DDR3 MC

E TR |
NVIDIA Tegra 3 (quad Arm

L - i " i g 4 ?:. i
NVIDIA GTX 480 processor WVRE. [Corex A9 cores + GPU) An Intel MIC processor

Intel labs 48 core SCC processor

GPUs and the Heterogeneous

programming problem
Tim Mattson (Intel Labs)

Cell Broadband Engine Processor

i
System '
Agent &

; Processor
Graphics =] & , e
:iu T = e A HHl e | ' including
! : - e e - - DM, Display
2 b I 1 |
o Bliddja Iﬁlﬂd f _ ThEL | andMisc. /0

1818
; ;[II Shared L3 Cache**
1EEEINE IR{IRY +L]

Intel Labs 80 core Research R e .
processor Intel “Sandybridge” processor IBM Cell Broadband engine processor

Other than the Intel lab’s research processors. Die photos from UC Berkeley CS194 lecture notes Third party names are the property of their owners

Disclaimer intel)
READ THIS ... its very important

e The views expressed in this talk are those of the
speakers and not their employer.

e This is an academic style talk and does not address
details of any particular Intel product. You will learn
nothing about Intel products from this presentation.

e This was a team effort, but if we say anything really
stupid, it's our fault ... don’t blame our collaborators.

Slides marked with this symbol were produced-with Kurt
Keutzer and his team for CS194 ... A UC Berkeley course
on Architecting parallel applications with Design Patterns.

Third party names are the property of their owners.

Alt intro to GPU hardware

Hardware Architectures for High

Performance Computino

Parallel Computers

— \

Single Instruction

, Multiple Instruction
Multiple Data (SIMD) Multigle Data (MIMD)

@Address SFD Disjoint Address SpD

Symmetric Non-uniform Massively Cluster Distributed
Multiprocessor Memory Parallel Computing
(SMP) Architecture Processor

(NUMA) (MPP)

Performance Computino

Discussed now with

vectors and GPUs | parallel Computers

The dominant branch and
our focus earlier

—

Single Instruction
Multiple Data (SIMD)

Multiple Instruction
Multiple Data (MIMD)

@Address Spac> Disjoint Address SpD

Symmetric Non-uniform Massively Cluster Distributed
Multiprocessor Memory Parallel

(SMP) Architecture Processor
(NUMA) (MPP)

Computing

Data Parallelism Pattern

B Use when:

—Your problem is defined in terms of collections of data
elements operated on by a similar (if not identical)
sequence of instructions; i.e. the concurrency is in the
data.

B Solution

— Define collections of data elements that can be updated in
parallel.

— Define computation as a sequence of collective operations
applied together to each data element.

| Tasks |
| ! ! ! !

|Data1 | Data2 | [Daa3 | ... | |patan |

SIMD Architecture

ﬁ

Inter-PE Connection Network

Array
Controller

Control =—>
Data

So=
So=
So=
So=
So=
So=

® Single Instruction Multiple Data (SIMD)

® Central controller broadcasts instructions to multiple processing elements
(PEs)

— Only requires one controller for whole array
— Only requires storage for one copy of program
— All computations fully synchronized

A classic SIMD Massively Parallel Processor:
Thinking machines CM-200:

® Connection machine CM200 ... late 80’s early 90°’s

® A Workstation hosted SIMD
machine.

® A node consists of a two
processor chip pair (32 PEs) and
an optional floating point
accelerator.

® Topology --- The nodes are
connected as a hypercube.

" Performance --- peak
performance of 40 GFLOPS for

the largest CM-200 (65536 PEs)
with floating point accelerators.

® Scalability --- 2K, 4K, 8K, 16K,
32K or 64K processors. Machines
may be partitioned

Third party names are the property of their owners

-~

Modern Data-Parallel Machines

® SIMD in CPUs: The CPU pipeline is the "frontend", executing a
sequential program and issuing commands to the SSE or AVX
processor "array"

® SIMD in CPU-GPU systems: The CPU Host is the "frontend
machine", issuing SIMD Kernel commands to the GPU "array" of
Streaming Multiprocessors

® SIMD in GPUs: The Warp Scheduler issues commands to the SIMD
arrays of Scalar Processors

®" In none of these cases is the physical SIMD width (4-32) as large as
the Connection machine (16K)

9/38

D: (Poor-Man's SIMD?)

» Scalar processing »+ SIMD processing (Intel)
- traditional mode - with SSE / SSE2
- ohe operation produces - ohe operation produces
one result multiple results

X x3
Y y3
X+Y | x3+y3

Slide Source: Alex Klimovitski & Dean Macri, Intel Corporation

8/19/2013 John Kubiatowicz Parallel Architecture: 10

programmable

. Custom ASIC
Intel 1860 for processor
RISC CPU .
System Bus - Inte rcon neCt
Command geometry :
Processor
Geometry
Engines

Triangle Bus —*

Fragment .
Generators

Image

Engines

raster memory board raster memory board

display generator board \—”—' video

Silicon Graphics RealityEngine GPU - 1860 billed as a “Cray-on-a-chip”
0.80 micron technology

1 993 2.5M transistors

Third party names are the property of their owners 11/38

Programming GPUs

Graphics
programming
= OpenGL
* DirectX

General purpose
applications on GPUs
* |t's been done since
the mid-90s
= Why hot now?

1. Reasonable
programming models

2. Devices cost $300
instead of $3M

Accelerated Volume Rendering and Tomographic Reconstruction Using
Texture Mapping Hardware

Brian Cabral, Nancy Cam, and Jim Foran
Silicon Graphics Computer Systems*

Abstract

Volume rendering and reconstruction centers around solving two
related integral equati a volume g integral (a g I
ized Radon transform) and a filtered back projection integral (the
inverse Radon transform). Both of these equations are of the same
mathematical form and can be dimensionally decomposed and ap-
proximated using Riemann sums over a series of resampled images.
‘When viewed as a form of texture mapping and frame buffer accu-
mulation, enormous hardware enabled performance acceleration is
possible.

1 Introduction

Volume Visualization encompasses not only the viewing but also
the construction of the volumetric data set from the more basic pro-
jection data obtained from sensor sources. Most volumes used in
rendering are derived from such sensor data. A primary example
being Computer Aided Tomographic (CAT) x-ray data. This data
is usually a series of two dimensional projections of a three di-
mensional volume. The process of converting this projection data
back into a volume is called tomographic reconstruction.! Once a

volume is hically d it can be visualized using
volume rendering techniques.[5, 7, 13, 15, 16, 17]
These two ions have traditionally been pled, being

handled by two separate algorithms. It is, however, highly benefi-
cial to view these two operations as having the same mathematical
and algorithmic form. Traditional volume rendering techniques can
be reformulated into equival i using texture
mapping and summing buffer. Sumlarly, the Filtered Back Pro-
Jection CT algorithm can be reformulated into an algonthm whlch

also uses texture mapping in bination with an or
summing buffer.
The math | and algorithmic similarity of these two oper-

ations, when reformulated in terms of texture mapping and accu-
mulation, is significant. It means that existing high performance
computer graphics and imaging computers can be used to both ren-

*2011 N. Shoreline Bivd., Mountain View, CA 94043

"The term or Computed Tc hy (CT)[12] is
used to differentiate it from signal reconstruction: the rebuilding of a continuous
function (signal) from a discrete sampling of that function.

0-8186-7067-395 $4.00© 1995 IEEE

pis8)

[x(, yh)

i Ih

Figure 1: The Radon d line
integral projection of a 2-D (or 3-0) funchorl f(z,y,2) ontoa
line or plane.

der and reconstruct volumes at rates of 100 to 1000 times faster than
CPU based techniques.

2 Background: The Radon and Inverse Radon
Transform

We begin by developmg the mathematical basis of volume rendering
and The most fund of which is the Radon
transform and its inverse. We will show that volume rendering, as
described in [5, 13, 15, 16, 17], is a generalized form of the Radon
lransform Finally, we will demonstrate efficient hardware texture

pping based impl, of both volume rendering and it’s
inverse: volume reconstruction.
‘The Radon f defines a mapping b the physical

object space (z,y) and its projection space (s,#), as illustrated in
figure 1. The object is defined in a Cmesuan coordinate system by
J(z,y), which ibes the x-ray or ion at the
point (z, y) in the object at a fixed z-plane. Since the attenuation is
directly proportional to the volumetric density of the object at that
spatial position, a reconstructed image of f(z,y) portrays a two
dimensional non-negative density distribution.

The Radon transform can be thought of as an operator on the

12/38

e Graphics vertex pipeline

Application
struct { ¢
float X,v,z,w; Vertex assembly
float r,g,b,a; w—m ¥
) vertex; Vertex operations
struct { \ Wouldn't be cool to
vertex v0,vl,v2 Primitive assembly make
} triangle;] ¥ these stages of the
Primitive operations graphics
struct { . .
. pipeline
short int x,y; \4 roarammable?
float depth; Rasterization Prog '
} Eloat rJ,Cg,b,a; — A '
ragment; i
7 Fragment operations

N
struct { Y
int depth; > Grame bUﬁeD
byte r,qg,b,a; ¢
} pixel;

Display

Thanks to Kurt Akeley 13

Diamond Multimedia
Monster3D

e Did not do vertex transformations:
these were done in the CPU

« Did do texture mapping, z-buffering.
e 0.5 micron technology

e 1M transistors

GPU

CPU

PCI

Transistor counts and technology node information from: . .
www.maximumpc.com/article/features/graphics_extravaganza Slide adapted from Suresh Venkatasubramanian and Joe

_ultimate_gpu_retrospective Kider 14

eneration 1 game: Quake

I\ Generation Il: GeForce 256/Radeon 7500

\

« Main innovation: shifting the
transformation and lighting
Giehoree:2ab calculations to the GPU

e DirectX7

e Allowed multi-texturing: giving bump
maps, light maps, and others..

e Faster AGP bus instead of PCI

Image from “7 years of Graphics” e 0.22 micron technology (GeForce 256)

e 23M transistors
I > GPU

Slide from Suresh Venkatasubramanian and Joe Kider 16

AGP

Quake3 (1999)

()
£
(0
o0
C
O
o)
()
L
Q
[=
()
O

0
O
O
>
)
ge
Q@
e
o)
- £
c
)
%
c
S
-
=
@)
c
™
Q
X
)
S
@)

e For the first time, allowed limited
amount of programmability in the
vertex pipeline

GEF- CEB E] e DirectX 8
6 N « Also allowed volume texturing and
e < @ multi-sampling (for antialiasing)
5 ‘ .

} o e 0.15 micron technology (GeForce3)
Image from "7 years of Graphics

) Pm

Slide from Suresh Venkatasubramanian and Joe Kider 18

e 57M transistors (GeForce3)

pomina entered the game.

Reproduced for educational purposes only

GeForce FX e This generation is the first generation of
“fully-programmable” graphics cards

e DirectX 9 (shader model 2.0)

o Different versions have different resource
limits on fragment/vertex programs

=
1

____a____,

Texture Memory |

e 0.13 micron technology node
Image from “7 years of Graphics”

e« 80M transistors

Slide from Suresh Venkatasubramanian and Joe Kider 20

CLICK IMAGE TC

Reproduced for educational purposes only

\éneration IV: GeForce6/X800

l/G

Simultaneous rendering to multiple buffers
DirectX 9 (shader model 3.0)

True conditionals and loops

PCle bus

Vertex texture fetch

0.11 micron technology

146M transistors

PCle
g DR

R W

: Texture Memory

Y S

: Texture Memory

Slide adapted from Suresh Venkatasubramanian and Joe Kider 22

Reproduced for educational purposes only

PCle

Ground-up GPU redesign
Support for Direct3D 10
Geometry Shaders

Stream out / transform-feedback
Unified shader processors

0.09 micron technology

681M transistors!

Support for General GPU
programming

Pro Pro Prog
Ver G Op

Radically different microarchitecture
than Generation 1 GPU to support

3 programmable stages =>

General purpose data-parallel processor

Slide adapted from Suresh Venkatasubramanian and Joe Kider 24

Reproduced for educational purposes only

GPGPU arrives: 2006

| W
CS194:™
Keutzer/Mattson

* Support for General GPU
programming

* But how will programmers write
code for this GPU?

* Fortunately for NVIDIA, the academic community had been working on
GPGPU programming for almost a decade.

* lan Buck at Stanford was wrapping up his dissertation “Stream computing
on Graphics Hardware” and the language “Brook”.

e He moved over to NVIDIA and led the effort to create CUDA.

* CUDA was extremely influential ... Late in 2008 Apple, AMD, Intel, NVIDIA,
Imagination Technologies and several other companies released a vendor-
neutral, portable standard for stream computing called OpenCL.

Third party names are the property of their owners

The heterogeneous platform:
a Host (CPU) + a huge range of devices

|

ml

:]-.
==
N

|
e [m.mﬁL Host
11 'Uj
\ .
Compubs Unit Compute Device
A GUMNE LR
Inte grate d St E R R
CPU+ FPGA ... and who knows what Many-core CPU
(Intel® Atom™ Processor E6x5C Series) the future Wl” brlngf? (MlC & Xeon PthM)

27
Other names and brands may be claimed as the property of others

Nvidia GPU Architecture

* Nvidia GPUs are a collection of “Streaming Multiprocessors”
— Each SM is analogous to a core of a Multi-Core CPU

 Each SMis a collection of SIMD execution pipelines that share control
logic, register file, and L1 Cache

DRAMIF
dinvya

dANINVYa

-
-
(7]
o]
I

L2

Y YA

PolyMorph Engine

Vertex Fetch | [Tessellator WEvinod
Attribute Setup| [Stream Output

dNNY¥a

Our HW future is clear: intel)

nREES sd |
o | i

| e A modern platform has:
i - CPU(s)
o —— - GPU(s)
alinie — DSP processors
- ... other?

e Current designs put
this functionality - HE ; -
onto a single chip ... | = e e 91| Agent& g

o 9 P , Processor [ilemt = oigien colgg v e a Me"““y |
mitigates the PCle | Graphics ¥ |a et Contiole

bottleneck in (I
GPGPU computing! ;
§ |

including
fitd ; 151 : DM, Display
'l’ ilimamd REidEs i i ; and Misc. /0

T
Fh s * i
THTHT B s <
- 2s
, H
SE=:

are ache**
i 2 E 11 g

$ RRRSE (AN R 4i]-
abd LIRS RSB L nan

: i ' : ! F S

i l‘ ‘.l

waesn: Memory Controller I/0

GMCH = graphics memory control hub, Intel® Core™ i5-2500K Desktop Processor
ICH = Input/output control hub (Sandy Bridge) Intel HD Graphics 3000 (2011)

Intel’s Ivy Bridge GPU

b i
§

[41y Bridge |7
.4 CPU Cores [

* 4 CPU cores + GPU
— All integrated on the same die
— GPU and aggregate CPUs have about the same peak performance
» 256 single-precision Gflops/sec
 GPU is fully programmable with OpenCL
— DirectX 11 too

Thanks to David Kanter of Real World Tech and Intel

Out-of-Order Execution Engine

Renaming happens at uOP level
— (not ariginal macrox86 instructions)
4 pops /

I Register Alias Table and Allocator |

\i;\-i pops

‘ 128 Entry Reorder Buffer (ROB) 4 flops |H§il n‘tn.fﬂ?lisg iil
odraim vVisible state

*i\-i pops
—>| 36 Entry Reservation Station
k J k 4 k 4 k 4 k 4 l k §

Port 0 Port 1 Port &
Thanks to David Kanter of Real World Tech, Intel, and Krste Asanovic of UCB

lvy Bridge System Architecture

Ivy Bridge GPU :
Y oS Hardware load balancing across

r S5
(== GPU Core

Equivalent structure on a
. — NVIDIAGPU s called a
“streaming multiprocessor”

CECI)

GPUs include
special memories
for manipulating
textures (images)

. —————Shared with CPU cores

Controllers

- L T

[DDR3 Memory]

Thanks to David Kanter of Real World Tech and Intel

lvy Bridge GPU Core Microarchitecture

Gen 7 Shader Core

[Shared 32KB L1]) Cache shared with 8 other

'“““"‘“T“ Cache processing lanes
[8 Thread Queues]< 8 active threads per processing

1 lane to tolerate memory latency
Instruction Scoreboard) < Pipeline hazards detected and
| \1\ respected using a register
2 Instructions
— ~ _ scoreboard
General Other Shader Cores

Registers (32KB) |

[15'.2-1|_:i1] [:u.lun] \28 32-bit physical registers per thread

.,

EU FMA (about the same as
4 Math [4]

\ | the lvy Bridge CPU)
|

8-wide execution resources

Thanks to David Kanter of Real World Tech and Intel

So how do we program GPUs?

CUDA or OpenACC: if you are willing to restrict
yourself to a single vendor’s product (NVIDIA)

OpenCL or OpenMP 4.0: if you want portability
across devices and vendors

The BIG idea behind OpenCL ke

eOpenCL execution model ... execute a kernel at each point in a
problem domain.

—-E.g., process a 1024 x 1024 image with one kernel invocation
per pixel or 1024 x 1024 = 1,048,576 kernel executions

Traditional loops Kernel Parallelism OpenCL
void kernel void
trad vadd(int n, vec_add(global const float *a,
const float *a, global const float *b,
const float *b, global float *c)
float *c) *{
{ int id = get global id(0) ;
int 1i;
for (i=0; i<n; i++) c[id] = a[id] + b[id];

c[i] = a[i] + b[1];

} } // execute over “n” work-items

35

Execution Model

» Host defines a command queue and associates it with a context
(devices, kernels, memory, etc).

* Host enqueues commands to the command queue

Kernel execution
commands launch

work-items: i.e. a

kernel for each point in
an abstract Index Space ’
called an NDRange

St

A (G, by G,)
index space

-

4

jn

work-group size S, |

-

work-group (W;, v's;;)'

work-item

(Wy Sy +8X, WSy +8,)
(3% 8,) = (0,0)

work-item

(W, S + sx, W, Sy +5,)
(sxa sy) = (Sx'loo)

work-group size S

¥

work-item

(Wy Sy + sx, WSy +5,)
(Sxa Sy) = (09 Sy'])

work-item

(Wy Sy + sx, WSy +5,)
(Sxa Sy) = (Sx-la Sy_ 1)

¥

Work items execute together as a work-group.

Single Instruction Multiple Data

* |ndividual threads of a warp start together at the same
program address

* Each thread has its own instruction address counter and
register state
— Each thread is free to branch and execute independently
— Provide the MIMD abstraction

* Branch behavior
— Each branch will be executed serially
— Threads not following the current branch will be disabled

B > > >

—_— —_—

Awarp - 3 3
_ ? : Time

—
Start Branch1 Branch2 Branch3 Converge 37

® OpenCL is designed to be functionally forgiving

= First priority: make things work. Second: get performance.

® However, to get good performance, one must understand how
OpenCL is mapped to Nvidia GPUs

Cam | 8 [8 [8 | &8 | & | 8 [&8 [| =
=

M+ + T & & T & ¥

< E
E L [& [8 [8 [& | & | 8§ [8 [S

PolyMerph Engine
[vores e] [“Tosomor][i |

Work item < SIMD Lane <<>CUDA Thread
Warp < SIMD execution granularity

Work Group < Streaming Multiprocessor (SM)

Index Space < Multiple SMs

DRAMIA

HOSTIF

ENTIN 4 (e

=
x
>
=
T

AilNY¥a

Warp Scheduler
Dispatch Unit

Register File (32,768 x 32-bit)

Cur Core

Core

Core

Core

Core

Core

Core

PolyMorph Engine

b =

LDIST

LD/IST
LDIST
LD/ST
LDIST
LD/IST
LDIST
LD/ST
LDIST

LDIST

LDIST

Vertex Fetch | Tessellator | Ti&lS?TmIgﬂ!”

[Attrivute setup) | sweam output

The BIG idea behind OpenCL ke

eOpenCL execution model ... execute a kernel at each point in a
problem domain.

—-E.g., process a 1024 x 1024 image with one kernel invocation
per pixel or 1024 x 1024 = 1,048,576 kernel executions

Traditional loops Kernel Parallelism OpenCL
void kernel void
trad vadd(int n, vec_add(global const float *a,
const float *a, global const float *b,
const float *b, global float *c)
float *c) *{
{ int id = get global id(0) ;
int 1i;
for (i=0; i<n; i++) c[id] = a[id] + b[id];

c[i] = a[i] + b[1];

} } // execute over “n” work-items

40

The BIG idea behind CUDA intel)

e CUDA execution model ... execute a kernel at each point in a
problem domain.

—-E.g., process a 1024 x 1024 image with one kernel invocation
per pixel or 1024 x 1024 = 1,048,576 kernel executions

Traditional loops Kernel Parallelism CUDA
void void global
trad vadd(int n, vec_add(float *a,
const float *a, float *b,
const float *b, float *c)
float *c) *{
{ int id = blockIdx.x * blockDim.Xx
int i; + threadIdx.x;
for (i=0; i<n; i++)
c[i] = a[i] + b[i]; c[id] = a[id] + b[id];

} // execute over “n” work-items
41

OpenCL vs. CUDA Terminology

» Host defines a command queue and associates it with a context
(devices, kernels, memory, etc).

Kernel execution Threads
commands lau

work-items: i.e. a

kernel for each point in
an abstract Index Space ’
called an NDRange «— Grid

|
ok

A (G, by G,)
index space

-

4

jn

CUDA Stream
* Host enqueues commands to the command queue

Thread Block

work-gro uw'/ﬂ
1

-

work-group (W;, v's;;)'

work-item

(Wy Sy +8X, WSy +8,)
(3% 8,) = (0,0)

work-item

(W, S + sx, W, Sy +5,)
(sxa sy) = (Sx'loo)

T

work-

roup size Ey.

work-item

(Wy Sy + sx, WSy +5,)
(Sxa Sy) = (09 Sy'l)

work-item

(Wy Sy + sx, WSy +5,)
(Sxa Sy) = (Sx_la Sy_ 1)

¥

!

Work items execute together as a work-group.

OpenCL or CUDA ... they require massive
changes to existing code. There has got
to be a better way.

* OpenMP allows most Application programmers to ignore
pthreads (or C++'11 threads). Dramatically simplifies their
life.

« Can we use the same directive-oriented scheme we used
for OpenMP? Yes.

— OpenMP 4.0 (spec. released Nov’'2013) includes constructs for
directive driven GPU programming

— OpenACC (a proprietary spec from Cray, PGl and Nvidia released
in June’2012) took an early version of the OpenMP 4.0 work and
released it as their own (with proper attribution... they aren’t bad

people)

43

The big idea behind OpenACC

intel)

el et’s add two vectors together ... C=A + B

void vadd(int n,
const float *a,

const float *Db,

Assure the
compiler that c is
not aliased with
other pointers

float *restrict c)

Host waits here { i i
until the kernel is iot 1; Turn the loop
done. Then the #pragma acc parallel loop nto a kernel
output array ¢ is for (i=0; i<n; 1i++) “\\ nmwedamtoé
copied back to \ c[i] = a[i] + b[i]; device, and
the host. } launch the
int main () { kernel.

float *a, *b, *c; int n = 10000;

// allocate and fill a and b
vadd(n, a, b, c);

44 }

A more complicated example:

Jacobi iteration: OpenACC (GPU) Turn the loop into a

kernel, move data

: : : to a device, and
while (err>tol && iter < iter masx) { launch the kernel

err = 0.0;
#pragma acc parallel loop reduction (max:err)
for (int j=1; j< n-1; j++){

for (int i=1; i<M-1; i++) {

. Anew[j] [1i] = 0.25* (A[j][i+1l] + A[j][i-1]+
Host waits : . : 1y L
here until A[j-1]1[i] + A[j+1][i]);
the kernel

is done.

~\\\N err = max(err,abs (Anew[]j] [i] - A[J]1[1])):
}
}

#pragma acc parallel loop
for(int j=1; j< n-1; j++){
for (int i=1; i<M-1; i++) {
A[j][1i] = Anew[]j]i];
}

}
iter ++4;

Source: based on Mark Harris of NVIDIA®, “Getting Started with OpenACC”, GPU technology Conf., 2012

A more complicated example:
Jacobi iteration: OpenACC (GPU)

while (err>tol && iter < iter max) {

err = 0.0;

#pragma acc parallel loop reduction (max:err)
for (int j=1; j< n-1; j++) {

A, and for (int i=1; i<M-1; i++) {
Anew Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-11+
copied A[jJ-1]1[1i] + A[3+1]I[i]);

err = max(err,abs (Anew[j][i] - A[j][i]))

between the }

host and the

GPU on #pragma acc parallel loop
each for (int j=1; j< n-1; j++){
Iteration for (int i=1; i<M-1; i++){

A[j][i] = Anew[]j]i];

}
} Performance was poor

lter ++; due to excess memory
movement overhead

Source: based on Mark Harris of NVIDIA®, “Getting Started with OpenACC”, GPU technology Conf., 2012

The OpenACC data environment

» Data is moved as needed by the compiler on entry and exit
from a parallel or kernel region.

« Data copy overhead can kill performance.

« Solution?
— A data region to explicitly control data movement.
#pragma acc data

— Data movement is explicit Compiler no longer moves data for
you.
— Key clauses

— Copy, copyin, copyout: move indicated list of variables between host
and device on entry/exit form data region

— Create: create the data on the accelerator.

— Private, firstprivate: same meaning as with OpenMP Scalars are
made private by default.

47

A more complicated example: | Create adataregion on
the GPU. Copy A once

Jacobi iteration: OpenACC (GPU) onto the GPU. and
create Anew on the
device (no copy from
host)

#pragma acc data copy(A), create (Anew) —
while (err>tol && iter < iter max) {

err = 0.0;

#pragma acc parallel loop reduction (max:err)
for(int j=1; j< n-1; j++){
for (int i=1; i<M-1; i++) {
Anew[]j] [1i] = 0.25* (A[j][i+1l] + A[j]l[1i-1]+
A[F-1]1[i] + A[j+1]1[i]);
err = max(err,abs (Anew[]j] [i] - A[Jj]1[1]))

}

}
#pragma acc parallel loop

for (int j=1; j< n-1; J++) {
for (int i=1; i<M-1; i++) {
A[j]l[i] = Anew[]j]li];
}

}
iter ++; Copy A back out to host

} < ... but only once

<

Source: based on Mark Harris of NVIDIA®, “Getting Started with OpenACC”, GPU technology Conf., 2012

OpenMP 4.0

Jacobi iteration: OpenMP accelerator directives

Create a data region on
the GPU. Map A and
Anew onto the target
device

#pragma omp target data map (A, Anew)
while (err>tol && iter < iter max) { $\\\\\
err = 0.0;

#pragma target

#pragma omp parallel for reduction (max:err)
for (int j=1; j< n-1; j++){
for (int i=1; i<M-1; i++) {
Anew[j][1i] = 0.25* (A[j][i+1l] + A[j][i-1]+
A[j-11[i] + A[Jj+1]1[1i]);

err = max (err,abs (Anew[j][i] - A[JF]1[i]));

}

}
#pragma omp target
#pragma omp parallel for<——
for(int j=1; j< n-1; j++){
for (int i=1; i<M-1; i++) {
A[j]1[i] = Anew[j]il;
}

Uses existing OpenMP
constructs such as
parallel and for

}

/iter ++7 | Copy A back out to host
}o< ... but only once

Conclusion

* The hardware trends are clear: Throughput optimized
processors integrated with CPUs are here to stay.

« Software is evolving:
— OpenCL and CUDA today.

— Directive driven approaches (OpenACC and OpenMP 4.0)
tommorow.

 Advice:
— Stick to industry standards to force vendors to “play nice”

50

