DDR3 MC

aE - [

e FTT SRPEFIEN NVIDIA Tegra 3 (quad Arm -
NVIDIA GTX 480 processor — Corex A9 cores + GPU) An Intel MIC processor

Intel labs 48 core SCC processor

Introduction to Parallel Computing

Tim Mattson (Intel Labs)

Cell Broadband Engine Processor

s b L e g
Core 1 | System '
e - — wpem oo Agent &
|L:ﬁr#§:¢- “ .|| Memory |
s i 3 Controller |

; Processor
Graphics

- i : & | HITHE § === |} including
i | a— - . — =1, DMI, Display
i - -f ek t H $111]! and Misc. /0

Intel Labs 80 core Research
processor

Other than the Intel lab’s research processors. Die photos from UC Berkeley CS194 lecture notes

Intel “Sandybridge” processor IBM Cell Broadband engine processor

Third party names are the property of their owners

Disclaimer intel)
READ THIS ... its very important

e The views expressed in this talk are those of the
speakers and not their employer.

e This is an academic style talk and does not address
details of any particular Intel product. You will learn
nothing about Intel products from this presentation.

e This was a team effort, but if I say anything really
stupid, it's my fault ... don’t blame my collaborators.

Slides marked with this symbol were produced-with Kurt
Keutzer and his team for CS194 ... A UC Berkeley course
on Architecting parallel applications with Design Patterns.

Third party names are the property of their owners.

Outline

=) - Motivation: We all must be parallel programmers
« Key concepts in parallel Computing
* An introduction to parallel hardware
« Software for parallel systems: key design patterns
* Closing comments

Moore's Law

1975 1980 1885 1990 1995

Fl

10M Micrn 900
(hransisiors) ‘ 00 imipe)

™ 4 Partium” 25

‘ andlas Procssor
100K ' ARG 1.0
‘ HO2 A5
10K ‘ BOEE 2.9
HMO&D

4004 0.0

* In 1965, Intel co-founder Gordon Moore predicted (from
just 3 data points!) that semiconductor density would
double every 18 months.

— He was right! Transistors are still shrinking at the same rate

Slide source: UCB CS 194 Fall’2010

The good old days ...

Pentium 4, 3.0 GHz,

10000 20 stage, 3 CISC
(SPECint) issue (6 uop issue)

3 Uniproccessor
= 10004 Performance |
; Pentium 4, 3.6 GHz,
< 52%lyear 31 stage, 6 uop

i issue, 3 CISC issue
2 100 | Sparc V7 RISC
9 5-stage / \
= Sun 4/260
£ 16.7 MHz PowerPC 604, 100
.g 10 . ~a MHz
O 25%lyear 7 stage, 4 issue

Oy Vax “Nautilus”,

\ CISC, Vax 8700
1 o— T T T T T T T T T T T T

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

From Hennessy and Patterson, Computer Architecture: A
Quantitative Approach, 4th edition, Sept. 15, 2006

Third party names are the property of their owners.

The Hardware/Software contract

The good old days /f/’"y*\
- Write your software as | ™1 gpean e sase —
you choose and we Uniproccessor

1000 ------- Performance ’ B
: Pentium 4, 3.6 GHz,
31 stage, 6 uop

issue, 3 CISC issue
100 +---SparcV7RISC -----------=----- R i

S-stage \

HW-geniuses will take
care of performance.

Eéz%ﬁfear

Performance {vs.VAX-11/780)

Sun 4260
16.7 MHz : PowerPC 604, 100
10 7------mmm T oo Fommmmeoes 1 kb
25% fyear

7 stage, 4 issue
Ve “Sar”, TISC
Wae-11730

1 - T T T T T T T T T T T T
1978 1980 1982 1984 1986 1988 19‘3:0 1992 1994 1996 1998 2000 2002 2004 2006

— ‘l.r'ax"‘Ei‘\.lal..HjIUE."r
CISC, Vax 8700

From Hennessy and Patterson, CDmpUifErArfMEdeE;A
Quantitative Approach, 4th edition, Sept. 15, 2006

Third party names arethe property oftheir owners. 2
[.

* The result: Generations of performance ignorant software
engineers using performance-handicapped languages (such
as Java) ... which was OK since performance was a HW job.

Third party names are the property of their owners.

... Computer architecture and the power wali

30

25

20

15

Power

10

Pentium 4 (Psc) /

Pentium 4 (Wmt)/b/

power = perf A 1.7/

/ Growth in power

PentiumPy‘ IS unsustainable

iAﬁ/‘/Pentium

I

2

| |

4 6 8
Scalar Performance

Source: E. Grochowski of Intel

... partial solution: simple low power cores

Power

30

25

20

15

10

Eventually Pentium 4 used
over 30 pipeline stages!!!!

Pentium 4 (Psc)

Pentium 4 (Wmt)//

Mobile CPUs
power = perf * 1.74 with shallow

pipelines use

/ less power
Pentium Pro _
® Pentium M
i‘ﬁ//Pentium
2 4 6 8
Scalar Performance

Source: E. Grochowski of Intel

... The rest of the solution add cores

Input

—* Processor —

Output

Capacitance = C
Voltage =V
Frequency = f
Power = CV2f

Input

A 4

Processor

f/2

A 4

Output

A 4

Processor

A 4

1

f

f/2 || Capacitance = 2.2C
Voltage = 0.6V
Frequency = 0.5f
Power = 0.396CV?f

Chandrakasan, A.P.; Potkonjak, M.; Mehra, R.; Rabaey, J.; Brodersen, R.W.,

"Optimizing power using transformations," IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems,, vol.14, no.1, pp.12-31, Jan 1995

Source:
Vishwani Agrawal

Microprocessor trends

Individual processors are many core (and often heterogeneous) processors.

-.....‘ cores k

8 iwl e SIMD :

Intel SCC Processor C1060

! . & L LLLLL |
Interrupt Distibutor

Tt T

CF'UF\‘FF' CF‘UNFF' ICFUNFP
L1M¢mor:.' 'Il\llmun; L1mory F.Iluumow

Integrated:Memory Controller -3 Ch DDR3

Core0 Corel Core?2 - Core 3
4 cores _ Pmvaie Snoop Control Unk (SCUY EI
IBM Cell o
Intel Nehalem ARM MPCORE

10
31 party names are the property of their owners. Source: OpenCL tutorial, Gaster, Howes, Mattson, and Lokhmotov, HIiPEAC 2011

The result...

... partial solution: simple low power cores

30
25 Pentium 4 (Psc) /
Pentium 4 (Wmt)
= 20 Mobile CPUs
@ power = perf *1.74 with shallow
% 15 pipelines use
o / less power
10
PentiumPy‘ —
¢ Pentium M
5
i‘E%/’/Pentium
0 T T T
0 2 4 6 8
Scalar Performance
Source: E. Grochowski of Intel
|
|

PAVAN
| How multiple cores reduce power 7\

Processor

— Processor |—

Input 12
+

Output

- f
Capacitance = C Processor 1]
Voltage=V
Frequency =f _
Power = CV2f f/2 || Capacitance =2.2C
Voltage = 0.6V
Frequency =0.5f
Power = 0.396CV2f
Chdk n, A.R; Potkonjak, M.; Mh . R.; Raba }'JBd n, LW,
"Optim gpo wer using transformations,” JEEE Transaction: C .rrrp uter Sourca:
Aide cl"D sign of Integrated Circuits 3 a"Sy tems,, | 14,n 1 pp.12-31, J Vishwani Agrawal

1995

HW people will do what's natural

for them (lots of simple cores) and SW people will
have to adapt (rewrite everything)

contract ...

The problem is this was presented as an ultimatum
. hobody asked us if we were OK with this new
which is kind of rude.

11

The many core challenge

A harsh assessment ...

— We have turned to multi-core chips not because of the success of our
parallel software but because of our failure to continually increase CPU
frequency.

m Result: a fundamental and dangerous (for the computer
industry) mismatch
Parallel hardware is ubiquitous.
Parallel software is rare

m The Many Core challenge ...

m Parallel software must become as common as parallel
hardware

Fortunately, we don’t have to start over “from scratch”.

We can draw from past experience with parallelism
from high performance computing

12

Outline

* Motivation: We all must be parallel programmers
=) . Key concepts in parallel Computing

* An introduction to parallel hardware

« Software for parallel systems: key design patterns

* Closing comments

13

Outline

* Motivation: We all must be parallel programmers

« Key concepts in parallel Computing

m) - Basic definitions: Parallelism and Concurrency
— Notions of parallel performance
— The limits of scalability
— Sources of parallel overhead

* An introduction to parallel hardware
« Software for parallel systems: key design patterns
* Closing comments

14

" Two important definitions:

= Concurrency: A condition of a system in which multiple tasks

are logically active at one time.

= Parallelism: A condition of a system in which multiple tasks
are actually active at one time.

— N —
- —] -
— I

Concurrent, non-parallel Execution

Concurrent, parallel Execution

15

® Two important definitions:
= Concurrency: A condition of a system in which multiple tasks

are logically active at one time.

» Parallelism: A condition of a system in which multiple tasks

are actually active at one time.

Programs

Concurrent
Programs

Parallel
Programs

16

oncurrency in AcCtion. a web server

" An Web Server is a Concurrent Application (the problem is
fundamentally defined in terms of concurrent tasks):

» An arbitrary, large number of clients make requests which reference
per-client persistent state

® Consider an Image Server, which relieves load on primary web servers
by storing, processing, and serving only images

Web
Server Image
Images
The Internet S <
Client

17

® A Web Server is a Concurrent Application (the problem is fundamentally
defined in terms of concurrent tasks):

» An arbitrary, large number of clients make requests which reference
per-client persistent state

® Consider an Image Server, which relieves load on primary web servers
by storing, processing, and serving only images

Web
Server Image
Images
The Internet S <
HTTP Request
Foreach Gient
client ...

18

® A Web Server is a Concurrent Application (the problem is fundamentally
defined in terms of concurrent tasks):

» An arbitrary, large number of clients make requests which reference
per-client persistent state

® Consider an Image Server, which relieves load on primary web servers
by storing, processing, and serving only images

Image Request

Web
Server HTML doc. ™ image
Images
The Internet S <
Foreach Gient
client ...

19

oncurrency in AcCtion. a web server

® A Web Server is a Concurrent Application (the problem is fundamentally
defined in terms of concurrent tasks):

» An arbitrary, large number of clients make requests which reference
per-client persistent state

® Consider an Image Server, which relieves load on primary web servers
by storing, processing, and serving only images

Web
Server \ Image
Images
The Internet S <
For each Client Images

client ...

oncurrency in AcCtion. a web server

®" The Web server, image server, and clients (you have to plan on having
many clients) all execute at the same time

Web
Server e N Image

Images
The Internet Ser/el 2
Images

" The problem of one or more clients interacting with a web server not
only contains concurrency, the problem is fundamentally current. It
doesn’t exist as a serial problem.

Client

-—

Concurrent application: An application for which
the problem definition is fundamentally concurrent.

21

® The Mandelbrot set: An iterative map in the complex plane

2

n—+

® Color each point in
the complex plain
of C values based
on convergence or
divergence of the
iterative map.

AleuiBewi

A

z, =0, C is constant

™ k.

)\ Concurrency in action: Mandelbrot Set

int mandel (complex C) {

int n; Function to compute the iterative map for
double a = C.real(); a single point C where

double b = C.imag(); C=a+b*i

double zr=0.0, zi = 0.0; .

double tzr . tzi ; Where i is the square root of (-1)

n=0;

while (n < max_iters && sqrt (zr*zr + zi*zi) < t) {
tzr = (zr*zr - zi*zi) + a; “” is a constant that
tzi = (zr*zi + zr*zi) + b; defines a threshold
21 = tzr - beyond which we

. consider the iterative

ZI =121 ; map to diverge.
n=n+1;

}

return n;

}

23

® To generate the famous Mandelbrot set image, we use the function
mandel(C) where C comes from the points in the complex plane.

® At each point C, use
n=mandel(C) to determine if:

®" The map converges
(n=max_iters), assign the
color black

® The map diverges
(n<max _iters), assign the
color based on the value of
n

®" The computation for each point
is independent of all the other
points ... a so-called
embarrassingly parallel problem

Aeuibewl

A

24

]Ll{\ Concurrency in action: Mandelbrot Set

[~

J

" The following is simplified code for the serial Mandelbrot program.

for (i=0; i<N; i++){
for (j=0; j<N; j++) {
complex ¢ = get_const_at_pixel(i,j);

complex imagel[i][j] = mandel(c);

25

" The following is simplified code for the serial Mandelbrot program.

® Loop iterations are independent, so we can create a parallel version of
this program as follows ...

=0: I<N: |++
M I<N; I/)'{/ « Combine the two loops into one big loop

or <IN\ and execute them in parallel

complex ¢ = get_const_at_pixel(i,j);

complex imagel[i][j] = mandel(c);

26

®" The problem of
generating an image of
the Mandelbrot set can
be viewed serially.

® We choose to exploit the

concurrency contained in b el
this problem so we can ool
generate the image in

less time

Parallel application: An application composed of
tasks that actually execute concurrently in order to (1)
consider larger problems in fixed time or (2) complete in
less time for a fixed size problem.

27

oncurrency vs. Parallelism: wrap up

® Key points:
= A web server had concurrency in its problem definition ... it doesn’t
make sense to even think of writing a “serial web server”.

» The Mandelbrot program didn’t have concurrency in its problem
definition. It would take a long time, but it could be serial

" Both cases use concurrency:

= A concurrent application is
concurrent by definition.

= A parallel application solves a
problem that could be serial, but
it is run in parallel by ...

1. find concurrency in the
problem

2. expose the concurrency in
the source code.

3. exploit the exposed
concurrency to complete a
job in less time.

Programs

Concurrent
Programs

Parallel
Programs

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

The Parallel programming process:

Find Concurrency
(Decomposition)

Original Problem

Tasks, shared and local data

29

ecomposition In paraiiel programs

" Every parallel program is based on

concurrency ... i.e. tasks defined by
an application that can run at the
same time.

® EVERY parallel program requires a
task decomposition and a data
decomposition:

» Task decomposition: break the
application down into a set of
tasks that can execute
concurrently..

= Data decomposition: How must
the data be broken down into i ol
chunks and associated with "
threads/processes to make the
parallel program run efficiently.

30

ecomposition In paraiiel programs

" Every parallel program is based on

concurrency ... i.e. tasks defined by What'’s a task
an application that can run at the decomposition for this
same time. problem?

® EVERY parallel program requires a
task decomposition and a data
decomposition:

» Task decomposition: break the
application down into a set of
tasks that can execute
concurrently..

= Data decomposition: How must
the data be broken down into i ol
chunks and associated with "
threads/processes to make the
parallel program run efficiently.

31

ecomposition In paraiiel programs

" Every parallel program is based on Hint: Think of the source
concurrency ... i.e. tasks defined by code and work that is
an application that can run at the compute-intensive that can
same time. execute independently

® EVERY parallel program requires a
task decomposition and a data
decomposition:

» Task decomposition: break the
application down into a set of

tasks that can execute

for (j=0; j<N; j++) {

complex ¢ = get_const_at_pixel(i,j);

complex imageli][j] = mandel(c);

ecomposition In paraiiel programs

" Every parallel program is based on
concurrency ... i.e. tasks defined by
an application that can run at the
same time.

® EVERY parallel program requires a
task decomposition and a data
decomposition:

» Task decomposition: break the

application down into a set of tasks
that can execute concurrently..

= Data decomposition: How must the
data be broken down into chunks
and associated with
threads/processes to make the

parallel program run efficiently.

Task: the computation required
for each pixel ... the body of the
loop for a pair (i,)).

e ki

33

ecomposition In paraiiel programs

" Every parallel program is based on

concurrency ... i.e. tasks defined by
an application that can run at the
same time.

® EVERY parallel program requires a
task decomposition and a data
decomposition:

» Task decomposition: break the
application down into a set of
tasks that can execute

concurren tly . m: i O
= Data decomposition: How must 7
the data (the complex plain, C) i ol
be broken down into chunks and "
associated with Suggest a data decomposition for

threads/processes to make the this problem ... assume aiquad
core shared memory PC. mmmm

parallel program run efficiently. =

Decomposition in parallel programs

" Every parallel program is based on

concurrency ... i.e. tasks defined by
an application that can run at the
same time.

® EVERY parallel program requires a
task decomposition and a data
decomposition:

» Task decomposition: break the
application down into a set of tasks
that can execute concurrently..

= Data decomposition: How must the
data (the complex plain, C) be
broken down into chunks and
associated with threads/processes to
make the parallel program run
efficiently.

Map the pixels into row blocks and
deal them out to the cores. This

will give each core a memory
S I
efficient block to work on. [B

Decomposition in parallel programs

But given this data decomposition, it is

" Every parallel program is based on _ _
effective to think of a task as the update

Concurlrgn(;y ";{hl'?' tasks de{'?hed by to a pixel? Should we update our task
an app_lca 'on that can run at the definition given the data decomposition?
same time.

® EVERY parallel program requires a
task decomposition and a data
decomposition:

» Task decomposition: break the
application down into a set of tasks
that can execute concurrently..

= Data decomposition: How must the
data (the complex plain, C) be
broken down into chunks and
associated with threads/processes to
make the parallel program run
efficiently.

Map the pixels into row blocks and
deal them out to the cores. This

will give each core a memory -
efficient block to work on. i

" Every parallel program is based on
concurrency ... i.e. tasks defined by
an application that can run at the
same time.

Yes. You go back and forth between
task and data decomposition until you
have a pair that work well together. In
this case, let’s define a task as the
update to a row-block

® EVERY parallel program requires a
task decomposition and a data
decomposition:

» Task decomposition: break the
application down into a set of tasks
that can execute concurrently..

= Data decomposition: How must the
data (the complex plain, C) be
broken down into chunks and
associated with threads/processes to
make the parallel program run
efficiently.

Map the pixels into row blocks and
deal them out to the cores. This

will give each core a memory
S I
efficient block to work on. [B

The Parallel programming process:

Find Concurrency
(Decomposition)

Original Problem

Tasks, shared and local data

38

Find Concurrency

(Decomposition)
.]
.. &
Original Problem 0{@0 Tasks, shared and local data

Program SPMD_Emb_Par () |

{| Program SPMD Emb Par () |

{| Program SPMD Emb Par () |
{| Program SPMD_Emb_Par ()

{
TYPE *tmp, *func();
global array Data(TYPE);

Implementation global artay (- (TYPE)
int Num = get_num_procs();
Strate gy intid = get_proc_id();

if (id==0) setup_problem(N, Data);
for (int I= ID; I<N;I=I+Num){

} tmp = func(l, Data);
|} accumulate(tmp);
1}
. . |}
Units of execution + new shared data for extracted
dependencies Corresponding source code

39

A% AR
7 .“:.‘.‘ A
/ N N
T

The Parallel programming process:

Find Concurrency

(Decomposition)
I]
Original Problem {&0&

Program SPMD_Emb_Par () |
{| Program SPMD Emb Par () |

d n

oDAA T o1 D

Programming Notations
we will consider:
Implementation OpenMP
strategy * OpenCL
« CUDA
« MPI
I_i b
Units of execution + new shared data for ex

tracted :
dependencies

Corresponding source code

40

Outline

* Motivation: We all must be parallel programmers

« Key concepts in parallel Computing

— Basic definitions: Parallelism and Concurrency
=) — Notions of parallel performance

— The limits of scalability

— Sources of parallel overhead

* An introduction to parallel hardware
« Software for parallel systems: key design patterns
* Closing comments

41

Parallel Performance

® MP Linpack benchmark, order 1000 matrix (solve a dense system of

linear equations ... the dense linear algebra computational pattern).
4

3.9 1
3 |
2.5
2 |

GFlops

1.5 -
1]
0.5

0 B T T T T
0 10 20 30 40 50
cores

Intel SCC 48 processor, 500 MHz core, 1 GHz router, DDR3 at 800 MHz. 42

Talking about performance

Speedup: the increased
performance from running
on P processors

Perfect Linear Speedup:
happens when no parallel
overhead and algorithm is
100% parallel.

Time_, (1)
S(P)=——
Time,,.(P)
S(P)=P

43

Performance scalability

® HP Linpack benchmark, order 1000 matrix (solve a dense system of
linear equations ... the dense linear algebra computational pattern).

140
120 Intel SCC 48 processor,
—_ 500 Mhz core, 1 Ghz
o / router, DDR3 at 800 Mhz.
% 100
=
= 80
g
60
aQ /
S 40
()]
S /
» 20 /
O 1 I I I I I]

0 10 20 30 40 50 60
Cores

The 48-core SCC processor: the programmer’s view, T, G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig,
P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, Proceedings SC10, New Orleans 2010 44

Performance scalability

® HP Linpack benchmark, order 1000 matrix (solve a dense system of
linear equations ... the dense linear algebra computational pattern).

140

120 Intel SCC 48 processor,
=~ / 500 Mhz core, 1 Ghz
\é 100 router, DDR3 at 800 Mhz.
|:
= 80
60
% 20 / Notice anything
o / strange about this
» 20 / scalability plot?

O 7 I I I I I |

0 10 20 30 40 50 60
Cores

The 48-core SCC processor: the programmer’s view, T, G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig,
P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, Proceedings SC10, New Orleans 2010 45

Performance scalability

® HP Linpack benchmark, order 1000 matrix (solve a dense system of
linear equations ... the dense linear algebra computational pattern).

140
120 Intel SCC 48 processor,

— 500 Mhz core, 1 Ghz
< / router, DDR3 at 800 Mhz.

g 100
=
= 80
60
% 40 / The speedup is
S / greater than the
@20 / number of cores!

O] [[[[[|

0 10 20 30 40 50 60
Cores

The 48-core SCC processor: the programmer’s view, T, G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig,
P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, Proceedings SC10, New Orleans 2010 46

Talking about performance

Speedup: the increased

performance from running Time_ (1
on P processors S(P)=— Seq()
Time,,.(P)

Perfect Linear Speedup:
happens when no parallel

overhead and algorithm is —
100% parallel. S(P) P

Super-linear Speedup: Speed
grows faster than the number of

processing elements S (P) > P

47

Performance scalability

® HP Linpack benchmark, order 1000 matrix (solve a dense system of
linear equations ... the dense linear algebra computational pattern).

140
120 Intel SCC 48 processor,
o / 500 Mhz core, 1 Ghz
\é 100 router, DDR3 at 800 Mhz.
=
= 80
60
o
3 40 / What caused our
(D) .
& / superlinear speedup?
»n 20 /
O B [[[[[|
0 10 20 30 40 50 60
Cores

The 48-core SCC processor: the programmer’s view, T, G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig,
P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, Proceedings SC10, New Orleans 2010 48

SuperLinear Speedup

® HP Linpack benchmark, order 1000 matrix (solve a dense system of
linear equations ... the dense linear algebra computational pattern).

140

120

=
-
o

(o]
o

Toar1)/Tpa(P)

o))
o

Why is this
number so
small?

Speedup
D
o

N
o

o

/<— 3.45 GFs

24GFs

1.6 GFs

Intel SCC 48 processor,

500 Mhz core, 1 Ghz

0.24

5 GFs

router, DDR3 at 800 Mhz.

10

20

30 40 50 60
Cores

49

256KB

16KB L1-D¢ = unified
16KB L1-I$ L2$

Message
Passing | | Mesh To
Buffer I/F Router
16 KB |
P54C 256KB

16KB L1-D$ ™ unified
16KB L1-I$ L2$

P54C = second generation
Pentium® core,

to PCI R = router, MC = Memory Controller,

« SCC caches are so small, even a small portion of our O(1000) matrices won't fit.
» Hence the single node performance measures memory overhead.
« As you add more cores, the aggregate cache size grows.
» Eventually the tiles of the matrices being processed fits in the caches and
performance sharply increases - superlinear speedup.

The 48-core SCC processor: the programmer’s view, T, G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig, 50
P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, Proceedings SC10, New Orleans 2010

A more typical speedup plot

® CHARMM molecular dynamics program running the myoglobin benchmark on an
Intel Paragon XP/S supercomputer with 32 Mbyte nodes running OSF R 1.2. (The
nbody computational pattern). Speedup relative to running the parallel program on one node.

160
g:% 120 /
S 100
e 80 :
6o Strong scaling ... the
o .
3 / speedup trends for a fixed
gé 40 / size problem.
» 20

O f I I I I I |
0 100 200 300 400 500 600
Nodes

Porting Applications to the MP-Paragon Supercomputer: The CHARMM Molecular Dynamics program, 51
T.G. Mattson, Intel Supercomputers User’s Group meeting, 1995.

Efficiency

< Efficiency measures how well the parallel system’s resources are
being utilized.

T imeseq S(P)
E = p—
P*Time,, (P) P

Where P is the number of nodes and T is the elapsed
runtime.

52

Efficiency

® CHARMM molecular dynamics program running the myoglobin benchmark on an
Intel Paragon XP/S supercomputer with 32 Mbyte nodes running OSF R 1.2. (The
nbody computational pattern). Speedup relative to running the parallel program on one node.

1.2

1\
0.8

> | \

=

9

i 0.4 —_—

——e
0.2
O I I I I I |
0 100 200 300 400 500 600

Nodes

Porting Applications to the MP-Paragon Supercomputer: The CHARMM Molecular Dynamics program, T.G. Mattson, Intel
Supercomputers User’s Group meeting, 1995.

53

Outline

* Motivation: We all must be parallel programmers

« Key concepts in parallel Computing
— Basic definitions: Parallelism and Concurrency
— Notions of parallel performance

=) — The limits of scalability
— Sources of parallel overhead

* An introduction to parallel hardware
« Software for parallel systems: key design patterns
* Closing comments

54

® Gene Amdahl was a computer
architect in the 1960's at IBM

" In 1967, refuted the idea that parallel
computing was a practical path to
improving program performance. -

® Example: Compare these two systems 1BM Systom 360, ca. 1964

 The IBM System 360:
« Asingle-processor machine, running at 16 MHz.

* 1 FP addition per 60 ns cycle, and 1 FP mul in ~10 60 ns cycles,
and execute multiple instructions simultaneously

« ILLIAC IV:

* “The first Supercomputer” ... installed at NASA Ames in 1975.
« 256 processors ... could perform 256 FP adds in 240 ns.

95

® Clearly, the ILLIAC will run programs much faster than the
S/360: It has 60x higher instruction throughput!

= ... if you always have 256 independent instructions

® Amdahl argued that large portions of many programs are not
parallelizable. Parallel hardware does not help serial code:

— —]

Each blockis 1s ... The “middle Runtime =2.25s

Runtime =3 s second” runs
perfectly parallel
on 4 threads

56

Amdahl's Law

® What is the maximum speedup you can expect from a parallel program?
® Consider a sequential program with runtime:

® We can think of this program as consisting of two parts ... one that can

benefit from multiple processing elements (parallel) and a second part that
is fundamentally serial.

" The runtime is therefore:
T'imeg,, = Timegeriqr + TiMepgraiielizable

® We can express this in terms of a fraction of the program that is serial and
a fraction of the program that is parallel or

I — "] [' * "
Time,,, = serial_fraction * Timeseq + parallel_fraction™ Time,,,

S7

Amdahl’s Law

< If we run the program on P processing elements and assume linear
speedup, then our time for the parallel program becomes:

llel 1
Time, (P)=(serial _ fraction + £ _ Jraction

*Time
ar) Sé
p P q

If the serial_fraction is o and the parallel_fraction is (1-), the speedup is:

Times,q Timeg,, 1 0
S(P) = Time,,,(P) - l—«a - 1
par (a +—p) * Timege, (a+)
If you had an unlimited number of processors: lim 1-a_,
- - . I Amdahl’s
The maximum possible speedup is: S =— < "
o aw

58

" We Profiled CHARMM running on the Paragon XPS to find the time
spent in code that was not parallelized ... concluded that CHARMM
has a serial fraction of ~0.003.

The maximum possible speedup is: S= 1/0.003 = 333

250
o
- / Est. from serial fraction
|_
S% 150 Observed
- //
]
o 100
-
©
B 50
o
n

o

0 100 200 300 400 500 600
Nodes

€ prooiem size grows

® Consider the dense linear algebra

" A key feature is that operations between matrices (such as LU

factorization or matrix multiplication) scale as the cube of the order
of the matrix.

Assume we can parallelize the linear algebra operation (O(N?3)) but
not the loading of the matrices from memory (O(N2)). How does the

serial fraction vary with matrix order (assume loading from memory
is much slower than a floating point op).

What would plots of runtime vs. problem size look like
for the N squared and N cubed terms?

What would plots of serial fraction vs. problem size look
like for the N squared and N cubed terms?

60

.. j[“\\ What if the problem size grows

® Consider dense linear algebra

® A key feature is that operations between matrices (such as LU factorization
or matrix multiplication) scale as the cube of the order of the matrix.

® Assume we can parallelize the linear algebra operation (O(N?3)) but not the
loading of the matrices from memory (O(N2)). How does the serial fraction
vary with matrix order (assume loading from memory is much slower than a
floating point op).

700000

600000 - _ 1.2
matrix order / Serial fraction
500000 1 :
\ VvS. matrix order
400000 0.8

300000 ' \\
/ 0.4

200000
N
=o—0(N”2) 0.2
100000 —5-O(NA3))
0 ' ' ! 0 20 40 60 80
0 20 40 60 80

61

6E+09

5E+09

4E+09

3E+09

2E+09

1E+09

0

-1E+09

What if the problem size grows

Consider the dense linear algebra design pattern (which we will cover in
much more detail later).

A key feature is that operations between matrices (such as LU factorization
or matrix multiplication) scale as the cube of the order of the matrix.

Assume we can parallelize the linear algebra operation (O(N3)) but not the
loading of the matrices from memory (O(N2)). How does the serial fraction
vary with matrix order (assume loading from memory is much slower than a
floating point op).

1.2

Runtime vs. Serial fraction vs.

1
matrix order / matrix order
0.8

=—=0(N"2) 0.6
—#-0(N”3) 0.4 -

= B~

$ 500 1000 1500 2000 0 500 1000 1500 2000

For much larger Matrix orders ... 62

® Gary Montry and John Gustafson (1988, Sandia National Laboratories)
observed that for many problems the serial fraction of a function of the
problem size (N) decreases:

Se (1)
S(P,N)= - 1 N)=0
@)+ =g @) NN, (V)=

" In other words ... if parallelizable computations asymptotically dominate the
runtime, then you can increase a problem size until limitations due to
Amdahl’'s law can be ignored. This is an easier form of scalability for a
programmer to meet ... so its called “weak scaling™:

® Weak Scaling: Performance of an application when the problem size

increases with the number of processors (fixed size problem per nog3e)

Example of weak scaling

HELIUM Weak Scaling Performance drm

* | ocal block size fixed to 20 gnd units

IBM Blue Gene P,
0.85 GHz,
PowerPC 450, 4-
way processors

May. 13, 10

Execution time (secs)

=l

e

]

HELIWW weak scaling parformance on IBM BGP [JUGENE)
Block size = 20 grid wunits

"

/

P

P

| —&— Exaculion time

15000
Cores

HIEE 10000 000D

http://www.spscicomp.org/ScicomP16/presentations/PRACE_ScicomP.pdf

A time dependent
Quantum
simulation of
helium atoms
with 20 grid units
per processing
element.

NAMD & HELIUM Enabling Work on the PRACE IBM Prototypes l

64

HELIUM Weak Scaling Performance dm

* | ocal block size fixed to 20 gnd units

IBM Blue Gene P,
0.85 GHz,
PowerPC 450, 4-
way processors

=l

Execution time (secs)

e

]

3

HELIWW weak scaling parformance on IBM BGP [JUGENE)
Block size = 20 grid wunits

"

/

P

P

A time dependent
Quantum
simulation of
helium atoms
with 20 grid units
per processing
element.

What does ideal scaling look
on the time vs. cores plot
when you have ideal scaling?

10000

15000
Cores

|
000D m‘

NAMD & HELIUM Enabling Work on the PRACE IBM Prototypes l

http://www.spscicomp.org/ScicomP16/presentations/PRACE_ScicomP.pdf 65

HELIUM Weak Scaling Performance dm

* | ocal block size fixed to 20 gnd units

IBM Blue Gene P,
0.85 GHz,
PowerPC 450, 4-
way processors

Execution time (secs)

=l

e

]

HELIWW weak scaling parformance on IBM BGP [JUGENE)

Block size = 20 grid wunits

A time dependent
Quantum
simulation of
helium atoms
with 20 grid units
per processing
element.

For a “perfectly scalable”
application, the trend line for
weak scaling should be flat.

R\
|—-—Eu:uﬂan ‘ﬂﬂ'lil
0 5000 10000 15000 20000
Cores

http://www.spscicomp.org/ScicomP16/presentations/PRACE_ScicomP.pdf

NAMD & HELIUM Enabling Work on the PRACE IBM Prototypes l

66

Outline

* Motivation: We all must be parallel programmers

« Key concepts in parallel Computing
— Basic definitions: Parallelism and Concurrency
— Notions of parallel performance
— The limits of scalability

=) — Sources of parallel overhead

* An introduction to parallel hardware
« Software for parallel systems: key design patterns
* Closing comments

67

" We Profiled CHARMM running on the Paragon XPSto find the time
spent in code that was not parallelized ... concluded that CHARMM
has a serial fraction of ~0.003.

The maximum possible speedup is: S= 1/0.003 = 333

250

200 m | Est. from senal fraction
150 K//’(/ Observed
100

Speedup

0 100 200 300 400 500 600
MNodes

68

Limitations to scalability

" We Profiled CHARMM running on the Paragon XPSto find the time
spent in code that was not parallelized ... concluded that CHARMM
has a serial fraction of ~0.003.

The maximum possible speedup is: S= 1/0.003 = 333

250

Why does the app.

200 = Scale worse than

i / we’d expect from
/’ Amdahl’s law?

100

Speedup

0 100 200 300 400 500 600
MNodes

69

Limitations to scalability

" We Profiled CHARMM running on the Paragon XPSto find the time
spent in code that was not parallelized ... concluded that CHARMM
has a serial fraction of ~0.003.

Amdahl’s law ignores
250 overheads associated
with the implementation

200 / of the parallelism.
150

/ These overheads may
100

have a huge impact on
observed speedups.

The maximum possible speedup is: S= 1/0

Speedup

0 100 200 300 400 500 600
MNodes

70

structure of many HPC codes

® A large fraction of HPC applications (such as CHARMM) use a message
passing notation with the Single Program Multiple Data or SPMD design
pattern.

Replicate the program.
Add gluecode ([_])

Break up the data
Original program Parallel program

71

structure of many HPC codes

Process IDs

® And many SPMD programs use an

additional simplification ... “Bulk
Synchronous Processing’.

= Each process maintains a local view of
the global data

= Aproblemis broken down into phases
each composed of two subphases:

« Compute on local view of data (the
“squiggles” in the figure)
« Communicate to update global view

on all processes (collective
communication).

= Continue phases until complete

3

Collective comm.

é

Collective comm.

72

awi|

nchronous Processino

Process IDs

® Two maijor sources of parallel
overhead:

o 1 2 3
1. Load imbalance: the slowest process % %
determines when everyone is done.

Time waiting for other processes to ; =
. Collective comm. || 3
finish (i.e. unequal lengths of the ®
“squiggles” in the figure) is time é

wasted.

2. Communication overhead: A cost
only incurred by the parallel
program. Grows with the number of | Collective comm.
processes for collective comm.

73

PO
P

P2
P3

ek

Collective Data Movement

= (@1 1 E3

Allgather

»
|

AllReduce

Source: CS267 Lecture 7

A BICD
A B CD
A B CD
A B/C D

M A+B+C+D
Il A+B+C+D
128 A+B+C+D
I8 A+B+C+D

74

Models motion of atoms in
molecular systems by solving
Newton’s equations of motion:

_ %7 N

<+ The potential energy, U(r), is divided
into two parts:

» Bonded terms — Groups of atoms
connected by chemical bonds.

* Non-bonded terms — longer range
forces (e.g. electrostatic).

* An N-body problem ... i.e. every
atom depends on every other
atom, an O(N?) problem.

Source: Izaguirre, Ma and Skeel, SAC'03 slides, March 10 2003

Bonds, angles and torsions

75

J \ Molecular dynamics simulation

We used a cutoff method ... the
potential energy drops off quickly so
real force(3,N) atoms beyond a neighborhood can be
int neighbors (MX, N) ignored in the nonbonded force calc.
// Every PE has a copy of atoms and force

loop over time steps

real atoms (3, N)

parallel loop over atoms
Compute neighbor list (for my atoms)
Compute nonbonded forces (my atoms and neighbors)
Barrier
All reduce (Sum force arrays, each PE gets a copy)
Compute bonded forces (for my atoms)
Integrate to Update position (for my atoms)
All gather (update atoms array)

end loop over atoms

end loop

76

J \ Molecular dynamics simulation

real atoms (3, N)

real force (3,N)

int neighbors (MX,N) //MX = max neighbors an atom may have

// Every PE has a copy of atoms and force

loop over time steps
parallel loop over atoms

Compute neilghbor list _(for mv atfoms)

Compute (long/ran% synchronization nd neighbors)
Barrier

All reduc force arrays, e ' copy)
Compute bonded forces (:O”eCUV? .
6551ition Communication

All gather (update atoms array)

end loop over atoms

Integrate to U

end loop 27

Limitations to scalability

" We Profiled CHARMM running on the Paragon XPSto find the time
spent in code that was not parallelized ... concluded that CHARMM
has a serial fraction of ~0.003.

The maximum possible speedup is: S= 1/0.003 = 333

250

Why does the app.

200 = Scale worse than

i / we’d expect from
/’ Amdahl’s law?

100

Speedup

0 100 200 300 400 500 600
MNodes

78

CHARMM Myoglobin Benchmark

Percent of runtime for the different phases of the computation

Percent of total runtime

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

1

16 32 064 128 148 256 512
Number of Nodes

W integ
M list

B comm
W wait
® Ebond

H Enon

CHARMM running on
a distributed memory,
MPP supercomputer
using a message
passing library (NX)

79

CHARMM Myoglobin Benchmark

" Percent of runtime for the different phases of the computation
100%

90% &

o 80%
£ :
£ 70% O(N)
o .
= 60% O(N%)
Is) - M comm
e ..]
Enon (the n-body term) scales better than ‘ " wait
the other computational terms. This was - O(N)
taken into account in the Serial fraction — O(MX*N)
estimate for the Amdahl’'s law analysis .

10% i
0%

1 8 16 32 64 128 148 256 512
Number of Nodes 80

Charm Myoglobin Benchmark

" Percent of runtime for the different phases of the computation
100%

90% &

80% &

70% — W integ

60% -

total runtime

C B comm
0% -

The fraction of time spent waiting grows
with the number of nodes due to two
factors: (1) the cost of the barrier grows
with the number of nodes, and (2) variation
in the work for each node increases as
node count grows ... load imbalance.

0%

®m Ebond

H Enon

1 8 16 32 064 128 148 256 512
Number of Nodes

81

Synchronization overhead

® Processes finish their work and must assure that all processes are
finished before the results are combined into the global force array.

» This is parallel overhead since this doesn’t occur in a serial
program.

= The synchronization construct itself takes time and in some
cases (such as a barrier) the cost grows with the number of
nodes.

—————————————eee

Time

82

Load imbalance

® If some processes finish their share of the computation early, the
time spent waiting for other processors is wasted.

= This is an example of Load Imbalance

.~ cpus [CPU3
—_———

Time

83

" Percent of runtime for the different phases of the computation

total runtime

The communication growth is the chief

culprit I|m|t|ng performance in this case.
0% -+

s
)
ol

100%

90%

80%

70%

60%

0%

20%

10%

0% -

1

® Ebond

H Enon

8

16 32 64 128 148 256 512
Number of Nodes 84

Communication

® On distributed-memory machines (e.g. a cluster), communication
can only occur by sending discrete messages over a network

*» The sending processor marshals the shared data from the
application's data structures into a message buffer

* The receiving processor must wait for the message to arrive ...
= ... and un-pack the data back into data structures

85

Communication

® On distributed-memory machines (e.g. a cluster), communication
can only occur by sending discrete messages over a network

» The sending processor marshals the shared data from the
application's data structures into a message buffer

» The receiving processor must wait for the message to arrive ...
= ... and un-pack the data back into data structures

" If the communication protocol is synchronous, then the sending
processor must wait for acknowledgement that the message was

received
—-?ﬂ-
cruz B
e ———

Time
86

100%

collective commes.

ro INENE (A|B|C[D|
ri EIHEE _ Alete INEEEH
SINC| | | | [A|B|C|D|
ISIND | | | A|B|C

W integ
M list

B comm
W wait
® Ebond

B
D]

Composed of multiple

messages each of
which incur these
overheads

64 128 148 256 512
ber of Nodes

87

Limitations to scalability

" We Profiled CHARMM running on the Paragon XPSto find the time
spent in code that was not parallelized ... concluded that CHARMM
has a serial fraction of ~0.003.

The maximum possible speedup is: S= 1/0.003 = 333

250
Sync, wait, and

200 *3 | comm. overheads

150 / combined explain
/ this gap

100

Speedup

0 100 200 300 400 500 600
MNodes

88

Outline

* Motivation: We all must be parallel programmers
« Key concepts in parallel Computing

=) . An introduction to parallel hardware
« Software for parallel systems: key design patterns
* Closing Comments

89

Outline

* Motivation: We all must be parallel programmers
« Key concepts in parallel Computing

* An introduction to parallel hardware
=) — History of parallel hardware

— The major building blocks of modern parallel systems

— Multicore processors
— The GPU

« Software for parallel systems: key design patterns
* Closing Comments

90

raCkKing supercomputers.

" Top500: a list of the 500 fastest computers in the world (www.top500.0rg)

® Computers ranked by solution to the MPLinpack benchmark:
® Solve Ax=b problem for any order of A
® List released twice per year: in June and November

Current number 1 (June 2013) R,,,=33.9 PFLOPS
Tianhe-2, NUDT, Intel lvy Bridge + Xeon Phi cluster
17.8 megawatts, >3million cores

22 3_ _=lf_|g:.-£e,--"'__

1 Eflop/s
Y
100 Pflop/s > _..--."" —
o ®* ® - o 0 —

_— e ® 33.9 piicp

10 Pflopss 1 PFLOP . L

e o ® —
Sl L] L
w i
1 Pflopss s ®) > o
e ® e e 0 e
] L] -
—_— o ® N=1 ~
900 Thops .
oRfs «c ¢ * " e o s 0 0 0
8
L]
L . B
.o ‘ 1 TFLOP
e @ e ® @
1 Tiopds 1.17 Thop/s ®
e o ® o o ®
100 Gflopss []
59.7 Gflop/s
10 Gflopss
1 Gflopss
1993 1994 1995 1995 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2o 20m 2012 2013 2014

Source: http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf

Hardware Architectures for High

Performance Computino

Parallel Computers

— \

Single Instruction

, Multiple Instruction
Multiple Data (SIMD) Multigle Data (MIMD)

@Address SFD Disjoint Address SpD

Symmetric Non-uniform Massively Cluster Distributed
Multiprocessor Memory Parallel Computing
(SMP) Architecture Processor

(NUMA) (MPP)

92

Performance Computino

Discussed later

with GPUs Parallel Computers

—

The dominant branch and
our focus in this lecture

Single Instruction
Multiple Data (SIMD)

Multiple Instruction
Multiple Data (MIMD)

@Address Spac> Disjoint Address SpD

Symmetric Non-uniform Massively Cluster Distributed
Multiprocessor Memory Parallel Computing
(SMP) Architecture Processor
(NUMA) (MPP)

93

1 ® The CRAY-1A:
= 2.5-nanosecond clock,
* 64 vector registers,

= 1 million 64-bit words of high-
speed memory.

» Peak speed:
* 80 MFLOPS scalar.

» 250 MFLOPS vector (but
this was VERY hard to
achieve)

® Cray software ... by 1978
» Cray Operating System

(COS),
® On July 11,1977, the CRAY-1A, serial : :
number 3, was delivered to NCAR. The " the first automatically
system cost was $8.86 million ($7.9 vectorizing Fortran compiler
million plus $1 million for the disks). (CFT),
http://www.cisl.ucar.edu/computers/gallery/cray/cray1.jsp " Cray Assembler Language

(CAL) were introducegy

]) \“

% Y "History of Supercomputinc

Large mainframes that operated on vectors of data
Custom built, highly specialized hardware and software
Multiple processors in an shared memory configuration
Required modest changes to software (vectorization)

60"
-
(o)
50 ® © o
o Al o
2 e 2z | =
c S & T | &
—I <« - |- M
P ({o] ~
(u5 301 I % 5 o
X ~ > O i
S 20 > > > I—
® ® ® >
n- | &8 | . | S8 © .
10‘ o o 0 6 i
0‘£ The Cray C916/512 at the Pittsburgh
Vector Supercomputer Center

95

The Caltech Cosmic
Cube developed by
Charles Seitz and
Geoffrey Fox in1981

64 Intel 8086/8087
processors

128kB of memory per
processor

6-dimensional hypercube
network

The cosmic cube, Charles Seitz “
Communications of the ACM, Vol 28, number 1 January Laun_Ched the a”ttaCk Of
1985, p. 22 the killer micros

Eugene Brooks, SC'90
http://calteches.library.caltech.edu/3419/1/Cubism.pdf

96

http://calteches.library.caltech.edu/3419/1/Cubism.pdf

It took a while, but MPPs came to

" Parallel computers with large numbers of microprocessors
® High speed, low latency, scalable interconnection networks
® Lots of custom hardware to support scalability
® Required massive changes to software (parallelization)
2001
180 . S
1601 > 2 o
@ 1401 S &3
O 120 o & |
70
T 100 T |
S 60 =08
O 3 o
O 40 w8
a2 | ©
201 = = | 0O
0- Paragon XPS-140 at Sandia
National labs in Albuquerque
Vector MPP NM

97

R RRRRRRRRRRERESERSSSSSRSSSS——————————————.

/' X\ The cost advantage of mass market COTS

® MPPs using Mass market Commercial off the shelf (COTS)
microprocessors and standard memory and I/O components

® Decreased hardware and software costs makes huge systems
affordable

2000
¢ 18004
& 1600
. 1400;
2 1200
S 1000
o 800

600

400

200

IBM SP/572 (460)
Intel TELOP, (4536

ASCI Red TFLOP Supercomputer

Vector MPP COTS MPP

98

then clusters took over

A cluster is a collection of connected, independent computers that work
In unison to solve a problem.

Nothing is custom ... motivated users could build cluster on their own

First clusters appeared in
the late 80’s (Stacks of
“SPARC pizza boxes”)

The Intel Pentium Pro in
1995 coupled with Linux
made them competitive.

® NASA Goddard’s Beowulf

cluster demonstrated
publically that high visibility
science could be done on
clusters.

Clusters made it easier to

bring the benefits due to

Moores’s law into working

supercomputers

80%

*
Constellations
60%

MPP

40%

20%

'93 ‘o4 '95 ‘96 '97 ‘98 ‘99 ‘00 '01 ‘02 ‘03 'O4 ‘05 ‘06 '07 ‘08 ‘09 10 11 12 ‘13
Source: http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf
*Constellation: A cluster for which the number of processors on a node is greater than the number of
nodes in the cluster. I've never seen anyone use this term outside of the top500 list. 100

Outline

* Motivation: We all must be parallel programmers
« Key concepts in parallel Computing

* An introduction to parallel hardware
— History of parallel hardware

— The major building blocks of modern parallel systems

m) — Multicore processors
— The GPU

« Software for parallel systems: key design patterns

101

" A
How do we connect cores together?

m A symmetric multiprocessor (SMP) consists of a collection

of processors that share a single address space:
= Multiple processing elements.
m A shared address space with “equal-time” access for each processor.
m The OS treats every processor the same

Proc,

Proc,

Proc,

O

O

O

Proc,

Shared Address Space

102

")
How realistic is this model?

m Some of the old
supercomputer
mainframes followed this
model,

m But as soon as we added caches to
CPUs, the SMP model fell apart.
Caches ... all memory is equal, but

some memory is more equal than
others.

A CPU with lots of cache ...

103

Memory Hierarchies

® A typical microprocessor memory hierarchy

1ns -
TLB =3
m—
| 1ns D
8 S | | RAM
«Q
CPU |— & H D-cache O ™
) Q)
O
| -
()
|-cache
1ns 10 ns 100 ns
m Instruction cache and data cache pull data from a unified cache that maps onto
RAM.
m TLB implements virtual memory and brings in pages to support large memory
foot prints.

104

2-socket Clovertown Dell PE1950

Transpose: Dell Power Edge 1950 (Claovertown)

16 ————— e ——————,
"clovertownsstatic.0" using 16:24 —— i -
"clovertown/guideds.0,1" using 16:24 —x— A Slngle quad
14 | "clovertowns/guidedB.0,2" using 16:24 —%— core Ch|p iS a
"clovertownsguidedd.0,4" using 16:24 —8— NUMA
“l ' machine!
2 threads, 2 cores,
10 sharing a cache .

socket, no shared cache

2 threads, 2 cores, 1 ----
I 5 | | 5 |

Memory handwidth [GB/s]
()

A N Xeon® 5300
di 2 threads, 2 cores, 2 sockets T Processor block
o R N diagram
1 g 16 G

Memory footprint [MB]

*NUMA == Non Uniform Memory architecture ... memory is shared but access times vary.

Third party names are the property of their owners. 105

Outline

* Motivation: We all must be parallel programmers
« Key concepts in parallel Computing

* An introduction to parallel hardware
— History of parallel hardware

— The major building blocks of modern parallel systems

— Multicore processors
=) - The GPU

« Software for parallel systems: key design patterns
* Closing comments

106

What happened to SIMD?

Parallel Computers

— \

Single Instruction

, . Multiple Instruction
Multiple Data (SIMD) Multigle Data (MIMD)

@Address S@ Disjoint Address SpD

Symmetric Non-uniform Massively Cluster Distributed
Multiprocessor Memory Parallel Computing
(SMP) Architecture Processor

(NUMA) (MPP)

107

SIMD and sx86 multimedia extensions.
A Brief History of x86 SIMD Extensions

8*8 bitInt EWVY/D:¢ SSE4.2

4*32 bit FP SSE NS @8 8+%32 bit FP

2*64 bit FP SIS =P APEIN 3 operand

M 256 bit Int ops,
Gather

>
=
Fi.

Horizontal ops BN = 3

S5 E3 FdNaw!

\YI[&/B 512 bit

SSE4.2

Source: Bryan Catanzaro, NVIDIA, UCB Parlab Bootcamp, 2013

Jejlonuo) Asowep

Graphics only
l.e. texture cache,
interpolation hardware

1ejjonues Aowepy

Memory Controllers

500 Double-precision GFLOPs
16 Multiprocessors
32 ALUs/processor

General compute + graphics

16 “Streaming multiprocessors”
109

The end of thejdlscrete GPU @

e A modern platform has:
- CPU(s)
— GPU(s)
— DSP processors
— ... other?

Absorption into CPU (remove “off chip” penalty) but
e Currer uncertaln standards story 9 success unclear

R . [; , .k
thl: functlorallﬁy oo odibe o Bl e Blicore Blicore B systam
onto a single chip ... | e e e P

iy g P ' Processor | s S ol v Sl s el cMertrrto]rly |
mitigates the PCle | Graphics ¥ |on) i o
bottleneck in e B ‘, 1 o onay

and Misc. 1/0

GPGPU computing!

GMCH = graphics memory control hub, Intel® Core™ i5-2500K Desktop Processor
ICH = Input/output control hub (Sandy Bridge) Intel HD Graphics 3000 (2011)

Outline

* Motivation: We all must be parallel programmers
« Key concepts in parallel Computing
* An introduction to parallel hardware

=) - Software for parallel systems: key design patterns
* Closing comments

111

Find Concurrency
(Decomposition)

Original Problem

Implementation
strategy

Units of execution + new shared data for extracted

Program SPMD_Emb_Par () |

{

-

Program SPMD_Emb_Par ()

{| Program SPMD Emb_Par ()

{| Program SPMD Emb_Par ()

{
TYPE *tmp, *func();
global array Data(TYPE);
global array cs(TYPE);
int Num = get_num_procs();
intid = get_proc_id();

for (int I= ID; I<N;I=I+Num){
tmp = func(l, Data);
H accumulate(tmp);

}

R

if (id==0) setup_problem(N, Data);

dependencies Corresponding source code

112

Parallel computing: It's old

Cray C-90 (1991)

Cray 1 (1976)

Vector Computers

......

Paragon (1993)

Cosmic cube (1983)

Massively Parallel Processors (MPP)

e £ e

ASCI Red (1997)

Clusters (late 8’s)

Cluster Computers

Linux PC Clusters
(~1995)

RO Late 80’s

Third partv names< are the nronertv of their owners

Late 90’s
113

We tried to solve the parallel programming problem
by searching for the right programming environment

Parallel programming environments in the 90’s

ABCPL
ACE
ACT++
Active messages
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba
ARTS
Athapascan-0b
Aurora
Automap
bb_threads
Blaze

BSP
BlockComm
C*,

"C*in C
C**
CarlOS
Cashmere
C4

CCH++

Chu
Charlotte
Charm
Charm++
Cid

Cilk
CM-Fortran
Converse
Code
COOL

CORRELATE
CPS

CRL

CSP
Cthreads
CUMULVS
DAGGER
DAPPLE
Data Parallel C
DC++
DCE++
DDD

DICE.

DIPC
DOLIB
DOME
DOSMOS.
DRL
DSM-Threads
Ease .

ECO

Eiffel

Eilean
Emerald
EPL
Excalibur
Express
Falcon
Filaments
FM

FLASH

The FORCE
Fork
Fortran-M
FX

GA
GAMMA
Glenda

GLU
GUARD
HAsL.
Haskell
HPC++
JAVAR.
HORUS
HPC
IMPACT
ISIS.
JAVAR
JADE

Java RMI
javaPG
JavaSpace
JIDL

Joyce
Khoros
Karma
KOAN/Fortran-S
LAM

Lilac
Linda
JADA
WWWinda
ISETL-Linda
ParLin
Eilean
P4-Linda
Glenda
POSYBL
Objective-Linda
LiPS
Locust
Lparx
Lucid
Maisie
Manifold

Mentat
Legion
Meta Chaos
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin
Nano-Threads
NESL
NetClasses++
Nexus
Nimrod
NOW
Objective Linda
Occam
Omega
OpenMP
Orca
OO0OF90
P++
P3L
p4-Linda
Pablo
PADE
PADRE
Panda
Papers
AFAPL
Para++
Paradigm

Parafrase2
Paralation
Parallel-C++
Parallaxis
ParC
ParLib++
ParLin
Parmacs
Parti

pC

pC++
PCN

PCP:

PH

PEACE
PCU

PET
PETSc
PENNY
Phosphorus
POET.
Polaris
POOMA
POOL-T
PRESTO
P-RIO
Prospero
Proteus
QPC++
PVM

PSI

PSDM
Quake
Quark
Quick Threads
Saget++
SCANDAL
SAM

Third party names are the property of their owners.

pC++
SCHEDULE
SciTL

POET
SDDA.
SHMEM
SIMPLE
Sina

SISAL.
distributed smalltalk
SMIL

SONiC
Split-C.

SR

Sthreads
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++
UNITY

ucC

v

ViC*
Visifold V-NUS
VPE

Win32 threads
WinPar
WWWinda
XENOOPS
XPC

Zounds

ZPL

Throwing new languages at the problem didn’t work:
the “Dead Architecture Society”

Alliant S

Shared ETA [

Memory Encore I

MIMD Sequent 1
SGI —
Myrias E—

Distributed Intel SSD S

Memory BBN [

MIMD IBM —
Workstation/PC clusters —

Masspar e

Thinking machines]

ICL/DAP

]

Goodyear

Multiflow [

FPS I —
Other KSR I

Denelcore HEP N

Tera/MTA — now Cray #

1980 1990 2000
Any product names on this slide are the property of their owners. 115

Language obsessions: More isn’t always

better

* The Draeger Grocery Store
experiment consumer choice :

— Two Jam-displays with coupon’s for
purchase discount.

— 24 different Jam’s
— 6 different Jam’s

— How many stopped by to try samples
at the display?

— Of those who “tried”, how many bought
jam?

Percentage

60

40

30

try

24

buy. w

> 3
+ 0

6

motivation to purchase the product.

Psychology, 76, 995-1006.

The findings from this study show that an extensive array of options can at
first seem highly appealing to consumers, yet can reduce their subsequent

Iyengar, Sheena S., & Lepper, Mark (2000). When choice is demotivating: Can one desire too much of a good thing? Journal of Personality and Social

My optimistic view from 2005 ...

« BN
.~ Parallel Programming API's today
~ m Thread Libraries
: Win32 API
POSIX threads.

m Compiler Directives

We’ve learned our
lesson ... we emphasize
a small number of
industry standards

» OpenMP - portable shared memory parallelism.

m Message Passing Libraries
: . MPI - message .passing. ..

n Cumlng soon ... a parallel Ianguage ﬁ::r managed

runtimes? Java or X10?

existing approach.

We don’t want to scare away the programmers ...
new APIlanguage if we can’t get the job done by fixing an

Only add a

Third party names are the property of their ovmers.

But we didn’t learn our lesson

History is repeating itself!

A small sampling of Programming environments from the

NEW golden age of parallel programming (from the literature 2010-2012)

118

KA\M++

Copperhead
ArBB CUDA
BSP DryadOpt
C++11 Erlang
C++AMP Fortress
Charm++ GA
Chapel GO
Cilk++ Gossamer
CnC GPars
coArray Fortran GRAMPS
Codelets Hadoop

HMPP

ISPC
Java
Liszt
MapReduce
MATE-CG
MCAPI
MPI
NESL
OoOJava
OpenMP
OpenCL

OpenACC
PAMI
Parallel Haskell
ParalleX
PATUS
PLINQ
PPL
Pthreads
PXIF
PyPar
Plan42

OpenSHMEM RCCE

Scala
SIAL
STAPL
STM
SWARM
TBB
UPC
Win32
threads
X10
XMT
ZPL

urge to create so many of them.

Third party names are the property of their owners.

Note: I'm not criticizing these technologies. I'm criticizing our collective

Maybe its time to try something different?

'But we didn’t learn our lesson (inteD)
History is repeating itself!

A small sampling of Programming environments from the
NEW golden age of parallel programming (from the literature 2010-2012)

AMH Copperhea ISPC OpenACC Scala \
ArBB d Java PAMI SIAL
BSP CUDA Liszt Parallel Haskell STAPL
C++11 DryadOpt MapReduce ParalleX STM
C++AMP Erlang MATE-CG PATUS SWARM
Charm++ Fortress MCAPI PLINQ TBB
Chapel GA MPI PPL UPC
Cilk++ GO NESL Pthreads Win32
CnC Gossamer QoQJava PXIF threads
coArray Fortran GPars OpenMP PvPar X10
Codelets GRAMPS OpenCL Plan42 XMT
\ Hadoop QpenSHME. RCCE ZPL /
HMMP ,M

Note: I’'m not criticizing these technologies. I'm criticizing our collective
urge to create so many of them.

24
____Third party names are the property of their owners.
— —

119

SOFTWARE
ARCHITECTURE

PERSPECTIVES ON AN EMERGING DISCIPLINE
MARY SHAW DAVID GARLAN

APattern Language D()Sigll Patterns

‘Towns - Buildings - Construction Elements of Reusable

Object-Oriented Software

Erich Gamma
Richard Helm
Ralph |ehnson
John Vlissides

Christopher Alexander
Sara Ishikawa - Murray Silverstein
1
Max Jacobson - Ingrid Fiksdahl-King
Shlomo Angel

1 ‘

v
Structural Patierns Model-View-Controller L lional Patterns Gria

Pipe-and.Filter Tterative-Refnement Graph-Algorithms Structured-Grids P A T T l“]{ N q
Agent-and-Repository Map-Reduce Dynamic Programming Graphical-Models Y N R

T i oY) AT N FOR PARALLEL
PR()(;RAMI\II‘J(]

Event BasedAmplicit Tuvocation Puppeteer

N-Bady Methods
Circuits

Arbitrary Static Task-Graph

Einding Concurrency Patterns e b
LaskDecompasition Ordered task groups pectral Methods

Monte Carlo

nmgn Evaluation

Parallel Algorithm Strategy Patterns

Discrefe Event
Task Paralielism Data-Parallcism Geometric-Decomposition
Divide and Conquer ipeline Speculation
Implementation Strategy Patterns o Dhstributed-Array
SPMD Forldoin Loap-Par. Shared-M; Shared Data

Keenel Par. Actars Warkpile Parallel Graph Traversal

Program structure | Veclor-Far Algorithms and Data structure
Parallel Execution Patterns

Coordinating Processes
Stream processing Task Driven Execution

L

Shared Address Space Threads

PLPP: Pattern
» H el language of

e Parallel
'”m::.* Programming

13 dwarves 120

" OPL Pattern Language (keutzer & Mattson 2010) / \f\

Applications

N

[<

Computational Patterns Unstructured-Grids

Structural Patterns Model-View-Controller

Pipe-and-Filter Iterative-Refinement Graph-Algorithms Structured-Grids
Agent-and-Repository Map-Reduce Dynamic-Programming Graphical-Models
Process-Control Layered-Systems Dense-Linear-Algebra Finite-State-Machines

Backtrack-Branch-and-Bound
N-Body-Methods

Event-Based/Implicit-Invocation Puppeteer Sparse-Linear-Algebra

Arbitrary-Static-Task-Graph

o o Circuits
Finding Concurrency Patterns Soectral-Method
Task Decomposition Ordered task groups R
Data Decomposition I Data sharing Monte-Carlo
Design Evaluation

Parallel Algorithm Strategy Patterns Discrete-Event

Task-Parallelism Data-Parallelism Geometric-Decomposition
Divide and Conquer Pipeline Speculation

Implementation Strategy Patterns

Shared-Queue Distributed-Array
SPMD Fork/Join Loop-Par. Shared-Map Shared-Data
Kernel-Par. Actors Workpile Parallel Graph Traversal
Program structure Vector-Par Algorithms and Data structure

Parallel Execution Patterns

Coordinating Processes
Stream processing Task Driven Execution

Shared Address Space Threads

Concurrency Foundation constructs (not expressed as patterns)

Thread/proc management Communication Synchronization
Source: Keutzer and Mattson Intel Technology Journal, 2010

ructural Patterns
Pipe-and Filter
Agent-and Repository
Process Control
Event Based Tmplicit-Invocation

Model-View-Controller
Herative Refinement
Map Reduce

Layered Systems
Puppeteer

Arbltrary Static Task Graph

e Programmming
Lincar Algebra

Linear-Algebra

Unstructured Grids
Structured Grids

Graphical- Models
Finite-State-Machines
Backtrack Branch-and Bound
N-Body-Methods

Task Decomposition
Data Deco

Design By

Ordered task groups
Data sharing
aluation

Circults,
Spectral Methods
Monte Carlo

Parallel Algorithm Strategy Patterns
“Task Parallelism
Divide and Conquer Pipeline

Implementation Strategy Patterns
SPMD F Loop-Par.
Kernel Par: Workpile

Program structure Vector-Par

Parallel Execution Patterns
Coordinating Processes
Stream processing

Data Parallelism

Discrete-Event

Geometric Decampos

Speculation

Shared Quene
Shared Map

Distributed-Array
Shared-Data

Parallel Graph Traversal

Algor

nd Data structure

Shared Address Space Threads
Task Driven Exccution

Pattern examples

Siructural Paiterns ‘antral

C ional Patterns

Pipe and Filter Herative-Refincm
Agent-and-Repository Map-Reduce
Process-Control Layered-Syste
Event BasedAmplicit Invocation Puppeteer

Arbiteary Static Task-Graph

Graph-Algorithms
Dynamic Programming
Dense Linear Algebra
Spanse-LincarAlgcbra

Task Decompasition
Data Decomposition

Design Evaluation

Ordered task groups
"

Grid
Structured.Grids
Graphical-Mdels
Finite State Machines
Backirack Branch-and-Bound
N-Body-Methods

Circuits

Spectral Methods

Monte Ca

Parallel Algorithm Strategy Patterns
Task Parallelism

Discrete-Event

DataParaliclism Geametric Decompasition

Divide ana Conquer Pipeline Speculation

Implementation Strategy Patierns Shared-Quent Distribated-Array
SPMD. Forkidoin Losp-Far Shared-Map Shared-Data
Kernel.Par. Actors Workpile Parallel Graph Trav

Program structure | VeCtor-Par Algor el Data structure
Parallel Execution Patterns Shared Address Space Threads
Coordinating Processes

Siream processing

Task Driven Execntion

*Structured mesh

FFT(0,2,...,14) = FFT(xxx0)

FET(xx00)

FFT(0,1,2,3,...,15) = FF T(xxxx)
even odd

FET(xx10) FET(xx01)

FFT(1,3,..15) = FFT(xxx1)

FET(xx11)

FFT(x000) FFT(x100) FFT(x010) FFT(x110) FF}x\DDH FFT(x101) FFT(x011) FFT{x111)

FFT(0) FFT(8) FFT{4) FFT{12) FFT(2) FFT(10) FFT(8) FFT{14) FFT{1) FFT(9)FFT(5) FFT(13) FFT(2) FFT(11) FFT(7)FFT{15)

*Spectral methods

Computational Patterns: Define the computations “inside the boxes”

Structural Patterns Model- View-Contraller

Pipe and Filter Tierative Refinement
Agent-and-Repusitory Map-Reduce
Process-Contiol Layered.Systems

Event-Baseddmplicit-Invocation Puppeteer
Abiirary-Statie-Task Graph

C: ional Patterns

Graph-Algorithms
Dymamic-Programming
Dense Linear Algebra
Sparse Linear Algebra

Finding Concurrency Patterns

‘Task Decompsition

Ordered task groups

i
Structured Grids

Graphical Models

Finite-State Machines
Backtrack Branch-and-Bound
N-Body-Methods

Circuits.

Spectral Methads
Monte-Carla

Distribmied Array
Shared-Data

DaiaD ——
— Design Evaluation
B gorithm Strategy Patterns Discrete Event
ask-Parallelism Diata-Parallelism Geometric Decomposition

Divide and Conquer Pipeline Speculation
Implementation Strategy Patterns Shared-Quens

SPMD. Forkidoin Losp-Par: Shared-Map

Kernel Par. Actors Workpile Parallel Graph Traversal

Program siructure Vector-Par Algo)

structure

‘Shared Address Space Threads

*Fork-join

Parallel Patterns: Defines parallel algorithms

*SPMD

-Data parallel

122

software

®" These seven strategies for parallelizing software give us:
= Names: so we can communicate better
» Categories: so we can gather and share information
= A palette (like an artist’s palette) of approaches that is:
* Necessary: we should consider them all and

o Sufficient: once we have considered them all then we don’t’
have to worry that we forgot something

Parallel Algorithm Strategyv Patterns Discrete-Event

Task-Parallelism Data-Parallelism Geometric-Decomposition
Divide and Congquer Pipeline Speculation

123

Parallel Algorithmic Strategies

Application
Flow of Data Tasks Data
Specialist Agenda Parallelism Result Parallelism
Parallelism
Pipeline Discrete Task Speculation Divide and Geometric Data
Event Parallelism Conquer Decomposition Parallelism

124

Data Parallelism Pattern

® Use when:

* Your problem is defined in terms of collections of data

elements operated on by a similar (if not identical)
sequence of instructions; i.e. the concurrency is in the

data.
® Solution
= Define collections of data elements that can be updated
In parallel.

= Define computation as a sequence of collective
operations applied together to each data element.

| Tasks |
! ! | ! |

Data 1 Data 2 Data3 | | [Data n

125

Task Parallelism Pattern

® Use when:

* The problem naturally decomposes into a
distinct collection of tasks

¥ Solution

» Define the set of tasks and a way to detect when
the computation is done.

= Manage (or “remove”) dependencies so the
correct answer is produced regardless of the
details of how the tasks execute.

» Schedule the tasks for execution in a way that
keeps the work balanced between the processing
elements of the parallel computer and

126

® Embarrassingly parallel:

» The tasks are independent, so the parallelism is
“so easy to exploit it's embarrassing”.

® Separable dependencies:

= Turn a problem with dependent tasks into an
“embarrassingly parallel” by “replicating data
between tasks, doing the work, then recombining
data (often a reduction) to restore global state.

" Functional Decomposition

= A task is associated with a functional
decomposition of the problem to produce a coarse

grained parallel program

N

Its becoming common to associate
this case as the prototypical “task
parallel” approach ... but to us old-
timers, the previous two cases are
overwhelming more common.

127

® Use when:

= A problem includes a method to divide into
subproblems and a way to recombine solutions of
subproblems into a global solution.

® Solution

= Define a split operation

» Continue to split the problem until subproblems are
small enough to solve directly.

= Recombine solutions to subproblems to solve original
global problem.

® Note:

= Computing may occur at each phase (split, leaves,
recombine).

128

Divide and conquer

" Split the problem into smaller sub-problems. Continue until the sub-
problems can be solve directly.

‘ problem ‘

splif
O Do work as you split
subproblem subproblem ‘ |nt0 Sub-prOblemS

/ o \ ,/ i \ 0 Do work only at the

subproblem ‘ subproblem subproblem ‘ subproblem ‘ |eaveS
solve solve solve solve H DO Work as you

L Y Y .

recombine.

suhsolution subsolution ‘ subsolution subsolution ‘

\merge‘/ \merge/

subsolution ‘ subsolution ‘
\m-ﬂ'f‘ge/
‘ solution ‘

129

Pipeline Pattern

® Use when:

* Your problem can be described as data flowing
through a sequence of computational stages

Solution
O Define a set of stages setup ronge 1 | vmge 3] e 3 | rmget |
with data-flow connections N

between them.

O Set up input/output channels
to support data driven
execution.

1 Parallelism comes from
multiple stages acrive at one
time.

130

Geometric Decomposition

¥ Use when:

= The problem is organized around a central data structure that
can be decomposed into smaller segments (chunks) that can be
updated concurrently.

® Solution

= Typically, the data structure is updated iteratively where a new
value for one chunk depends on neighboring chunks.

» The computation breaks down into three components: (1)
exchange boundary data, (2) update the interiors or each chunk,
and (3) update boundary regions. The optimal size of the chunks
is dictated by the properties of the memory hierarchy.

R X-sweep
" Note: 2
* This pattern is often used with the
Structured grid and linear algebra
computational strategy pattern.

® Use when:

= Suppose that the computation has been decomposed

into a number of tasks that are not completely
independent, but where conflicts are expected to only
infrequently occur when the computation is actually
executed. Solution

® Solution:

An effective solution may be to just run the tasks independently,
that is speculate that no conflicts will occur, and then clean up
after the fact and retry in the rare situations where a conflict does
occur. Two essential element of this solution are:

1. Have an easily identifiable safety check to determine
whether the computation ran without conflicts and can thus
be committed

2. The ability to rollback and re-compute the cases where
conflicts occur.

132

Speculative Parallelism

® Speculative Parallelism:
= Speculate on state of dependencies
= Check validities of speculations
» Recompute as needed to correct any mis-speculations

Original Task Graph with long sequential dependency

Ignore dependencies to create concurrent tasks

o o o on NOE

Check validity of predicates
- Task in execution

Recompute tasks (and its children) for which predicates are invalid
Source: Narayanan Sundaram of UC Berkeley 133

Discrete-Event

® Use when:

= The computation has been structured as loosely connected
sequence of tasks that interact at unpredictable points in time.

® Solution
= Setup an event handler infrastructure

» Launch a collection of tasks whose interaction is handled
through the event handler. The handler is an intermediary
between tasks, and in many cases the tasks do not need to
know the source or destination for the events.

® Note:

= Discrete event is often used with problems, such as GUIs and
discrete event simulations, that are handled with the Event-
based implicit invocation, model-view-controller, or process
control patterns.

134

. OPL Pattern Language (keutzer & Mattson 2010) / \f\

Applications

N

[<

Computational Patterns Unstructured-Grids

Structural Patterns Model-View-Controller

Pipe-and-Filter Iterative-Refinement Graph-Algorithms Structured-Grids
Agent-and-Repository Map-Reduce Dynamic-Programming Graphical-Models
Process-Control Layered-Systems Dense-Linear-Algebra Finite-State-Machines

Backtrack-Branch-and-Bound
N-Body-Methods

Event-Based/Implicit-Invocation Puppeteer Sparse-Linear-Algebra

Arbitrary-Static-Task-Graph

— Circuits
Finding Concurrency Patterns Soectral-Method
Task Decomposition Ordered task groups R
Data Decomposition I Data sharing Monte-Carlo
Design Evaluation
Parallel Algorithm Strategy Patterns e ~ I:t
Task-Parallelism composition
Divide and Conquer 7 patte rnS to tu rn
. algorithms into code
mplementation Strategy Patterns _

STTATCU=uecue Distributed-Array
Shared-Map Shared-Data
Parallel Graph Traversal

SPMD Fork/Join Loop-Par.
Kernel-Par. Actors Workpile

%Vector-Par

Parallel Execution Patterns

Coordinating Processes
Stream processing Task Driven Execution

Algorithms and Data structure

Shared Address Space Threads

Concurrency Foundation constructs (not expressed as patterns)

Thread/proc management Communication Synchronization
Source: Keutzer and Mattson Intel Technology Journal, 2010

algorithms as software

®" These seven strategies for implementing our parallel algorithms give
us:

= Names: so we can communicate better

= Categories: so we can gather and share information

= A palette (like an artist’s palette) of approaches that is:
* Necessary: we should consider them all and

o Sufficient: once we have considered them all then we don’t’
have to worry that we forgot something

Implementation Strategy Patterns

SPMD Fork/Join Loop-Parallel
Actors Workpile Kernel-Parallel
Vector-Parallel

Program structure

136

mplementation Strategy patterns

® The most commonly used implementation strategy patterns:

SPMD One program replicated, specialized by ID and NumProcs
Fork-Join Single thread forks a team as needed and later joins
Work-pile Create a pile of tasks for a set of workers to process

Loop-Parallel

Make expensive loops independent and use a “parallel for”

Vector-Parallel

Unroll loops to expose blocks, vector ops process blocks

Kernel-Parallel

Fine-Grained SPMD kernels . Large numbers to address little’s law.

® Programming models are often optimized around the needs
of these patterns. For “our” programming models:
= MPI: SPMD, work-pile
* OpenMP: Loop-parallel, fork-join ... SPMD on large NUMA systems.
= OpenCL and CUDA: Kernel-parallelism
= OpenACC: Loop-parallel and Kernel Parallel

137

Outline

* Motivation: We all must be parallel programmers

« Key concepts in parallel Computing

* An introduction to parallel hardware

« Software for parallel systems: key design patterns
=) . Closing comments

138

Parallel programming is really hard

* Programming is hard whether you write serial or parallel
code.
— Parallel programming is just a new wrinkle added to the already
tough problem of writing high quality, robust and efficient code.
* Why does Parallel programming seems so complex?

— The literature overwhelms with hundreds of languages/APIs and a
countless assortment of algorithms.

— Experienced parallel programmers love to tell “war stories” of
Herculean efforts to make applications scale ... which can scare
people away.

— It's new: synchronization, scalable algorithms, distributed data
structures, concurrency bugs, memory models ... hard or not it's a
bunch of new stuff to learn.

But it's really not that bad (part 1): parallel libraries

Programming Challenges and NITRD
Solutions

+ Application complexity grew due to parallelismand more

Ll oF R

SCalLAPACK
Lapack | 20¥ofapps

3sucfapps |

HDFs:
~11% of 2pps -

- ",

: 1

: L™

GlobalArrays
PEak 258% of apps
3% of =pps

Numbers show downloads per year or totol percentngesars
ba=zed on the percentage of NERSC projacts that wse this brary

2 Source: Kathy Yelick

Third party names are the orooertv of their owners.

But its really not that bad: part 2

* Don't let the glut of parallel programming languages confuse
you.

* Leave research languages to C.S. researchers and stick to the
small number of broadly used languages/APIs:
— Industry standards:
— Pthreads (eventually, C++'11 threads)
- OpenMP
- MPI
— OpenCL
— TBB (For C++ ... might be replaced by parallelism in C++ standard?)
— or a broadly deployed solutions tied to your platform of choice
— CUDA and OpenACC (for NVIDIA platforms and PGI compilers)
— .NET and C++ AMP (Microsoft)

Third party names are the property of their owners. 141

But its really not that bad : part 3

Structural Pallerns Tedel View Canbraller Computational Palterns | suirecianed Grids
Piper sud Filier lirrath e Kelimrmenl < : eraph Algorithms Sdructwred Cirids
® I hprmi wnd Hapssiisry Wip Hndedr [niimkl - Progoamimbig Lrapkial Medrh
Most algorithms | s wen vl e
a re based On a Event Bavrd Tmplii - lavsdarmn Pupgeer Bparu Lisrar Algrbrs 2"::"::.::. - —

Arbiirary Siats Task draph

modest number Elaing Concrrracs Patiern .
Task Ik poriitba s * Chrdewed task gromje TI Ol
. iy] &] Gl 4 &
of recurring S
Faralicl Algorithm Srategy Patizrms rebe-Furs
patte rnS T P Drala- Paralieism :-Tl-n:l:r:r I'H:ﬂnp-lrtnn
. Ik e amd O epgen Fiperhiisr Sprialilien
Implemsentation Strategy Fatterms Sharrd Quens Dhiribaled A rray
:;Hll'l” Pk i ::-H::: wharnl Yap Shared Dt
ETRTE 1AL, o ra ira rar
Prag rim virei rEre :I'r"lm e i

Aigariihmy and [Hads sirmcinrr

Parallel Executien Falterms Shared Addren Space Thieads
i mg e e

Slrram precrsing Tk Diwivrn Furculisn

« Almost every parallel program is written in terms of just 7
basic patterns:

- SPMD — Vector Parallelism

— Kernel Parallelism — Loop Parallelism
— Fork/join — Work Pile
— Actors

142

Parallel programming is easy

« So all you need to do is:

— Pick your language.

— | suggest sticking to industry standards and open source so you can
move around between hardware platforms:

— pthreads — OpenMP — OpenCL - MPI — BB

— Learn the key 7 patterns

- SPMD — Vector Parallelism
— Kernel Parallelism — Loop Parallelism
— Fork/join — Work Pile

— Actors

— Master the few patterns common to your platform and application
domain ... for example, most application programmers just use
these three patterns

- SPMD — Kernel Parallelism — Loop Parallelism

Third party names are the property of their owners.

lanquaqges/APls

® To compare programming languages and APls at a high level, we can
think in terms of four key elements

Units of
Execution

A distinct executable agent that carries out the work
of a program. Examples include the threads
managed by an OS, processes running on the node
of a cluster, or work-items in an OpenCL program

Tasks/mapping

Tasks are a logically related set of operations used to
organize the computations in a program. A key
aspect of a parallel program is how these tasks are
associated (or mapped) onto the units of execution.

Coordination

Mechanisms to manage units of execution (e.g.
create, destroy, suspend) and how they interact (e.g.
synchronization and communication).

Hardware targets

Most programming models were designed with a
particular class of parallel hardware in mind.

144

languages/APls
Units of Tasks/mapping | Coordination Hardware
execution targets
Pthreads threads Fork join Shared variables | Shared
and explicit address space
synchronization computers
constructs
OpenMP threads Teams of threads | Shared variables | Shared
with worksharing | and address space
(loops and tasks) | synchronization computers
constructs
MPI processes SPMD* Message passing | Any MIMD*
computer
OpenCL Work-items Kernel parallelism* Heterogeneous
computers®
CUDA CUDA-threads Kernel parallelism* NVIDIA GPUs

* MIMD (multiple instruction multiple data) and heterogeneous computers will be covered in a latter lecture on
parallel hardware. The SPMD (single Program Multiple Data) and kernel parallelism patterns will be covered in
our parallel design patterns lecture.

If you become overwhelmed during this course ...

« Come back to this slide and remind yourself ... things are not
as bad as they seem

Parallel programming is easy

+ So all you need to dois:

— Pick your language.

— | suggest sticking to industry standards and open source so you can
move around between hardware platforms:

- pthreads. - OpenMP. ~ OpenCL - MPI - TBB
— Learn the key 7 pafterns
- SPMD - Vector Parallelism
— Kernel Parallelism - Loop Parallelism
— Forkfjoin - Work Pile
— Actors

— Master the few patterns common to your platform and application
domain ... for example, most application programmers just use
these three patterns

- SPMD — Kemel Parallelism — Loop Parallelism

=l

Third party names are the property of their owners. 146

