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Introduction to Parallel Computing 
 

Tim Mattson (Intel Labs)  
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NVIDIA GTX 480 processor 

Intel “Sandybridge” processor 

NVIDIA Tegra 3 (quad Arm 
Corex A9 cores + GPU) 

Other than the Intel lab’s research processors. Die photos from UC Berkeley CS194 lecture notes Third party names are the property of their owners 

An Intel MIC processor 
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Disclaimer 
READ THIS … its very important 

• The views expressed in this talk are those of the 
speakers and not their employer. 

• This is an academic style talk and does not address 
details of any particular Intel product.  You will learn 
nothing about Intel products from this presentation.   

• This was a team effort, but if I say anything really 
stupid, it’s my fault … don’t blame my collaborators. 

 

Slides marked with this symbol were produced-with Kurt 

Keutzer and his team for CS194 … A UC Berkeley course 

on Architecting parallel applications with Design Patterns. 

Third party names are the property of their owners. 



Outline 

• Motivation: We all must be parallel programmers 

• Key concepts in parallel Computing 

• An introduction to parallel hardware 

• Software for parallel systems: key design patterns 

• Closing comments 
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Moore's Law 

Moore’s Law 

Slide source: UCB CS 194 Fall’2010 

• In 1965, Intel co-founder Gordon Moore predicted (from 

just 3 data points!) that semiconductor density would 

double every 18 months. 

– He was right! Transistors are still shrinking at the same rate 
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25%/year

52%/year

??%/year

The good old days … 

From Hennessy and Patterson, Computer Architecture: A 
Quantitative Approach, 4th edition, Sept. 15, 2006 

Vax “Star”, CISC 
Vax-11/780 

Vax “Nautilus”, 
CISC, Vax 8700 

Sparc V7 RISC 
5-stage 
Sun 4/260 
16.7 MHz PowerPC 604, 100 

MHz 
7 stage, 4 issue 

Pentium 4, 3.6 GHz, 
31 stage, 6 uop 
issue, 3 CISC issue 

Third party names are the property of their owners. 

(SPECint) 
Uniproccessor 
Performance 

Pentium 4, 3.0 GHz, 
20 stage, 3 CISC 
issue (6 uop issue) 



The Hardware/Software contract 

• Write your software as 

you choose and we 

HW-geniuses will take 

care of performance. 
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• The result: Generations of performance ignorant software 

engineers using performance-handicapped languages (such 

as Java) … which was OK since performance was a HW job. 

Third party names are the property of their owners. 
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… Computer architecture and the power wall 
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… partial solution: simple low power cores 
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Eventually Pentium 4 used 
over 30 pipeline stages!!!! 



... The rest of the solution add cores 

Processor  

f 

Processor  

f/2 

Processor  

f/2 

f 

Input Output 

Input 

Output 

Capacitance = C 

Voltage = V 

Frequency = f 

Power = CV2f Capacitance = 2.2C 

Voltage = 0.6V 

Frequency = 0.5f 

Power = 0.396CV2f 

Chandrakasan, A.P.; Potkonjak, M.; Mehra, R.; Rabaey, J.; Brodersen, R.W., 
"Optimizing power using transformations," IEEE Transactions on Computer-Aided 
Design of Integrated Circuits and Systems,, vol.14, no.1, pp.12-31, Jan 1995  

Source:   
Vishwani Agrawal 
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Microprocessor trends  

IBM Cell 

NVIDIA Tesla 
C1060  Intel SCC Processor 

ATI RV770 

3rd party names are the property of their owners. 

Individual processors are many core (and often heterogeneous) processors. 

80 cores 
30 cores 

8 wide SIMD 

1 CPU + 6 cores 

10 cores  

16 wide SIMD 

48 cores 

Source:  OpenCL tutorial, Gaster, Howes, Mattson, and Lokhmotov,  HiPEAC 2011 

ARM MPCORE  Intel  Nehalem 

4 cores 

4 cores 



The result… 
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+ 

= 
A new contract … HW people will do what’s natural 

for them (lots of simple cores) and SW people will 

have to adapt (rewrite everything) 

The problem is this was presented as an ultimatum 

… nobody asked us if we were OK with this new 

contract … which is kind of rude.   
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The many core challenge 
• A harsh assessment … 

– We have turned to multi-core chips not because of the success of our 
parallel software but because of our failure to continually increase CPU 
frequency. 

 Result: a fundamental and dangerous (for the computer 
industry) mismatch 
 Parallel hardware is ubiquitous.  

 Parallel software is rare  

 The Many Core challenge … 

 Parallel software must become as common as parallel 
hardware 

Fortunately, we don’t have to start over “from scratch”.  

We can draw from past experience with parallelism 

from high performance computing 

Fortunately, we don’t have to start over “from scratch”.  

We can draw from past experience with parallelism 

from high performance computing 



Outline 

• Motivation: We all must be parallel programmers 

• Key concepts in parallel Computing 

• An introduction to parallel hardware 

• Software for parallel systems: key design patterns 

• Closing comments 
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Outline 

• Motivation: We all must be parallel programmers 

• Key concepts in parallel Computing 

– Basic definitions: Parallelism and Concurrency 

– Notions of parallel performance   

– The limits of scalability 

– Sources of parallel overhead  

• An introduction to parallel hardware 

• Software for parallel systems: key design patterns 

• Closing comments 
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Concurrency vs. Parallelism 

 Two important definitions: 

 Concurrency: A condition of a system in which multiple tasks 
are logically active at one time. 

 Parallelism: A condition of a system in which multiple tasks 
are actually active at one time. 

Concurrent, parallel Execution 

Concurrent, non-parallel Execution 
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Concurrency vs. Parallelism 

 Two important definitions: 

 Concurrency: A condition of a system in which multiple tasks 
are logically active at one time. 

 Parallelism: A condition of a system in which multiple tasks 
are actually active at one time. 

Programs 

Concurrent 

Programs 

Parallel 

Programs 
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Concurrency in Action: a web server 

 An Web Server is a Concurrent Application (the problem is 

fundamentally defined in terms of concurrent tasks): 

 An arbitrary, large number of clients make requests which reference 

per-client persistent state 

 Consider an Image Server, which relieves load on primary web servers 

by storing, processing, and serving only images  

Images Images 
The Internet The Internet 

Image 

Server 

Image 

Server 

Web 

Server 

Web 

Server 

Client Client 
Client Client 

Client Client 
Client Client 
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Concurrency in Action: a web server 

HTTP Request 

 A Web Server is a Concurrent Application (the problem is fundamentally 

defined in terms of concurrent tasks): 

 An arbitrary, large number of clients make requests which reference 

per-client persistent state 

 Consider an Image Server, which relieves load on primary web servers 

by storing, processing, and serving only images  

For each 

client … 
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Concurrency in Action: a web server 

Image Request 

HTML doc. 

 A Web Server is a Concurrent Application (the problem is fundamentally 

defined in terms of concurrent tasks): 

 An arbitrary, large number of clients make requests which reference 

per-client persistent state 

 Consider an Image Server, which relieves load on primary web servers 

by storing, processing, and serving only images  

For each 

client … 
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Concurrency in Action: a web server 

Images 

 A Web Server is a Concurrent Application (the problem is fundamentally 

defined in terms of concurrent tasks): 

 An arbitrary, large number of clients make requests which reference 

per-client persistent state 

 Consider an Image Server, which relieves load on primary web servers 

by storing, processing, and serving only images  

For each 

client … 
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Concurrency in Action: a web server 

 The Web server, image server, and clients (you have to plan on having 

many clients) all execute at the same time 

 The problem of one or more clients interacting with a web server not 

only contains concurrency, the problem is fundamentally current.  It 

doesn’t exist as a serial problem. 

Concurrent application: An application for which 

the  problem definition is fundamentally concurrent. 
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Concurrency in action: Mandelbrot Set 

 The Mandelbrot set: An iterative map in the complex plane 

czz nn 

2

1 z0 = 0,       c is constant 

 Color each point in 

the complex plain 

of C values based 

on convergence or 

divergence of the 

iterative map.  
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Concurrency in action: Mandelbrot Set 

int mandel ( complex C) { 

   int n; 

   double a = C.real(); 

   double b = C.imag(); 

   double zr = 0.0 , zi = 0.0; 

   double tzr , tzi ; 

   n = 0; 

   while (n < max_iters && sqrt (zr*zr + zi*zi) < t) { 

      tzr = (zr*zr - zi*zi) + a; 

      tzi = (zr*zi + zr*zi) + b; 

      zr = tzr ; 

      zi = tzi ; 

      n = n+1; 

   } 

   return n; 

} 

Function to compute the iterative map for 

a single point C where 

C = a + b * i 

Where i is the square root of (-1) 

“t” is a constant that 

defines a threshold 

beyond which we 

consider the iterative 

map to diverge. 
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Concurrency in action: Mandelbrot Set 

 To generate the famous Mandelbrot set image, we use the function 

mandel(C) where C comes from  the points in the complex plane.  

 At each point C, use 

n=mandel(C) to determine if: 

 The map converges 

(n=max_iters), assign the 

color black 

 The map diverges 

(n<max_iters), assign the 

color based on the value of 

n 

 The computation for each point 

is independent of all the other 

points … a so-called 

embarrassingly parallel problem 

.   
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Concurrency in action: Mandelbrot Set 

 The following is simplified code for the serial Mandelbrot program. 

for (i=0; i<N; i++){ 

   for (j=0; j<N; j++) { 

       complex c = get_const_at_pixel(i,j); 

       complex image[i][j] = mandel( c); 

   } 

} 
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Concurrency in action: Mandelbrot Set 

 The following is simplified code for the serial Mandelbrot program. 

 Loop iterations are independent, so we can create a parallel version of 

this program as follows …  

for (i=0; i<N; i++){ 

   for (j=0; j<N; j++) { 

       complex c = get_const_at_pixel(i,j); 

       complex image[i][j] = mandel( c); 

   } 

} 

• Combine the two loops into one big loop 

and execute them in parallel  
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Concurrency in action: Mandelbrot Set 

 The problem of 

generating an image of 

the Mandelbrot set can 

be viewed serially. 

 We choose to exploit the 

concurrency contained in 

this problem so we can 

generate the image in 

less time 

Parallel application: An application composed of 

tasks that actually execute concurrently in order to (1) 

consider larger problems in fixed time or (2) complete in 

less time for a fixed size problem. 
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Concurrency vs. Parallelism: wrap up 

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010 

 Key points: 
 A web server had concurrency in its problem definition … it doesn’t 

make sense to even think of writing a “serial web server”. 

 The Mandelbrot program didn’t have concurrency in its problem 
definition. It would take a long time, but it could be serial  

 Both cases use concurrency: 
 A concurrent application is 

concurrent  by definition.  

 A parallel application solves a 
problem that could be serial, but 
it is run in parallel by … 

1. find concurrency in the 
problem 

2. expose the concurrency in 
the source code. 

3. exploit the exposed 
concurrency to complete a 
job in less time. 
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The Parallel programming process:  

Original Problem Tasks, shared and local data 

Find Concurrency 

(Decomposition) 
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Decomposition in parallel programs 

 Every parallel program is based on 

concurrency …  i.e. tasks defined by 

an application that can run at the 

same time. 

 EVERY parallel program requires a 

task decomposition and a data 

decomposition: 

 Task decomposition: break the 

application down into a set of 

tasks that can execute 

concurrently.. 

 Data decomposition: How must 

the data be broken down into 

chunks and associated with 

threads/processes to make the 

parallel program run efficiently. 
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Decomposition in parallel programs 

 Every parallel program is based on 

concurrency …  i.e. tasks defined by 

an application that can run at the 

same time. 

 EVERY parallel program requires a 

task decomposition and a data 

decomposition: 

 Task decomposition: break the 

application down into a set of 

tasks that can execute 

concurrently.. 

 Data decomposition: How must 

the data be broken down into 

chunks and associated with 

threads/processes to make the 

parallel program run efficiently. 

What’s a task 

decomposition for this 

problem? 
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Decomposition in parallel programs 

 Every parallel program is based on 

concurrency …  i.e. tasks defined by 

an application that can run at the 

same time. 

 EVERY parallel program requires a 

task decomposition and a data 

decomposition: 

 Task decomposition: break the 

application down into a set of 

tasks that can execute 

concurrently.. 

 Data decomposition: How must 

the data be broken down into 

chunks and associated with 

threads/processes to make the 

parallel program run efficiently. 

Hint: Think of the source 

code and work that is 

compute-intensive that can 

execute independently 

for (i=0; i<N; i++){ 

   for (j=0; j<N; j++) { 

       complex c = get_const_at_pixel(i,j); 

       complex image[i][j] = mandel( c); 

   } 

} 
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Decomposition in parallel programs 

 Every parallel program is based on 

concurrency …  i.e. tasks defined by 

an application that can run at the 

same time. 

 EVERY parallel program requires a 

task decomposition and a data 

decomposition: 

 Task decomposition: break the 

application down into a set of tasks 

that can execute concurrently.. 

 Data decomposition: How must the 

data be broken down into chunks 

and associated with 

threads/processes to make the 

parallel program run efficiently. 

Task: the computation required 

for each pixel … the body of the 

loop for a pair (i,j). 
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Decomposition in parallel programs 

 Every parallel program is based on 

concurrency …  i.e. tasks defined by 

an application that can run at the 

same time. 

 EVERY parallel program requires a 

task decomposition and a data 

decomposition: 

 Task decomposition: break the 

application down into a set of 

tasks that can execute 

concurrently.. 

 Data decomposition: How must 

the data (the complex plain, C) 

be broken down into chunks and 

associated with 

threads/processes to make the 

parallel program run efficiently. 

Suggest a data decomposition for 

this problem … assume a quad 

core shared memory PC.  
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Map the pixels into row blocks and 

deal them out to the cores.  This 

will give each core a memory 

efficient block to work on. 

Decomposition in parallel programs 

 Every parallel program is based on 

concurrency …  i.e. tasks defined by 

an application that can run at the 

same time. 

 EVERY parallel program requires a 

task decomposition and a data 

decomposition: 

 Task decomposition: break the 

application down into a set of tasks 

that can execute concurrently.. 

 Data decomposition: How must the 

data (the complex plain, C) be 

broken down into chunks and 

associated with threads/processes to 

make the parallel program run 

efficiently. 
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Map the pixels into row blocks and 

deal them out to the cores.  This 

will give each core a memory 

efficient block to work on. 

Decomposition in parallel programs 

 Every parallel program is based on 

concurrency …  i.e. tasks defined by 

an application that can run at the 

same time. 

 EVERY parallel program requires a 

task decomposition and a data 

decomposition: 

 Task decomposition: break the 

application down into a set of tasks 

that can execute concurrently.. 

 Data decomposition: How must the 

data (the complex plain, C) be 

broken down into chunks and 

associated with threads/processes to 

make the parallel program run 

efficiently. 

But given this data decomposition, it is 

effective to think of a task as the update 

to a pixel?  Should we update our task 

definition given the data decomposition?  
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Map the pixels into row blocks and 

deal them out to the cores.  This 

will give each core a memory 

efficient block to work on. 

Decomposition in parallel programs 

 Every parallel program is based on 

concurrency …  i.e. tasks defined by 

an application that can run at the 

same time. 

 EVERY parallel program requires a 

task decomposition and a data 

decomposition: 

 Task decomposition: break the 

application down into a set of tasks 

that can execute concurrently.. 

 Data decomposition: How must the 

data (the complex plain, C) be 

broken down into chunks and 

associated with threads/processes to 

make the parallel program run 

efficiently. 

Yes.  You go back and forth between 

task and data decomposition until you 

have a pair that work well together.  In 

this case, let’s define a task as the 

update to a row-block 
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The Parallel programming process:  

Original Problem Tasks, shared and local data 

Find Concurrency 

(Decomposition) 
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The Parallel programming process:  

Original Problem Tasks, shared and local data 

Find Concurrency 

(Decomposition) 

Implementation 

strategy 

Corresponding source code 

Program SPMD_Emb_Par () 

{ 

   TYPE *tmp, *func(); 

   global_array Data(TYPE); 

   global_array Res(TYPE); 

   int N = get_num_procs();  

   int id = get_proc_id(); 

   if (id==0) setup_problem(N,DATA); 

   for (int I= 0; I<N;I=I+Num){ 

        tmp = func(I); 

        Res.accumulate( tmp); 

   } 

} 

Program SPMD_Emb_Par () 

{ 

   TYPE *tmp, *func(); 

   global_array Data(TYPE); 

   global_array Res(TYPE); 

   int N = get_num_procs();  

   int id = get_proc_id(); 

   if (id==0) setup_problem(N,DATA); 

   for (int I= 0; I<N;I=I+Num){ 

        tmp = func(I); 

        Res.accumulate( tmp); 

   } 

} 

Program SPMD_Emb_Par () 

{ 

   TYPE *tmp, *func(); 

   global_array Data(TYPE); 

   global_array Res(TYPE); 

   int N = get_num_procs();  

   int id = get_proc_id(); 

   if (id==0) setup_problem(N,DATA); 

   for (int I= 0; I<N;I=I+Num){ 

        tmp = func(I); 

        Res.accumulate( tmp); 

   } 

} 

Program SPMD_Emb_Par () 

{ 

   TYPE *tmp, *func(); 

   global_array Data(TYPE); 

   global_array Res(TYPE); 

   int Num = get_num_procs();  

   int id = get_proc_id(); 

   if (id==0) setup_problem(N, Data); 

   for (int I= ID; I<N;I=I+Num){ 

        tmp = func(I, Data); 

        Res.accumulate( tmp); 

   } 

} 

Units of execution + new shared data for extracted 

dependencies 
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The Parallel programming process:  

Original Problem Tasks, shared and local data 

Find Concurrency 

(Decomposition) 

Implementation 

strategy 

Corresponding source code 

Program SPMD_Emb_Par () 

{ 

   TYPE *tmp, *func(); 

   global_array Data(TYPE); 

   global_array Res(TYPE); 

   int N = get_num_procs();  

   int id = get_proc_id(); 

   if (id==0) setup_problem(N,DATA); 

   for (int I= 0; I<N;I=I+Num){ 

        tmp = func(I); 

        Res.accumulate( tmp); 

   } 

} 

Program SPMD_Emb_Par () 

{ 

   TYPE *tmp, *func(); 

   global_array Data(TYPE); 

   global_array Res(TYPE); 

   int N = get_num_procs();  

   int id = get_proc_id(); 

   if (id==0) setup_problem(N,DATA); 

   for (int I= 0; I<N;I=I+Num){ 

        tmp = func(I); 

        Res.accumulate( tmp); 

   } 

} 

Program SPMD_Emb_Par () 

{ 

   TYPE *tmp, *func(); 

   global_array Data(TYPE); 

   global_array Res(TYPE); 

   int N = get_num_procs();  

   int id = get_proc_id(); 

   if (id==0) setup_problem(N,DATA); 

   for (int I= 0; I<N;I=I+Num){ 

        tmp = func(I); 

        Res.accumulate( tmp); 

   } 

} 

Program SPMD_Emb_Par () 

{ 

   TYPE *tmp, *func(); 

   global_array Data(TYPE); 

   global_array Res(TYPE); 

   int Num = get_num_procs();  

   int id = get_proc_id(); 

   if (id==0) setup_problem(N, Data); 

   for (int I= ID; I<N;I=I+Num){ 

        tmp = func(I, Data); 

        Res.accumulate( tmp); 

   } 

} 

Units of execution + new shared data for extracted 

dependencies 

Programming Notations 

we will consider: 

• OpenMP 

• OpenCL 

• CUDA 

• MPI 



Outline 

• Motivation: We all must be parallel programmers 

• Key concepts in parallel Computing 

– Basic definitions: Parallelism and Concurrency 

– Notions of parallel performance   

– The limits of scalability 

– Sources of parallel overhead  

• An introduction to parallel hardware 

• Software for parallel systems: key design patterns 

• Closing comments 
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Parallel Performance 

 MP Linpack benchmark, order 1000 matrix (solve a dense system of 

linear equations … the dense linear algebra computational pattern). 
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 Intel SCC 48  processor, 500 MHz core, 1 GHz router, DDR3 at 800 MHz. 
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Talking about performance 
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 Perfect Linear Speedup:   
happens when no parallel 
overhead and algorithm is 
100% parallel.   

 Speedup:   the increased 
performance from running 
on P processors 
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Performance scalability 

 HP Linpack benchmark, order 1000 matrix (solve a dense system of 

linear equations … the dense linear algebra computational pattern). 

Intel SCC 48  processor, 

500 Mhz core, 1 Ghz 

router, DDR3 at 800 Mhz. 
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The 48-core SCC processor: the programmer’s view, T, G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig,  

P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, Proceedings SC10, New Orleans 2010 
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Performance scalability 

 HP Linpack benchmark, order 1000 matrix (solve a dense system of 

linear equations … the dense linear algebra computational pattern). 

Intel SCC 48  processor, 

500 Mhz core, 1 Ghz 

router, DDR3 at 800 Mhz. 
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The 48-core SCC processor: the programmer’s view, T, G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig,  

P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, Proceedings SC10, New Orleans 2010 

Notice anything 

strange about this 

scalability plot? S
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Performance scalability 

 HP Linpack benchmark, order 1000 matrix (solve a dense system of 

linear equations … the dense linear algebra computational pattern). 

Intel SCC 48  processor, 

500 Mhz core, 1 Ghz 

router, DDR3 at 800 Mhz. 
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The 48-core SCC processor: the programmer’s view, T, G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig,  

P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, Proceedings SC10, New Orleans 2010 

The speedup is 

greater than the 
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Talking about performance 

)(

)1(
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PTime
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
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PPS )(

 Perfect Linear Speedup:   
happens when no parallel 
overhead and algorithm is 
100% parallel.   

 Super-linear Speedup:  Speed 
grows faster than the number of 
processing elements 

 Speedup:   the increased 
performance from running 
on P processors 
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Performance scalability 

 HP Linpack benchmark, order 1000 matrix (solve a dense system of 

linear equations … the dense linear algebra computational pattern). 

Intel SCC 48  processor, 

500 Mhz core, 1 Ghz 

router, DDR3 at 800 Mhz. 
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The 48-core SCC processor: the programmer’s view, T, G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig,  

P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, Proceedings SC10, New Orleans 2010 

What caused our 

superlinear speedup? 
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SuperLlnear Speedup 

 HP Linpack benchmark, order 1000 matrix (solve a dense system of 

linear equations … the dense linear algebra computational pattern). 
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Why the Superlinear speedup? 

R = router,  MC = Memory Controller,   

P54C 
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• Intel SCC 48 core research chip 

• SCC caches are so small, even a small portion of our O(1000) matrices won’t fit.   

 Hence the  single node performance measures memory overhead.   

• As you add more cores, the aggregate  cache size grows.  

 Eventually the tiles of the matrices being processed fits in the caches and  

performance sharply increases  superlinear speedup. 

P54C = second generation 

Pentium® core,  

The 48-core SCC processor: the programmer’s view, T, G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig,  

P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, Proceedings SC10, New Orleans 2010 
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A more typical speedup plot 

 CHARMM molecular dynamics program running the myoglobin benchmark on an 

Intel Paragon XP/S supercomputer with 32 Mbyte nodes running OSF R 1.2.  (The 

nbody computational pattern).  Speedup relative to running the parallel program on one node. 
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Porting Applications to the MP-Paragon Supercomputer: The CHARMM Molecular Dynamics program, 

T.G. Mattson, Intel Supercomputers User’s Group meeting, 1995. 

Strong scaling … the 

speedup trends for a fixed 

size problem. 
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Efficiency 

 Efficiency  measures how well the parallel system’s resources are 
being utilized.                            

 Where P is the number of nodes and T is the elapsed 
runtime. 

P

PS

PTimeP

Time

par

seq )(

)(*

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Efficiency 

 CHARMM molecular dynamics program running the myoglobin benchmark on an 

Intel Paragon XP/S supercomputer with 32 Mbyte nodes running OSF R 1.2.  (The 

nbody computational pattern).  Speedup relative to running the parallel program on one node. 
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Porting Applications to the MP-Paragon Supercomputer: The CHARMM Molecular Dynamics program, T.G. Mattson, Intel 
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Outline 

• Motivation: We all must be parallel programmers 

• Key concepts in parallel Computing 

– Basic definitions: Parallelism and Concurrency 

– Notions of parallel performance   

– The limits of scalability 

– Sources of parallel overhead  

• An introduction to parallel hardware 

• Software for parallel systems: key design patterns 

• Closing comments 
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Amdahl's Law: History 

 Gene Amdahl was a computer 

architect in the 1960's at IBM 

 In 1967, refuted the idea that parallel 

computing was a practical path to 

improving program performance. 

 Example: Compare these two systems IBM System 360, ca. 1964 

• The IBM System 360: 

• A single-processor machine, running at 16 MHz.  

• 1 FP addition per 60 ns cycle, and 1 FP mul in ~10 60 ns cycles, 

and execute multiple instructions simultaneously  

• ILLIAC IV:  

• “The first Supercomputer”  … installed at NASA Ames in 1975. 

• 256 processors … could perform 256 FP adds in 240 ns.  
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Amdahl's Law 

 Clearly, the ILLIAC will run programs much faster than the 

S/360: It has 60x higher instruction throughput! 

 ... if you always have 256 independent instructions 

 Amdahl argued that large portions of many programs are not 

parallelizable. Parallel hardware does not help serial code:  

Each block is 1 s … 

Runtime = 3 s 

Runtime = 2.25 s The “middle 

second” runs 

perfectly parallel 

on 4 threads 
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Amdahl's Law 

𝑇𝑖𝑚𝑒𝑠𝑒𝑞 = 𝑇𝑖𝑚𝑒𝑆𝑒𝑟𝑖𝑎𝑙 + 𝑇𝑖𝑚𝑒𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑧𝑎𝑏𝑙𝑒 

 What is the maximum speedup you can expect from a parallel program? 

 Consider a sequential program with runtime:  

𝑇𝑖𝑚𝑒𝑆𝑒𝑞 
 

 We can think of this program as consisting of two parts … one that can 
benefit from multiple processing elements (parallel) and a second part that 
is fundamentally serial. 

 The runtime is therefore: 

 We can express this in terms of a fraction of the program that is serial and 
a fraction of the program that is parallel or 

𝑇𝑖𝑚𝑒𝑠𝑒𝑞 = 𝑠𝑒𝑟𝑖𝑎𝑙_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ∗ 𝑇𝑖𝑚𝑒𝑠𝑒𝑞 + parallel_fraction * Timeseq 
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Amdahl’s Law 

 If we run the program on P processing elements and assume linear 
speedup, then our time for the parallel program becomes: 

  

seqpar Time
P

fractionparallel
fractionserialPTime *)

_
_()( 

 
 If you had an unlimited number of processors: 

 If the serial_fraction is a and the parallel_fraction is (1- a), the speedup is:  
  

 
 The maximum possible speedup is: 

a

1
S Amdahl’s 

Law 

𝑆 𝑃 =  
𝑇𝑖𝑚𝑒𝑠𝑒𝑞 

𝑇𝑖𝑚𝑒𝑝𝑎𝑟(𝑃)
=

𝑇𝑖𝑚𝑒𝑠𝑒𝑞
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𝑃
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=
1

(𝛼 +
1 − 𝛼

𝑃
)
 

lim
𝑃→∞

1 − 𝛼

𝑃
= 0 

0 
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Amdahl's Law and the CHARMM MD 

program 
 We Profiled CHARMM running on the Paragon XPS to find the time 

spent in code that was not parallelized … concluded that CHARMM 

has a serial fraction of ~0.003. 

 
 The maximum possible speedup is: S= 1/0.003 = 333 
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What if the problem size grows 

 Consider the dense linear algebra  

 A key feature is that operations between matrices (such as LU 

factorization or matrix multiplication) scale as the cube of the order 

of the matrix. 

 Assume we can parallelize the linear algebra operation (O(N3)) but 

not the loading of the matrices from memory (O(N2)).  How does the 

serial fraction vary with matrix order (assume loading from memory 

is much slower than a floating point op). 

What would plots of runtime vs. problem size look like 

for the N squared and N cubed terms? 

 

What would plots of serial fraction vs. problem size look 

like for the N squared and N cubed terms?   
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What if the problem size grows 

 Consider dense linear algebra   

 A key feature is that operations between matrices (such as LU factorization 

or matrix multiplication) scale as the cube of the order of the matrix. 

 Assume we can parallelize the linear algebra operation (O(N3)) but not the 

loading of the matrices from memory (O(N2)).  How does the serial fraction 

vary with matrix order (assume loading from memory is much slower than a 

floating point op). 
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What if the problem size grows 

 Consider the dense linear algebra design pattern (which we will cover in 

much more detail later). 

 A key feature is that operations between matrices (such as LU factorization 

or matrix multiplication) scale as the cube of the order of the matrix. 

 Assume we can parallelize the linear algebra operation (O(N3)) but not the 

loading of the matrices from memory (O(N2)).  How does the serial fraction 

vary with matrix order (assume loading from memory is much slower than a 

floating point op). 
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Weak Scaling: a response to Amdahl 

 Gary Montry and John Gustafson (1988, Sandia National Laboratories) 

observed that for many problems the serial fraction of a function of the 

problem size (N) decreases: 

 

 In other words … if parallelizable computations asymptotically dominate the 

runtime, then you can increase a problem size until limitations due to 

Amdahl’s law can be ignored.  This is an easier form of scalability for a 

programmer to meet … so its called “weak scaling”: 

 Weak Scaling: Performance of an application when the problem size 

increases with the number of processors (fixed size problem per node) 
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Example of weak scaling 

http://www.spscicomp.org/ScicomP16/presentations/PRACE_ScicomP.pdf 

A time dependent 

Quantum 

simulation of  

helium atoms 

with 20 grid units 

per processing 

element. 

IBM Blue Gene P, 

0.85 GHz, 

PowerPC 450, 4-

way processors 
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Example of weak scaling 

http://www.spscicomp.org/ScicomP16/presentations/PRACE_ScicomP.pdf 

A time dependent 

Quantum 

simulation of  

helium atoms 

with 20 grid units 

per processing 

element. 

IBM Blue Gene P, 

0.85 GHz, 

PowerPC 450, 4-

way processors 
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What does ideal scaling look 

on the time vs. cores plot 

when you have ideal scaling? 
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Example of weak scaling 

http://www.spscicomp.org/ScicomP16/presentations/PRACE_ScicomP.pdf 

A time dependent 

Quantum 

simulation of  

helium atoms 

with 20 grid units 

per processing 

element. 

IBM Blue Gene P, 

0.85 GHz, 

PowerPC 450, 4-

way processors 
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For a “perfectly scalable” 

application, the trend line for 

weak scaling should be flat. 



Outline 

• Motivation: We all must be parallel programmers 

• Key concepts in parallel Computing 

– Basic definitions: Parallelism and Concurrency 

– Notions of parallel performance   

– The limits of scalability 

– Sources of parallel overhead  

• An introduction to parallel hardware 

• Software for parallel systems: key design patterns 

• Closing comments 

 

67 



68 

Limitations to scalability 

 Remember the speedup plot we discussed earilier? 
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Limitations to scalability 

 Remember the speedup plot we discussed from last time? 

Why does the app. 

Scale worse than 

we’d expect from 

Amdahl’s law? 
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Why does the app. 

Scale worse than 

we’d expect from 

Amdahl’s law? 

Limitations to scalability 

 Remember the speedup plot we discussed from last time? 

Amdahl’s law ignores 

overheads associated 

with the implementation 

of  the parallelism.   

 

These overheads may 

have a huge impact on 

observed speedups. 
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Parallel overheads: The algorithmic 

structure of many HPC codes (part 1) 

 A large fraction of HPC applications (such as CHARMM) use a message 

passing notation with the Single Program Multiple Data or SPMD design 

pattern. 

Original program Parallel program 
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Parallel overheads: The algorithmic 

structure of many HPC codes (part 2) 

 And many SPMD programs use an 

additional simplification … “Bulk 

Synchronous Processing”. 

 
 Each process maintains a local view of 

the global data 

 A problem is  broken down into phases 

each composed of two subphases: 

• Compute on local view of data (the 

“squiggles” in the figure) 

• Communicate to update global view 

on all processes (collective 

communication). 

 Continue phases until complete 
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Parallel overheads  with the Bulk 

Synchronous Processing pattern 

 Two major sources of parallel 

overhead: 

0 1 2 3 

Process  IDs 

T
im

e
 

1. Load imbalance: the slowest process 

determines when everyone is done.  

Time waiting for other processes to 

finish (i.e. unequal lengths of the 

“squiggles” in the figure ) is time 

wasted. 

2. Communication overhead:  A cost 

only incurred by the parallel 

program. Grows with the number of 

processes for collective comm. 



74 Source: CS267 Lecture 7 
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Molecular dynamics 

 The potential energy, U(r), is divided 

into two parts: 

 Bonded terms – Groups of atoms 

connected by chemical bonds. 

 Non-bonded terms – longer range 

forces (e.g. electrostatic).  

• An N-body problem … i.e. every 

atom depends on every other 

atom, an O(N2) problem. 
Bonds, angles and torsions 

Source: Izaguirre, Ma and Skeel, SAC’03 slides, March 10 2003 

 Models motion of atoms in 
molecular systems by solving 
Newton’s equations of motion: 
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Molecular dynamics simulation 

real atoms(3,N) 

real force(3,N) 

int neighbors(MX,N) 

// Every PE has a copy of atoms and force 

loop over time steps 

    parallel loop over atoms 

Compute neighbor list (for my atoms) 

Compute nonbonded forces (my atoms and neighbors) 

Barrier   

All reduce (Sum force arrays, each PE gets a copy) 

Compute bonded forces (for my atoms) 

Integrate to Update position (for my atoms) 

All_gather(update atoms array) 

    end loop over atoms 

end loop 

We used a cutoff method … the 

potential energy drops off quickly so 

atoms beyond a neighborhood can be 

ignored in the nonbonded force calc. 
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Molecular dynamics simulation 

real atoms(3,N) 

real force(3,N) 

int neighbors(MX,N)  //MX = max neighbors an atom may have  

 

// Every PE has a copy of atoms and force 

loop over time steps 

    parallel loop over atoms 

Compute neighbor list (for my atoms) 

Compute long range forces (my atoms and neighbors) 

Barrier   

All reduce (Sum force arrays, each PE gets a copy) 

Compute bonded forces (for my atoms) 

Integrate to Update position (for my atoms) 

All_gather(update atoms array) 

    end loop over atoms 

end loop 

synchronization 

Collective 

Communication 
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Limitations to scalability 

 Remember the speedup plot we discussed from last time? 

Why does the app. 

Scale worse than 

we’d expect from 

Amdahl’s law? 
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CHARMM Myoglobin Benchmark  

 Percent of runtime for the different phases of the computation 
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CHARMM running on 

a distributed memory, 

MPP supercomputer 

using a  message 

passing library (NX) 
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CHARMM Myoglobin Benchmark  

 Percent of runtime for the different phases of the computation 
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Enon (the n-body term) scales better than 

the other computational terms.  This was 

taken into account in the Serial fraction 

estimate for the Amdahl’s law analysis 

O(N) 

O(N) 

O(N2) 

O(MX*N) 
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Charm Myoglobin Benchmark  

 Percent of runtime for the different phases of the computation 
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The fraction of time spent waiting grows 

with the number of nodes due to two 

factors: (1) the cost of the barrier grows 

with the number of nodes, and (2) variation 

in the work for each node increases as 

node count grows … load imbalance. 
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Synchronization overhead 

 Processes finish their work and must assure that all processes are 
finished before the results are combined into the global force array. 

 This is parallel overhead since this doesn’t occur in a serial 
program. 

 The synchronization construct itself takes time and in some 
cases (such as a barrier) the cost grows with the number of 
nodes. 

 

CPU 3 CPU 3 

CPU 2 CPU 2 

CPU 1 CPU 1 

CPU 0 CPU 0 

CPU 3 CPU 3 

CPU 2 CPU 2 

CPU 1 CPU 1 

CPU 0 CPU 0 

Time 
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CPU 3 CPU 3 

CPU 2 CPU 2 

CPU 1 CPU 1 

Load imbalance  

 If some processes finish their share of the computation early, the 

time spent waiting for other processors is wasted. 

 This is an example of Load Imbalance 

Time 

CPU 0 CPU 0 

CPU 3 CPU 3 

CPU 2 CPU 2 

CPU 1 CPU 1 

CPU 0 CPU 0 
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Charm Myoglobin Benchmark  

 Percent of runtime for the different phases of the computation 
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The communication growth is the chief 

culprit limiting performance in this case. 
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Communication 

 On distributed-memory machines (e.g. a cluster), communication 

can only occur by sending discrete messages over a network 

 The sending processor marshals the shared data from the 

application's data structures into a message buffer 

 The receiving processor must wait for the message to arrive ... 

 ... and un-pack the data back into data structures   

 

 

Time 

CPU 0 

CPU 3 
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Communication 

 On distributed-memory machines (e.g. a cluster), communication 

can only occur by sending discrete messages over a network 

 The sending processor marshals the shared data from the 

application's data structures into a message buffer 

 The receiving processor must wait for the message to arrive ... 

 ... and un-pack the data back into data structures 

 If the communication protocol is synchronous, then the sending 

processor must wait for acknowledgement that the message was 

received   

 

 

Time 

CPU 0 

CPU 3 
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Charm Myoglobin Benchmark  

 Percent of runtime for the different phases of the computation 
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Remember these are 

collective  comms. 

Composed of multiple 

messages each of 

which incur these 

overheads 
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Limitations to scalability 

 Remember the speedup plot we discussed from last time? 

Sync, wait, and 

comm. overheads 

combined explain 

this gap 



Outline 

• Motivation: We all must be parallel programmers 

• Key concepts in parallel Computing 

• An introduction to parallel hardware 

• Software for parallel systems: key design patterns 

• Closing Comments 
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Outline 

• Motivation: We all must be parallel programmers 

• Key concepts in parallel Computing 

• An introduction to parallel hardware 

– History of parallel hardware 

– The major building blocks of modern parallel systems 

– Multicore processors 

– The GPU 

• Software for parallel systems: key design patterns 

• Closing Comments 
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Tracking Supercomputers: Top500 

 Top500: a list of the 500 fastest computers in the world (www.top500.org) 

 Computers ranked by solution to the MPLinpack benchmark: 

 Solve Ax=b problem  for any order of A 

 List released twice per year: in June and November 

Current number 1 (June 2013)  Rmax=33.9 PFLOPS 

Tianhe-2, NUDT, Intel Ivy Bridge + Xeon Phi cluster 

17.8 megawatts,   >3million cores 

1 PFLOP 

1 TFLOP 

Source: http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf 
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Hardware Architectures for High 

Performance Computing (HPC) 

Symmetric 

Multiprocessor 

(SMP) 

Non-uniform 

Memory 

Architecture  

(NUMA) 

Massively 

Parallel 

Processor  

(MPP) 

Cluster 

Single Instruction 

Multiple Data (SIMD) 
Multiple Instruction 

Multiple Data (MIMD) 

Parallel Computers 

Shared Address Space Disjoint Address Space 

Distributed 

Computing 
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Hardware Architectures for High 

Performance Computing (HPC) 

Symmetric 

Multiprocessor 

(SMP) 

Non-uniform 

Memory 

Architecture  

(NUMA) 

Massively 

Parallel 

Processor  

(MPP) 

Cluster 

Single Instruction 

Multiple Data (SIMD) 
Multiple Instruction 

Multiple Data (MIMD) 

Parallel Computers 

Shared Address Space Disjoint Address Space 

Distributed 

Computing 

The dominant branch and 

our focus in this lecture 

Discussed later 

with GPUs  
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The birth of Supercomputing 

 The CRAY-1A: 

 2.5-nanosecond clock,  

 64 vector registers, 

 1 million 64-bit words of high-

speed memory.  

 Peak speed: 

• 80 MFLOPS scalar. 

• 250 MFLOPS vector (but 

this was VERY hard to 

achieve) 

 Cray software … by 1978  

 Cray Operating System 

(COS),  

 the first automatically 

vectorizing Fortran compiler 

(CFT), 

 Cray Assembler Language 

(CAL) were introduced.  

 

 On July 11, 1977, the CRAY-1A, serial 

number 3, was delivered to NCAR. The 

system cost was $8.86 million ($7.9 

million plus $1 million for the disks).  

http://www.cisl.ucar.edu/computers/gallery/cray/cray1.jsp 
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History of Supercomputing:  

The Era of the Vector Supercomputer  Large mainframes that operated on vectors of data 

 Custom built, highly specialized hardware and software 

 Multiple processors in an shared memory configuration 

 Required modest changes to software (vectorization) 

The Cray C916/512 at the Pittsburgh 

Supercomputer Center 
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The attack of the killer micros 

 The Caltech Cosmic 

Cube developed by 

Charles Seitz and 

Geoffrey Fox in1981 

 64 Intel 8086/8087 

processors 

 128kB of memory per 

processor 

 6-dimensional hypercube 

network 

 

http://calteches.library.caltech.edu/3419/1/Cubism.pdf 

 

The cosmic cube, Charles Seitz 

Communications of the ACM, Vol 28, number 1 January 

1985, p. 22  

Launched the “attack of 

the killer micros”  
Eugene Brooks, SC’90 

http://calteches.library.caltech.edu/3419/1/Cubism.pdf
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It took a while, but MPPs came to 

dominate supercomputing 

 Parallel computers with large numbers of microprocessors  

 High speed, low latency, scalable interconnection networks  

 Lots of custom hardware to support scalability 

 Required massive changes to software (parallelization)  

Paragon XPS-140 at Sandia 

National labs in Albuquerque 
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The cost advantage of mass market COTS 

 MPPs using Mass market Commercial off the shelf (COTS) 

microprocessors  and standard memory and I/O components 

 Decreased hardware and software costs makes huge systems 

affordable 
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ASCI  Red TFLOP Supercomputer 

Vector          MPP       COTS MPP 
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The MPP future looked bright … but 

then clusters took over 

 A cluster is a collection of connected, independent computers that work 

in unison to solve a problem. 

 Nothing is custom … motivated users could build cluster on their own 

 

 
 First clusters appeared in 

the late 80’s (Stacks of 

“SPARC pizza boxes”) 

 The Intel Pentium Pro in 

1995 coupled with Linux 

made them competitive. 

 NASA Goddard’s Beowulf 

cluster demonstrated 

publically that high visibility 

science could be done on 

clusters. 

 Clusters made it easier to 

bring the benefits due to 

Moores’s law into working 

supercomputers 
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Top 500 list: System Architecture  

*Constellation: A cluster for which the  number of processors on a node is greater than the number of 

nodes in the cluster.  I’ve never seen anyone use this term outside of the top500 list. 

* 

Source: http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf 



Outline 

• Motivation: We all must be parallel programmers 

• Key concepts in parallel Computing 

• An introduction to parallel hardware 

– History of parallel hardware 

– The major building blocks of modern parallel systems 

– Multicore processors 

– The GPU 

• Software for parallel systems: key design patterns 

 

101 



102 

How do we connect cores together?  
 A symmetric multiprocessor (SMP) consists of a collection 

of processors that share a single address space: 
 Multiple processing elements. 

 A shared address space with “equal-time” access for each processor. 

 The OS treats every processor the same 

Proc3 Proc2 Proc1 ProcN 

Shared Address Space 
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How realistic is this model? 

 Some of the old 
supercomputer 
mainframes followed this 
model,  

 But as soon as we added caches to 
CPUs, the SMP model fell apart. 

 Caches … all memory is equal, but 
some memory is more equal than 
others. 

A CPU with lots of cache … 
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Memory Hierarchies 

 A typical microprocessor memory hierarchy 

I-cache 

TLB 

CPU D-cache 

U
n

ifie
d

 C
a

c
h

e
 

R
e
g
 F

ile
 

RAM 

 Instruction cache and data cache pull data from a unified cache that maps onto 
RAM. 

 TLB implements virtual memory and brings in pages to support large memory 
foot prints.   

1 ns 

1 ns 

10 ns 100 ns 

1 ns 
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NUMA* issues on a Multicore Machine  

2-socket Clovertown Dell PE1950 

2 threads, 2 cores, 

sharing a cache 

2 threads, 2 cores, 1 

socket, no shared cache 

A single quad-

core chip is a 

NUMA 

machine! 

2 threads, 2 cores, 2 sockets  

$ $ 

Xeon® 5300  

Processor block 

diagram 

Third party names are the property of their owners. 

*NUMA == Non Uniform Memory architecture … memory is shared but access times vary. 



Outline 

• Motivation: We all must be parallel programmers 

• Key concepts in parallel Computing 

• An introduction to parallel hardware 

– History of parallel hardware 

– The major building blocks of modern parallel systems 

– Multicore processors 

– The GPU 

• Software for parallel systems: key design patterns 

• Closing comments 
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What happened to SIMD? 

Symmetric 

Multiprocessor 

(SMP) 

Non-uniform 

Memory 

Architecture  

(NUMA) 

Massively 

Parallel 

Processor  

(MPP) 

Cluster 

Single Instruction 

Multiple Data (SIMD)* 
Multiple Instruction 

Multiple Data (MIMD) 

Parallel Computers 

Shared Address Space Disjoint Address Space 

Distributed 

Computing 



SIMD and sx86 multimedia extensions. 

10
8 

Source: Bryan Catanzaro, NVIDIA, UCB Parlab Bootcamp, 2013 
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NVIDIA GTX 480 

Graphics only 

i.e. texture cache,  

interpolation hardware 

General compute + graphics 

16 “Streaming multiprocessors” 

Memory Controllers 

500 Double-precision GFLOPs 

16 Multiprocessors 

32 ALUs/processor 
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The end of the discrete GPU 

GMCH 
GPU 

ICH 

CPU 
CPU 

DRAM 

GMCH = graphics memory control hub,   
ICH = Input/output control hub 

• A modern platform has: 

– CPU(s) 

– GPU(s) 

– DSP processors 

– … other? 

• Current designs put 
this functionality 
onto a single chip … 
mitigates the PCIe 
bottleneck in 
GPGPU computing! 

Intel® Core™ i5-2500K Desktop Processor  
(Sandy Bridge)  Intel HD Graphics 3000 (2011) 

Absorption into CPU (remove “off chip” penalty) but 
uncertain standards story  success unclear 

Absorption into CPU (remove “off chip” penalty) but 
uncertain standards story  success unclear 
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• Motivation: We all must be parallel programmers 

• Key concepts in parallel Computing 

• An introduction to parallel hardware 

• Software for parallel systems: key design patterns 

• Closing comments 
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The Parallel programming process:  

Original Problem Tasks, shared and local data 

Find Concurrency 

(Decomposition) 

Implementation 

strategy 

Corresponding source code 

Program SPMD_Emb_Par () 

{ 

   TYPE *tmp, *func(); 

   global_array Data(TYPE); 

   global_array Res(TYPE); 

   int N = get_num_procs();  

   int id = get_proc_id(); 

   if (id==0) setup_problem(N,DATA); 

   for (int I= 0; I<N;I=I+Num){ 

        tmp = func(I); 

        Res.accumulate( tmp); 

   } 

} 

Program SPMD_Emb_Par () 

{ 

   TYPE *tmp, *func(); 

   global_array Data(TYPE); 

   global_array Res(TYPE); 

   int N = get_num_procs();  

   int id = get_proc_id(); 

   if (id==0) setup_problem(N,DATA); 

   for (int I= 0; I<N;I=I+Num){ 

        tmp = func(I); 

        Res.accumulate( tmp); 

   } 

} 

Program SPMD_Emb_Par () 

{ 

   TYPE *tmp, *func(); 

   global_array Data(TYPE); 

   global_array Res(TYPE); 

   int N = get_num_procs();  

   int id = get_proc_id(); 

   if (id==0) setup_problem(N,DATA); 

   for (int I= 0; I<N;I=I+Num){ 

        tmp = func(I); 

        Res.accumulate( tmp); 

   } 

} 

Program SPMD_Emb_Par () 

{ 

   TYPE *tmp, *func(); 

   global_array Data(TYPE); 

   global_array Res(TYPE); 

   int Num = get_num_procs();  

   int id = get_proc_id(); 

   if (id==0) setup_problem(N, Data); 

   for (int I= ID; I<N;I=I+Num){ 

        tmp = func(I, Data); 

        Res.accumulate( tmp); 

   } 

} 

Units of execution + new shared data for extracted 

dependencies 



Parallel computing:  It’s old 
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Late 70’s 

Cray 1 (1976) Cray 2 (1985) Cray C-90 (1991) 

Cosmic cube (1983) 
Paragon (1993) 

ASCI Red (1997)  

Clusters (late 80’s) 

Late 80’s Late 90’s 

Vector Computers 

Cluster Computers 

Massively Parallel Processors (MPP) 

Linux PC Clusters 

(~1995) 

Third party names are the property of their owners. 



We tried to solve the parallel programming problem 

by searching for the right programming environment 

ABCPL 

ACE  

ACT++  

Active messages  

Adl 

Adsmith 

ADDAP 

AFAPI 

ALWAN 

AM 

AMDC 

AppLeS 

Amoeba  

ARTS 

Athapascan-0b 

Aurora 

Automap 

bb_threads  

Blaze 

BSP 

BlockComm  

C*.  

"C* in C  

C**  

CarlOS 

Cashmere 

C4 

CC++  

Chu 

Charlotte 

Charm 

Charm++ 

Cid 

Cilk 

CM-Fortran  

Converse 

Code 

COOL 

CORRELATE  

CPS  

CRL 

CSP 

Cthreads  

CUMULVS 

DAGGER 

DAPPLE  

Data Parallel C  

DC++  

DCE++  

DDD 

DICE. 

DIPC  

DOLIB 

DOME  

DOSMOS. 

DRL 

DSM-Threads 

Ease . 

ECO 

Eiffel  

Eilean  

Emerald  

EPL  

Excalibur 

Express 

Falcon 

Filaments 

FM 

FLASH 

The FORCE  

Fork 

Fortran-M 

FX 

GA  

GAMMA  

Glenda 

GLU 

GUARD 

HAsL. 

Haskell  

HPC++ 

JAVAR. 

HORUS 

HPC 

IMPACT 

ISIS. 

JAVAR 

JADE  

Java RMI 

javaPG 

JavaSpace 

JIDL 

Joyce 

Khoros 

Karma  

KOAN/Fortran-S 

LAM 

Lilac  

Linda 

JADA  

WWWinda 

ISETL-Linda  

ParLin  

Eilean  

P4-Linda 

Glenda  

POSYBL 

Objective-Linda 

LiPS 

Locust 

Lparx 

Lucid 

Maisie  

Manifold 

Mentat 

Legion 

Meta Chaos  

Midway 

Millipede 

CparPar 

Mirage 

MpC 

MOSIX 

Modula-P 

Modula-2* 

Multipol 

MPI 

MPC++ 

Munin 

Nano-Threads 

NESL 

NetClasses++  

Nexus 

Nimrod 

NOW 

Objective Linda 

Occam 

Omega 

OpenMP 

Orca 

OOF90 

P++ 

P3L 

p4-Linda 

Pablo 

PADE 

PADRE  

Panda  

Papers  

AFAPI. 

 Para++ 

Paradigm 

Parafrase2  

Paralation  

Parallel-C++  

Parallaxis 

ParC  

ParLib++ 

ParLin 

Parmacs 

Parti 

pC 

pC++ 

PCN 

PCP:  

PH 

PEACE 

PCU 

PET 

PETSc 

PENNY 

Phosphorus  

POET. 

Polaris  

POOMA 

POOL-T 

PRESTO 

P-RIO  

Prospero 

Proteus  

QPC++  

PVM 

PSI 

PSDM 

Quake 

Quark 

Quick Threads 

Sage++ 

SCANDAL 

 SAM 

pC++  

SCHEDULE 

SciTL  

POET  

SDDA. 

SHMEM  

SIMPLE 

Sina  

SISAL. 

distributed smalltalk  

SMI. 

SONiC 

Split-C. 

SR 

Sthreads  

Strand. 

SUIF. 

Synergy 

Telegrphos 

SuperPascal  

TCGMSG. 

Threads.h++. 

TreadMarks 

TRAPPER 

uC++  

UNITY  

UC  

V  

ViC*  

Visifold V-NUS  

VPE 

Win32 threads  

WinPar  

WWWinda  

 XENOOPS   

XPC 

Zounds 

ZPL 

Parallel programming environments in the 90’s 

Third party names are the property of their owners. 
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Throwing new languages at the problem didn’t work: 
the “Dead Architecture Society” 

Alliant 

ETA 

Encore 

Sequent 

SGI 

Myrias 

Intel SSD 

BBN 

IBM 

Workstation/PC  clusters  

Masspar 

Thinking machines 

ICL/DAP 

Goodyear 

Multiflow 

FPS 

KSR 

Denelcore HEP 

Tera/MTA – now Cray 

Shared 

Memory 

MIMD 

Distributed 

Memory 

MIMD 

SIMD 

Other 

1980 1990 2000 

Any product names on this slide are the property of their owners. 
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Language obsessions: More isn’t always 

better 

• The Draeger Grocery Store 

experiment consumer choice : 

– Two Jam-displays with coupon’s for 

purchase discount. 

– 24 different Jam’s 

– 6 different Jam’s 

– How many stopped by to try samples 

at the display? 

– Of those who “tried”, how many bought 

jam? 

The findings from this study show that an extensive array of options can at 
first seem highly appealing to consumers, yet can reduce their subsequent 
motivation to purchase the product. 
Iyengar, Sheena S., & Lepper, Mark (2000). When choice is demotivating: Can one desire too much of a good thing? Journal of Personality and Social 

Psychology, 76, 995-1006.  

The findings from this study show that an extensive array of options can at 
first seem highly appealing to consumers, yet can reduce their subsequent 
motivation to purchase the product. 
Iyengar, Sheena S., & Lepper, Mark (2000). When choice is demotivating: Can one desire too much of a good thing? Journal of Personality and Social 

Psychology, 76, 995-1006.  
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My optimistic view from 2005 … 

We’ve learned our 

lesson … we emphasize 

a small number of 

industry standards 
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But we didn’t learn our lesson 
History is repeating itself! 

Third party names are the property of their owners. 

 A small sampling of Programming environments from the 
NEW golden age of parallel programming (from the literature 2010-2012) 

Note: I’m not criticizing these technologies.  I’m criticizing our collective 

urge to create so many of them. 

AM++   

ArBB 

BSP 

C++11   

C++AMP  

Charm++ 

Chapel  

Cilk++ 

CnC  

coArray Fortran  

Codelets  

Copperhead  

CUDA 

DryadOpt 

Erlang 

Fortress 

GA  

GO  

Gossamer 

GPars 

GRAMPS 

Hadoop 

HMPP 

ISPC 

Java 

Liszt 

MapReduce  

MATE-CG 

MCAPI  

MPI 

NESL 

OoOJava 

OpenMP  

OpenCL 

OpenSHMEM 

OpenACC  

PAMI  

Parallel Haskell 

ParalleX  

PATUS  

PLINQ  

PPL  

Pthreads  

PXIF  

PyPar 

Plan42 

RCCE 

Scala  

SIAL 

STAPL  

STM  

SWARM  

TBB  

UPC 

Win32 

threads  

X10  

XMT  

ZPL 



Maybe its time to try something different? 

119 
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13 dwarves 

PLPP: Pattern 

language of 

Parallel 

Programming 
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Graph-Algorithms 

Dynamic-Programming 

Dense-Linear-Algebra 

Sparse-Linear-Algebra 

Model-View-Controller  

Iterative-Refinement 

Map-Reduce 

Layered-Systems 

Puppeteer 

Pipe-and-Filter 

Agent-and-Repository 

Process-Control 

Event-Based/Implicit-Invocation 

Arbitrary-Static-Task-Graph 

Unstructured-Grids 

Structured-Grids 

Graphical-Models 

Finite-State-Machines 

Backtrack-Branch-and-Bound 

N-Body-Methods 

Circuits 

Spectral-Methods 

Monte-Carlo 

Applications 

Structural Patterns  Computational Patterns 

OPL Pattern Language (Keutzer & Mattson 2010) 

Task-Parallelism 

Divide and Conquer 
Data-Parallelism 

Pipeline 

Discrete-Event  

Geometric-Decomposition 

Speculation 

SPMD 

Kernel-Par. 
Fork/Join 

Actors 

Vector-Par 

Distributed-Array 

Shared-Data 

Shared-Queue 

Shared-Map 

Parallel Graph Traversal 

Coordinating Processes 

Stream processing  

Parallel Execution Patterns 

Parallel Algorithm Strategy Patterns 

Implementation Strategy Patterns 

Communication 

Shared Address Space Threads 

Task Driven Execution 

Algorithms and Data structure Program structure 

Synchronization 

Loop-Par. 

Workpile 

Thread/proc management 

Concurrency Foundation constructs (not expressed as patterns) 

Task Decomposition 

Data Decomposition 

Ordered task groups 

Data sharing 

Design Evaluation 

Finding Concurrency Patterns  

Source: Keutzer and Mattson Intel Technology Journal, 2010 



•Spectral methods 

•MapReduce 

122 

•Pipe-and-Filter 

Pattern examples 

Structural Patterns: Define the software structure .. Not what is computed 

•Iterative refinement 

Computational Patterns: Define the computations “inside the boxes” 

•Structured mesh 

Parallel Patterns: Defines parallel algorithms 

•Fork-join •SPMD •Data parallel 
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Seven strategies for parallelizing 

software 

 These seven strategies for parallelizing software give us: 

 Names: so we can communicate better 

 Categories: so we can gather and share information 

 A palette (like an artist’s palette) of approaches that is: 

• Necessary: we should consider them all and 

• Sufficient: once we have considered them all then we don’t’ 

have to worry that we forgot something 
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Parallel Algorithmic Strategies 

Result Parallelism 

Geometric 

Decomposition 

Geometric 

Decomposition 

Task 

Parallelism 

Task 

Parallelism 
Divide and 

Conquer 

Divide and 

Conquer 

Data 

Parallelism 

Data 

Parallelism 

Specialist 

Parallelism 

Pipeline Pipeline Discrete 

Event 

Discrete 

Event 

Agenda Parallelism 

Speculation Speculation 

Data Tasks  Flow of Data 

Application  
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Data Parallelism Pattern 

 Use when: 

 Your problem is defined in terms of collections of data 
elements operated on by a similar (if not identical) 
sequence of instructions; i.e. the concurrency is in the 
data.    

 Solution 

 Define collections of data elements that can be updated 
in parallel. 

 Define computation as a sequence of collective 
operations applied together to each data element. 

Data 1 Data 2 Data 3 Data n 

Tasks 

…… 



126 

Task Parallelism Pattern 

 Solution 

 Define the set of tasks and a way to detect when 

the computation is done. 

 Manage (or “remove”) dependencies so the 

correct answer is produced regardless of the 

details of how the tasks execute.  

 Schedule the tasks for execution in a way that 

keeps the work balanced between the processing 

elements of the parallel computer and  

 

 Use when: 

 The problem naturally decomposes into a 

distinct collection of tasks 
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Task Parallelism in practice 

 Embarrassingly parallel:  

 The tasks are independent, so the parallelism is 

“so easy to exploit it’s embarrassing”. 

 Separable dependencies: 

 Turn a problem with dependent tasks into an 

“embarrassingly parallel” by “replicating data 

between tasks, doing the work, then recombining 

data (often a reduction) to restore global state. 

 Functional Decomposition 

 A task is associated with a functional 

decomposition of the problem to produce a coarse 

grained parallel program  

 
Its becoming common to associate 

this case as the prototypical “task 

parallel” approach … but to us old-

timers, the previous two cases are 

overwhelming more common. 
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Divide and Conquer Pattern 

 Use when: 

 A problem includes a method to divide into 
subproblems and a way to recombine solutions of 
subproblems into a global solution. 

 Solution 

 Define a split operation 

 Continue to split the problem until subproblems are 
small enough to solve directly. 

 Recombine solutions to subproblems to solve original 
global problem. 

 Note:  

 Computing may occur at each phase (split, leaves, 
recombine). 
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Divide and conquer 

 Split the problem into smaller sub-problems. Continue until the sub-
problems can be solve directly. 

 3 Options: 

 Do work as you split 

into sub-problems. 

 Do work only at the 

leaves. 

 Do work as you 

recombine. 
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Pipeline Pattern 

 Use when: 

 Your problem can be described as data flowing 
through a sequence of computational stages 

 Solution 

 Define a set of stages setup 
with data-flow connections 
between them. 

 Set up input/output channels 
to support data driven 
execution. 

 Parallelism comes from 
multiple stages acrive at one 
time. 
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Geometric Decomposition 

 Use when: 

 The problem is organized around a central data structure that 

can be decomposed into smaller segments (chunks) that can be 

updated concurrently. 

 Solution 

 Typically, the data structure is updated iteratively where a new 

value for one chunk depends on neighboring chunks. 

 The computation breaks down into three components: (1) 

exchange boundary data, (2) update the interiors or each chunk, 

and (3) update boundary regions. The optimal size of the chunks 

is dictated by the properties of the memory hierarchy.  
x-sweep  

z
-s

w
e

e
p

  

 Note: 

 This pattern is often used with the 

Structured grid and linear algebra 

computational strategy pattern. 
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Speculation 

 Use when: 

 Suppose that the computation has been decomposed 
into a number of tasks that are not completely 
independent, but where conflicts are expected to only 
infrequently occur  when the computation is actually 
executed. Solution 

 Solution: 
 An effective solution may be to just run the tasks independently, 

that is speculate that no conflicts will occur, and then clean up 
after the fact and retry in the rare situations where a conflict does 
occur.  Two essential element of this solution are:  

1. Have an easily identifiable safety check to determine 
whether the computation ran without conflicts and can thus 
be committed 

2. The ability to rollback and re-compute the cases where 
conflicts occur.  
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Speculative Parallelism 

 Speculative Parallelism: 

 Speculate on  state of dependencies  

 Check validities of speculations 

 Recompute as needed to correct any mis-speculations 

 

Source: Narayanan Sundaram of UC Berkeley 
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Discrete-Event 

 Use when: 

 The computation has been structured as loosely connected 

sequence of tasks that interact at unpredictable points in time.  

 Solution 

 Setup an event handler infrastructure 

 Launch a collection of tasks whose interaction is handled 

through the event handler.   The handler is an intermediary 

between tasks, and in many cases the tasks do not need to 

know the source or destination for the events.    

 Note: 

 Discrete event is often used with problems, such as GUIs and 

discrete event simulations, that are handled with the Event-

based implicit invocation, model-view-controller, or process 

control patterns. 
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Graph-Algorithms 

Dynamic-Programming 

Dense-Linear-Algebra 

Sparse-Linear-Algebra 

Model-View-Controller  

Iterative-Refinement 

Map-Reduce 

Layered-Systems 

Puppeteer 

Pipe-and-Filter 

Agent-and-Repository 

Process-Control 

Event-Based/Implicit-Invocation 

Arbitrary-Static-Task-Graph 

Unstructured-Grids 

Structured-Grids 

Graphical-Models 

Finite-State-Machines 

Backtrack-Branch-and-Bound 

N-Body-Methods 

Circuits 

Spectral-Methods 

Monte-Carlo 

Applications 

Structural Patterns  Computational Patterns 

OPL Pattern Language (Keutzer & Mattson 2010) 

Task-Parallelism 

Divide and Conquer 
Data-Parallelism 

Pipeline 

Discrete-Event  

Geometric-Decomposition 

Speculation 

SPMD 

Kernel-Par. 
Fork/Join 

Actors 

Vector-Par 

Distributed-Array 

Shared-Data 

Shared-Queue 

Shared-Map 

Parallel Graph Traversal 

Coordinating Processes 

Stream processing  

Parallel Execution Patterns 

Parallel Algorithm Strategy Patterns 

Implementation Strategy Patterns 

Communication 

Shared Address Space Threads 

Task Driven Execution 

Algorithms and Data structure Program structure 

Synchronization 

Loop-Par. 

Workpile 

Thread/proc management 

Concurrency Foundation constructs (not expressed as patterns) 

Task Decomposition 

Data Decomposition 

Ordered task groups 

Data sharing 

Design Evaluation 

Finding Concurrency Patterns  

Source: Keutzer and Mattson Intel Technology Journal, 2010 

7 patterns to turn 

algorithms into code 
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Seven strategies for implementing our 

algorithms as software 

 These seven strategies for implementing our parallel algorithms give 

us: 

 Names: so we can communicate better 

 Categories: so we can gather and share information 

 A palette (like an artist’s palette) of approaches that is: 

• Necessary: we should consider them all and 

• Sufficient: once we have considered them all then we don’t’ 

have to worry that we forgot something 

SPMD 

Actors 

Fork/Join 

Workpile 

Program structure 

Loop-Parallel 

Kernel-Parallel 

Vector-Parallel 

Implementation Strategy Patterns 
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Implementation Strategy patterns 

 The most commonly used implementation strategy patterns: 

SPMD One program replicated, specialized by ID and NumProcs 

Fork-Join Single thread forks a team as needed and later joins 

Work-pile Create a pile of tasks for a set of workers to process 

Loop-Parallel Make expensive loops independent and use a “parallel for” 

Vector-Parallel Unroll loops to expose blocks, vector ops process blocks 

Kernel-Parallel Fine-Grained SPMD kernels . Large numbers to address little’s law.  

 Programming models are often optimized around the needs 

of these patterns.  For “our” programming models: 

 MPI: SPMD, work-pile 

 OpenMP: Loop-parallel, fork-join … SPMD on large NUMA systems. 

 OpenCL and CUDA: Kernel-parallelism 

 OpenACC: Loop-parallel and Kernel Parallel 



Outline 

• Motivation: We all must be parallel programmers 

• Key concepts in parallel Computing 

• An introduction to parallel hardware 

• Software for parallel systems: key design patterns 

• Closing comments 
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Parallel programming is really hard 

• Programming is hard whether you write serial or parallel 

code.    

– Parallel programming is just a new wrinkle added to the already 

tough problem of writing high quality, robust and efficient code. 

• Why does Parallel programming seems so complex? 

– The literature overwhelms with hundreds of languages/APIs and a 

countless assortment of algorithms. 

– Experienced parallel programmers love to tell “war stories” of 

Herculean efforts  to make applications scale … which can scare 

people away. 

– It’s new: synchronization, scalable algorithms, distributed data 

structures, concurrency bugs, memory models … hard or not it’s a 

bunch of new stuff to learn. 

13
9 



Third party names are the property of their owners. 

But it’s really not that bad (part 1): parallel libraries 
 

The Networking and Information Technology Research and Development (NITRD)  

Source: Kathy Yelick 
Source: Kathy Yelick 



But its really not that bad: part 2 

• Don’t let the glut of parallel programming languages confuse 

you. 

• Leave research languages to C.S. researchers and stick to the 

small number of broadly used languages/APIs: 

– Industry standards: 

– Pthreads (eventually, C++’11 threads) 

– OpenMP 

– MPI 

– OpenCL 

– TBB (For C++ … might be replaced by parallelism in C++ standard?) 

– or a broadly deployed solutions tied to your platform of choice 

– CUDA and OpenACC (for NVIDIA platforms and PGI compilers) 

– .NET and C++ AMP (Microsoft) 

141 Third party names are the property of their owners. 



But its really not that bad : part 3 

• Most algorithms 

are based on a 

modest number 

of recurring 

patterns. 
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• Almost every parallel program is written in terms of just 7 

basic patterns: 

– SPMD 

– Kernel Parallelism  

– Fork/join 

– Actors 

– Vector Parallelism 

– Loop Parallelism 

– Work Pile 



Parallel programming is easy 

• So all  you need to do is: 

– Pick your language. 

– I suggest sticking to industry standards and open source so you can 

move around between hardware platforms: 
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– SPMD 

– Kernel Parallelism  

– Fork/join 

– Actors 

– Vector Parallelism 

– Loop Parallelism 

– Work Pile 

– Learn the key 7 patterns 

– Master the few patterns common to your platform and application 

domain … for example, most application programmers just use 

these three patterns 

– SPMD – Loop Parallelism – Kernel Parallelism  

– pthreads – OpenCL – OpenMP – MPI – TBB 

Third party names are the property of their owners. 
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Comparing parallel programming 

languages/APIs 

Units of 

Execution 

A distinct executable agent that carries out the work 

of a program.  Examples include the threads 

managed by an OS, processes running on the node 

of a cluster, or work-items in an OpenCL program  

Tasks/mapping Tasks are a logically related set of operations used to 

organize the computations in a program.  A key 

aspect of a parallel program is how these tasks are 

associated (or mapped) onto the units of execution. 

Coordination Mechanisms to manage units of execution (e.g. 

create, destroy, suspend) and how they interact (e.g. 

synchronization and communication). 

Hardware targets Most programming models were designed with a 

particular class of parallel hardware in mind.   

 To compare programming languages and APIs at a high level, we can 

think in terms of four key elements 
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* MIMD (multiple instruction multiple data) and heterogeneous computers will be covered in a latter lecture on 

parallel hardware. The SPMD (single Program Multiple Data)  and kernel parallelism patterns will be covered in 

our parallel design patterns lecture. 

Comparing parallel programming 

languages/APIs 
Units of 

execution 

Tasks/mapping Coordination Hardware 

targets 

Pthreads threads Fork join Shared variables 

and explicit 

synchronization  

constructs 

Shared 

address space 

computers 

OpenMP threads Teams of threads 

with worksharing 

(loops and tasks) 

Shared variables 

and 

synchronization  

constructs 

Shared 

address space 

computers 

MPI processes SPMD* Message passing Any MIMD* 

computer 

OpenCL Work-items Kernel parallelism* Heterogeneous 

computers* 

CUDA CUDA-threads Kernel parallelism* NVIDIA GPUs 



If you become overwhelmed during this course … 

• Come back to this slide and remind yourself … things are not 

as bad as they seem 

146 Third party names are the property of their owners. 


