) 
Multiple Instruction 

Multiple Data (MIMD) 

Parallel Computers 

Shared Address Space Disjoint Address Space 

Distributed 

Computing 

The dominant branch and 

our focus earlier 

Discussed now with 

vectors and GPUs  



Data Parallelism Pattern 

Use when: 

–Your problem is defined in terms of collections of data 
elements operated on by a similar (if not identical) 
sequence of instructions; i.e. the concurrency is in the 
data.    

Solution 

–Define collections of data elements that can be updated in 
parallel. 

–Define computation as a sequence of collective operations 
applied together to each data element. 

Data 1 Data 2 Data 3 Data n 

Tasks 

…… 



SIMD Architecture 

 Single Instruction Multiple Data (SIMD) 

Central controller broadcasts instructions to multiple processing elements 
(PEs) 

– Only requires one controller for whole array 

– Only requires storage for one copy of program 

– All computations fully synchronized 
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A classic SIMD Massively Parallel Processor: 

Thinking machines CM-200:  

 A Workstation hosted SIMD 

machine.   

 A node consists of  a two 

processor chip pair (32 PEs) and 

an optional floating point 

accelerator. 

 Topology --- The nodes are 

connected as a hypercube. 

 Performance --- peak 

performance of 40 GFLOPS for 

the largest CM-200 (65536 PEs) 

with floating point accelerators. 

 Scalability --- 2K, 4K, 8K, 16K, 

32K or 64K processors. Machines 

may be partitioned 
8 

Connection machine CM200 … late 80’s early 90’s 

Third party names are the property of their owners 
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Modern Data-Parallel Machines 

 SIMD in CPUs: The CPU pipeline is the "frontend", executing a 

sequential program and issuing commands to the SSE or AVX 

processor "array" 

 SIMD in CPU-GPU systems: The CPU Host is the "frontend 

machine", issuing SIMD Kernel commands to the GPU "array" of 

Streaming Multiprocessors 

 SIMD in GPUs: The Warp Scheduler issues commands to the SIMD 

arrays of Scalar Processors 

 In none of these cases is the physical SIMD width (4-32) as large as 

the Connection machine (16K) 

Ctrl. 

Proc. 

Ctrl. 

Proc. 

... 
UE UE UE UE UE UE UE UE 



8/19/2013 Parallel Architecture: 10 John Kubiatowicz 

Pseudo SIMD: (Poor-Man’s SIMD?) 
 

+ 

• Scalar processing 
– traditional mode 

– one operation produces 
one result 

• SIMD processing (Intel) 
– with SSE / SSE2 

– one operation produces 
multiple results  

X 

Y 

X + Y 

+ 

x3 x2 x1 x0 

y3 y2 y1 y0 

x3+y3 x2+y2 x1+y1 x0+y0 

X 

Y 

X + Y 

Slide Source: Alex Klimovitski & Dean Macri,  Intel Corporation 
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High-end GPUs have historically been 

programmable 

Silicon Graphics RealityEngine GPU 

1993 

Intel i860  

RISC CPU 

Custom ASIC 

for processor 

interconnect 

• I860 billed as a “Cray-on-a-chip” 

0.80 micron technology 

2.5M transistors 
Third party names are the property of their owners 
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Programming GPUs 

 Graphics 
programming 
 OpenGL 

 DirectX 

 General purpose 
applications on GPUs 
 It’s been done since 

the mid-90s 

 Why hot now? 
1. Reasonable 

programming models 

2. Devices cost $300 
instead of $3M 



The Graphics vertex pipeline 
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Vertex assembly 

Primitive assembly 

Rasterization 

Fragment operations 

Display 

Vertex operations 

Application 

Primitive operations 

struct { 

  float x,y,z,w; 

  float r,g,b,a; 

} vertex; 

struct { 

  vertex v0,v1,v2  

} triangle; 

struct { 

  short int x,y; 

  float depth; 

  float r,g,b,a; 

} fragment; 

struct { 

  int depth; 

  byte r,g,b,a; 

} pixel; 

Frame buffer 

Thanks to Kurt Akeley 

Wouldn’t be cool to 

make 

these stages of the 

graphics 

pipeline 

programmable? 



Generation I: 3dfx Voodoo (1996) 
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• Did not do vertex transformations: 

these were done in the CPU 

• Did do texture mapping, z-buffering. 

• 0.5 micron technology 

• 1M transistors 

Primitive 
Assembly 
Primitive 
Assembly 

Vertex 
Transforms 

Vertex 
Transforms 

Frame  
Buffer 
Frame  
Buffer 

Raster 
Operations 

Rasterization 
and 

Interpolation 

CPU GPU 
PCI 

Slide adapted from Suresh Venkatasubramanian and Joe 

Kider   

Diamond Multimedia 

Monster3D 

Transistor counts and technology node information from: 

www.maximumpc.com/article/features/graphics_extravaganza

_ultimate_gpu_retrospective 



Generation I game: Quake2 (1997) 
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Generation II: GeForce 256/Radeon 7500 
(1998) 

16 Slide from Suresh Venkatasubramanian and Joe Kider   

Vertex 
Transforms 

Vertex 
Transforms 

• Main innovation: shifting the 

transformation and lighting 

calculations to the GPU 

• DirectX 7 

• Allowed multi-texturing: giving bump 

maps, light maps, and others.. 

• Faster AGP bus instead of PCI 

• 0.22 micron technology (GeForce 256) 

• 23M transistors 

 

Primitive 
Assembly 
Primitive 
Assembly 

Frame  
Buffer 
Frame  
Buffer 

Raster 
Operations 

Rasterization 
and 

Interpolation 

GPU 
AGP 

Image from “7 years of Graphics” 



Generation II game: Quake3 (1999) 
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Quake3 now runs on mobile devices 



Generation III: GeForce3/Radeon 8500(2001) 

18 Slide from Suresh Venkatasubramanian and Joe Kider   

Vertex 
Transforms 

Vertex 
Transforms 

• For the first time, allowed limited 

amount of programmability in the 

vertex pipeline 

• DirectX 8 

• Also allowed volume texturing and 

multi-sampling (for antialiasing) 

• 0.15 micron technology (GeForce3) 

• 57M transistors (GeForce3) 

Primitive 
Assembly 
Primitive 
Assembly 

Frame  
Buffer 
Frame  
Buffer 

Raster 
Operations 

Rasterization 
and 

Interpolation 

GPU 
AGP 

Small vertex 
shaders 

Small vertex 
shaders 

Image from “7 years of Graphics” 



Generation III game: UT2004 (2003) 

19 Reproduced for educational purposes only  



Generation IV: Radeon 9700/GeForce FX (2002) 
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Vertex 
Transforms 

Vertex 
Transforms 

• This generation is the first generation of 

“fully-programmable” graphics cards 

• DirectX 9 (shader model 2.0) 

• Different versions have different resource 

limits on fragment/vertex programs 

• 0.13 micron technology node 

• 80M transistors 

Primitive 
Assembly 
Primitive 
Assembly 

Raster 
Operations 

Rasterization 
and 

Interpolation 

AGP 
Programmable 
Vertex shader 
Programmable 
Vertex shader 

Programmable 
Fragment 
Processor 

Programmable 
Fragment 
Processor 

Texture Memory 

Slide from Suresh Venkatasubramanian and Joe Kider   

Image from “7 years of Graphics” 



Generation III game: Half-Life 2 

21 Reproduced for educational purposes only  



Generation IV: GeForce6/X800 (2004) 

 Simultaneous rendering to multiple buffers 

 DirectX 9 (shader model 3.0) 

 True conditionals and loops  

 PCIe bus 

 Vertex texture fetch 

 0.11 micron technology 

 146M transistors 

22 Slide adapted from Suresh Venkatasubramanian and Joe Kider   
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Generation IV game: FarCry (2004)  

23 Reproduced for educational purposes only  



Generation V: GeForce8800/HD2900 (2006) 

 Ground-up GPU redesign 
 Support for Direct3D 10  
 Geometry Shaders 
 Stream out / transform-feedback 
 Unified shader processors 
 0.09 micron technology 
 681M transistors! 
 Support for General GPU 

programming 
 

24 Slide adapted from Suresh Venkatasubramanian and Joe Kider   

Input  
Assembler 

Input  
Assembler 

Programmable 
Pixel 

Shader 

Programmable 
Pixel 

Shader 

Raster 
Operations 

Programmable 
Geometry  

Shader 

PCIe 

Programmable 
Vertex shader 
Programmable 
Vertex shader 

Output 
Merger 

Radically different microarchitecture 

than Generation 1 GPU to support 

3 programmable stages  =>  

General purpose data-parallel processor 



Generation V game: Crysis (2007) 

25 Reproduced for educational purposes only  



GPGPU arrives: 2006 

Third party names are the property of their owners 

• Support for General GPU 
programming 

• But how will programmers write 
code for this GPU? 
 

• Fortunately for NVIDIA, the academic community had been working on 
GPGPU programming for almost a decade. 

• Ian Buck at Stanford was wrapping up his dissertation “Stream computing 
on Graphics Hardware” and the language “Brook”. 

• He moved over to NVIDIA and led the effort to create CUDA. 

• CUDA was extremely influential … Late in 2008 Apple, AMD, Intel, NVIDIA, 
Imagination Technologies and several other companies released  a vendor-
neutral, portable standard for stream computing called OpenCL. 

 

CS194: 
Keutzer/Mattson 
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The heterogeneous platform: 
a Host (CPU) + a huge range of devices 

FPGA 
DSP 

Many-core CPU  

(MIC & Xeon PhiTM) 

Integrated  

CPU+ FPGA  

(Intel® Atom™ Processor E6x5C Series) 

… and who knows what 

the future will bring? 
*Other names and brands may be claimed as the property of others 



Nvidia GPU Architecture 
• Nvidia GPUs are a collection of “Streaming Multiprocessors” 

– Each SM is analogous to a core of a Multi-Core CPU 

• Each SM is a collection of SIMD execution pipelines that share control 
logic, register file, and L1 Cache  
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Our HW future is clear: 

GMCH 
GPU 

ICH 

CPU 
CPU 

DRAM 

GMCH = graphics memory control hub,   
ICH = Input/output control hub 

• A modern platform has: 

– CPU(s) 

– GPU(s) 

– DSP processors 

– … other? 

• Current designs put 
this functionality 
onto a single chip … 
mitigates the PCIe 
bottleneck in 
GPGPU computing! 

Intel® Core™ i5-2500K Desktop Processor  
(Sandy Bridge)  Intel HD Graphics 3000 (2011) 



Intel’s Ivy Bridge GPU 

• 4 CPU cores + GPU 
– All integrated on the same die 
– GPU and aggregate CPUs have about the same peak performance  

• 256 single-precision Gflops/sec 
• GPU is fully programmable with OpenCL 

– DirectX 11 too 
 

4 Ivy Bridge 

CPU Cores 
Generation 7 

GPU 

8 Mbyte L3 

Cache 

Thanks to David Kanter of Real World Tech and Intel 



Out-of-Order Execution Engine 
Renaming happens at uOP level 

(not original macro-x86 instructions) 

Thanks to David Kanter of Real World Tech, Intel, and Krste Asanovic of UCB 



Ivy Bridge System Architecture 

Shared with CPU cores 

GPU Core 

Equivalent structure on a 

NVIDIA GPU is called a 

“streaming multiprocessor” 

Hardware load balancing across 

GPU Cores 

GPUs include  

special memories 

for manipulating  

textures (images) 

Thanks to David Kanter of Real World Tech and Intel 



Ivy Bridge GPU Core Microarchitecture 

8 active threads per processing 

lane to tolerate memory latency  

Cache shared with 8 other  

processing lanes 

Pipeline hazards detected and 

respected using a register  

scoreboard 

128 32-bit physical registers per thread 

(about the same as  

the Ivy Bridge CPU) 

8-wide execution resources 

Thanks to David Kanter of Real World Tech and Intel 



So how do we program GPUs? 

CUDA or OpenACC: if you are willing to restrict 

yourself to a single vendor’s product (NVIDIA) 

OpenCL or OpenMP 4.0: if you want portability 

across devices and vendors 
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The BIG idea behind OpenCL  

•OpenCL execution model … execute a kernel at each point in a 
problem domain. 

–E.g., process a 1024 x 1024 image with one kernel invocation 
per pixel or 1024 x 1024 = 1,048,576 kernel executions 

void 

trad_vadd(int n,  

         const float *a,  

         const float *b,  

         float *c) 

{ 

  int i; 

  for (i=0; i<n; i++) 

    c[i] = a[i] + b[i];

 } 

Traditional loops 

kernel void 

vec_add(global const float *a,  

        global const float *b,  

        global float *c) 

{ 

  int id = get_global_id(0); 

 

  c[id] = a[id] + b[id]; 

  

} // execute over “n” work-items 

Kernel Parallelism OpenCL 



Execution Model 

• Host defines a command queue and associates it with a context 

(devices, kernels, memory, etc). 

• Host enqueues commands to the command queue 

Gy 

Gx 

(wx, wy) 

(wxSx + sx, wySy + sy) 

(sx, sy) = (0,0) 
(wxSx + sx, wySy + sy) 

(sx, sy) = (Sx-1,0) 

(wxSx + sx, wySy + sy) 

(sx, sy) = (0, Sy-1) 

(wxSx + sx, wySy + sy) 

(sx, sy) = (Sx-1, Sy- 1) 

Index Space Work items execute together as a work-group. 

Kernel execution 
commands launch 
work-items: i.e. a 
kernel for each point in 
an abstract Index Space 
called an NDRange 

A (Gy by Gx ) 
index space 



Single Instruction Multiple Data 

• Individual threads of a warp start together at the same 
program address 

• Each thread has its own instruction address counter and 
register state 

– Each thread is free to branch and execute independently  

– Provide the MIMD abstraction 

• Branch behavior 

– Each branch will be executed serially 

– Threads not following the current branch will be disabled 

37 

A warp 

Start Branch1 Branch2 Branch3 Converge 

Time 



Mapping OpenCL to Nvidia GPUs 

 OpenCL is designed to be functionally forgiving 

 First priority: make things work. Second: get performance. 

 However, to get good performance, one must understand how 
OpenCL is mapped to Nvidia GPUs 



Mapping OpenCL to Nvidia GPUs 

 Work item  SIMD Lane CUDA Thread 

 Warp  SIMD execution granularity 

 Work Group  Streaming Multiprocessor (SM) 

 Index Space  Multiple SMs 
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The BIG idea behind OpenCL  

•OpenCL execution model … execute a kernel at each point in a 
problem domain. 

–E.g., process a 1024 x 1024 image with one kernel invocation 
per pixel or 1024 x 1024 = 1,048,576 kernel executions 

void 

trad_vadd(int n,  

         const float *a,  

         const float *b,  

         float *c) 

{ 

  int i; 

  for (i=0; i<n; i++) 

    c[i] = a[i] + b[i];

 } 

Traditional loops 

kernel void 

vec_add(global const float *a,  

        global const float *b,  

        global float *c) 

{ 

  int id = get_global_id(0); 

 

  c[id] = a[id] + b[id]; 

  

} // execute over “n” work-items 

Kernel Parallelism OpenCL 
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The BIG idea behind CUDA  

•CUDA execution model … execute a kernel at each point in a 
problem domain. 

–E.g., process a 1024 x 1024 image with one kernel invocation 
per pixel or 1024 x 1024 = 1,048,576 kernel executions 

void 

trad_vadd(int n,  

         const float *a,  

         const float *b,  

         float *c) 

{ 

  int i; 

  for (i=0; i<n; i++) 

    c[i] = a[i] + b[i];

 } 

Traditional loops 

void __global__ 

vec_add(float *a,  

        float *b,  

        float *c) 

{ 

  int id = blockIdx.x * blockDim.x 
          + threadIdx.x; 
 

 c[id] = a[id] + b[id]; 

  

} // execute over “n” work-items 

Kernel Parallelism CUDA 



OpenCL vs. CUDA Terminology 

• Host defines a command queue and associates it with a context 

(devices, kernels, memory, etc). 

• Host enqueues commands to the command queue 

Gy 

Gx 

(wx, wy) 

(wxSx + sx, wySy + sy) 

(sx, sy) = (0,0) 
(wxSx + sx, wySy + sy) 

(sx, sy) = (Sx-1,0) 

(wxSx + sx, wySy + sy) 

(sx, sy) = (0, Sy-1) 

(wxSx + sx, wySy + sy) 

(sx, sy) = (Sx-1, Sy- 1) 

Index Space Work items execute together as a work-group. 

Kernel execution 
commands launch 
work-items: i.e. a 
kernel for each point in 
an abstract Index Space 
called an NDRange 

A (Gy by Gx ) 
index space 

CUDA Stream 

Grid 

Threads 
Thread Block 



OpenCL or CUDA … they require massive 

changes to existing code.  There has got 

to be a better way. 

• OpenMP allows most Application programmers to ignore 

pthreads (or C++’11 threads).  Dramatically simplifies their 

life. 

• Can we use the same directive-oriented scheme we used 

for OpenMP?   Yes. 

– OpenMP 4.0 (spec. released Nov’2013) includes constructs for 

directive driven GPU programming 

– OpenACC (a proprietary spec from Cray, PGI and Nvidia released 

in June’2012) took an early version of the OpenMP 4.0 work and 

released it as their own (with proper attribution… they aren’t bad 

people)   

 

43 
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The big idea behind OpenACC 

•Let’s add two vectors together …. C = A + B 

void vadd(int n,  

         const float *a,  

         const float *b,  

         float *restrict c) 

{ 

  int i; 

 #pragma acc parallel loop 

  for (i=0; i<n; i++) 

    c[i] = a[i] + b[i];  

} 

int main(){ 

float *a, *b, *c;  int n = 10000; 

// allocate and fill a and b 

 

    vadd(n, a, b, c); 

 

} 

Assure the 

compiler that c is 

not aliased with 

other pointers 

Assure the 

compiler that c is 

not aliased with 

other pointers 

Turn the loop 

into a kernel, 

move data to a 

device, and 

launch the 

kernel. 

Turn the loop 

into a kernel, 

move data to a 

device, and 

launch the 

kernel. 

Host waits here 

until the kernel is 

done.  Then the 

output array c  is 

copied back to 

the host. 

Host waits here 

until the kernel is 

done.  Then the 

output array c  is 

copied back to 

the host. 



A more complicated example: 
Jacobi iteration: OpenACC (GPU) 

while (err>tol && iter < iter_masx){ 

   err = 0.0; 

   #pragma acc parallel loop reduction(max:err) 

   for(int j=1; j< n-1; j++){ 

      for(int i=1; i<M-1; i++){ 

         Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+ 

                             A[j-1][i] + A[j+1][i]); 

         err = max(err,abs(Anew[j][i] – A[j][i])); 

       } 

    } 

    #pragma acc parallel loop 

    for(int j=1; j< n-1; j++){ 

      for(int i=1; i<M-1; i++){ 

         A[j][i] = Anew[j]i]; 

       } 

    } 

    iter ++; 

} 

Source: based on Mark Harris of NVIDIA®, “Getting Started with OpenACC”, GPU technology Conf., 2012 

Turn the loop into a 

kernel, move data 

to a device, and 

launch the kernel. 

Turn the loop into a 

kernel, move data 

to a device, and 

launch the kernel. 

Host waits 

here until 

the kernel 

is done.   

Host waits 

here until 

the kernel 

is done.   



A more complicated example: 
Jacobi iteration: OpenACC (GPU) 

while (err>tol && iter < iter_max){ 

   err = 0.0; 

   #pragma acc parallel loop reduction(max:err) 

   for(int j=1; j< n-1; j++){ 

      for(int i=1; i<M-1; i++){ 

         Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+ 

                             A[j-1][i] + A[j+1][i]); 

         err = max(err,abs(Anew[j][i] – A[j][i])); 

       } 

    } 

    #pragma acc parallel loop 

    for(int j=1; j< n-1; j++){ 

      for(int i=1; i<M-1; i++){ 

         A[j][i] = Anew[j]i]; 

       } 

    } 

    iter ++; 

} 

A, and 

Anew 

copied 

between the 

host and the 

GPU on 

each 

iteration 

Performance was poor 

due to excess memory 

movement overhead 

Source: based on Mark Harris of NVIDIA®, “Getting Started with OpenACC”, GPU technology Conf., 2012 



The OpenACC data environment 

• Data is moved as needed by the compiler on entry and exit 

from a parallel or kernel region. 

• Data copy overhead can kill performance. 

• Solution? 

– A data region to explicitly control data movement. 

#pragma acc data 

– Data movement is explicit  …. Compiler no longer moves data for 

you. 

– Key clauses  

– Copy, copyin, copyout: move indicated list of variables between host 

and device on entry/exit form data region 

– Create: create the data on the accelerator. 

– Private, firstprivate: same meaning as with OpenMP …. Scalars are 

made private by default. 

 

47 



A more complicated example: 
Jacobi iteration: OpenACC (GPU) 

#pragma acc data copy(A), create(Anew) 

while (err>tol && iter < iter_max){ 

   err = 0.0; 

   #pragma acc parallel loop reduction(max:err) 

   for(int j=1; j< n-1; j++){ 

      for(int i=1; i<M-1; i++){ 

         Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+ 

                             A[j-1][i] + A[j+1][i]); 

         err = max(err,abs(Anew[j][i] – A[j][i])); 

       } 

    } 

    #pragma acc parallel loop 

    for(int j=1; j< n-1; j++){ 

      for(int i=1; i<M-1; i++){ 

         A[j][i] = Anew[j]i]; 

       } 

    } 

    iter ++; 

} 

Create a data region on 

the GPU.  Copy A once 

onto the GPU, and 

create Anew on the 

device (no copy from 

host) 

Copy A back out to host 

… but only once 

Source: based on Mark Harris of NVIDIA®, “Getting Started with OpenACC”, GPU technology Conf., 2012 



OpenMP 4.0  
Jacobi iteration: OpenMP accelerator directives 

#pragma omp target data map(A, Anew) 

while (err>tol && iter < iter_max){ 

   err = 0.0; 

   #pragma target 

   #pragma omp parallel for reduction(max:err) 

   for(int j=1; j< n-1; j++){ 

      for(int i=1; i<M-1; i++){ 

         Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+ 

                             A[j-1][i] + A[j+1][i]); 

         err = max(err,abs(Anew[j][i] – A[j][i])); 

       } 

    } 

    #pragma omp target 

    #pragma omp parallel for 

    for(int j=1; j< n-1; j++){ 

      for(int i=1; i<M-1; i++){ 

         A[j][i] = Anew[j]i]; 

       } 

    } 

    iter ++; 

} 

Create a data region on 

the GPU.  Map  A and 

Anew onto the target 

device 

Copy A back out to host 

… but only once 

Uses existing OpenMP 

constructs such as 

parallel and for 



Conclusion 

• The hardware trends are clear:  Throughput optimized 

processors integrated with CPUs are here to stay. 

• Software is evolving:   

– OpenCL and CUDA today.   

– Directive driven approaches (OpenACC and OpenMP 4.0) 

tommorow. 

• Advice: 

– Stick to industry standards to force vendors to “play nice” 

50 


