
1 1

Introduction to Parallel Computing

Tim Mattson (Intel Labs)

Intel Labs 80 core Research
processor

Intel labs 48 core SCC processor

VRC

2
1

.4
m

m

26.5mm

System Interface + I/O

D
D

R
3

 M
C

D
D

R
3

 M
C

D
D

R
3

 M
C

D
D

R
3

 M
C

PLL

TILE

TILE

JTAG

IBM Cell Broadband engine processor

NVIDIA GTX 480 processor

Intel “Sandybridge” processor

NVIDIA Tegra 3 (quad Arm
Corex A9 cores + GPU)

Other than the Intel lab’s research processors. Die photos from UC Berkeley CS194 lecture notes Third party names are the property of their owners

An Intel MIC processor

2 2

Disclaimer
READ THIS … its very important

• The views expressed in this talk are those of the
speakers and not their employer.

• This is an academic style talk and does not address
details of any particular Intel product. You will learn
nothing about Intel products from this presentation.

• This was a team effort, but if I say anything really
stupid, it’s my fault … don’t blame my collaborators.

Slides marked with this symbol were produced-with Kurt

Keutzer and his team for CS194 … A UC Berkeley course

on Architecting parallel applications with Design Patterns.

Third party names are the property of their owners.

Outline

• Motivation: We all must be parallel programmers

• Key concepts in parallel Computing

• An introduction to parallel hardware

• Software for parallel systems: key design patterns

• Closing comments

3

Moore's Law

Moore’s Law

Slide source: UCB CS 194 Fall’2010

• In 1965, Intel co-founder Gordon Moore predicted (from

just 3 data points!) that semiconductor density would

double every 18 months.

– He was right! Transistors are still shrinking at the same rate

5

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
c

e
 (

v
s

.
V

A
X

-1
1

/7
8

0
)

25%/year

52%/year

??%/year

The good old days …

From Hennessy and Patterson, Computer Architecture: A
Quantitative Approach, 4th edition, Sept. 15, 2006

Vax “Star”, CISC
Vax-11/780

Vax “Nautilus”,
CISC, Vax 8700

Sparc V7 RISC
5-stage
Sun 4/260
16.7 MHz PowerPC 604, 100

MHz
7 stage, 4 issue

Pentium 4, 3.6 GHz,
31 stage, 6 uop
issue, 3 CISC issue

Third party names are the property of their owners.

(SPECint)
Uniproccessor
Performance

Pentium 4, 3.0 GHz,
20 stage, 3 CISC
issue (6 uop issue)

The Hardware/Software contract

• Write your software as

you choose and we

HW-geniuses will take

care of performance.

6

• The result: Generations of performance ignorant software

engineers using performance-handicapped languages (such

as Java) … which was OK since performance was a HW job.

Third party names are the property of their owners.

7

… Computer architecture and the power wall

0

5

10

15

20

25

30

0 2 4 6 8
Scalar Performance

P
o

w
e

r power = perf ^ 1.74

Pentium M

i486 Pentium

Pentium Pro

Pentium 4 (Wmt)

Pentium 4 (Psc)

Growth in power

is unsustainable

Growth in power

is unsustainable

Source: E. Grochowski of Intel

8

… partial solution: simple low power cores

0

5

10

15

20

25

30

0 2 4 6 8
Scalar Performance

P
o

w
e

r power = perf ^ 1.74

Pentium M

i486 Pentium

Pentium Pro

Pentium 4 (Wmt)

Pentium 4 (Psc)

Mobile CPUs

with shallow

pipelines use

less power

Source: E. Grochowski of Intel

Eventually Pentium 4 used
over 30 pipeline stages!!!!

... The rest of the solution add cores

Processor

f

Processor

f/2

Processor

f/2

f

Input Output

Input

Output

Capacitance = C

Voltage = V

Frequency = f

Power = CV2f Capacitance = 2.2C

Voltage = 0.6V

Frequency = 0.5f

Power = 0.396CV2f

Chandrakasan, A.P.; Potkonjak, M.; Mehra, R.; Rabaey, J.; Brodersen, R.W.,
"Optimizing power using transformations," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems,, vol.14, no.1, pp.12-31, Jan 1995

Source:
Vishwani Agrawal

10 10

Microprocessor trends

IBM Cell

NVIDIA Tesla
C1060 Intel SCC Processor

ATI RV770

3rd party names are the property of their owners.

Individual processors are many core (and often heterogeneous) processors.

80 cores
30 cores

8 wide SIMD

1 CPU + 6 cores

10 cores

16 wide SIMD

48 cores

Source: OpenCL tutorial, Gaster, Howes, Mattson, and Lokhmotov, HiPEAC 2011

ARM MPCORE Intel Nehalem

4 cores

4 cores

The result…

11

+

=
A new contract … HW people will do what’s natural

for them (lots of simple cores) and SW people will

have to adapt (rewrite everything)

The problem is this was presented as an ultimatum

… nobody asked us if we were OK with this new

contract … which is kind of rude.

12

The many core challenge
• A harsh assessment …

– We have turned to multi-core chips not because of the success of our
parallel software but because of our failure to continually increase CPU
frequency.

 Result: a fundamental and dangerous (for the computer
industry) mismatch
 Parallel hardware is ubiquitous.

 Parallel software is rare

 The Many Core challenge …

 Parallel software must become as common as parallel
hardware

Fortunately, we don’t have to start over “from scratch”.

We can draw from past experience with parallelism

from high performance computing

Fortunately, we don’t have to start over “from scratch”.

We can draw from past experience with parallelism

from high performance computing

Outline

• Motivation: We all must be parallel programmers

• Key concepts in parallel Computing

• An introduction to parallel hardware

• Software for parallel systems: key design patterns

• Closing comments

13

Outline

• Motivation: We all must be parallel programmers

• Key concepts in parallel Computing

– Basic definitions: Parallelism and Concurrency

– Notions of parallel performance

– The limits of scalability

– Sources of parallel overhead

• An introduction to parallel hardware

• Software for parallel systems: key design patterns

• Closing comments

14

15

Concurrency vs. Parallelism

 Two important definitions:

 Concurrency: A condition of a system in which multiple tasks
are logically active at one time.

 Parallelism: A condition of a system in which multiple tasks
are actually active at one time.

Concurrent, parallel Execution

Concurrent, non-parallel Execution

16

Concurrency vs. Parallelism

 Two important definitions:

 Concurrency: A condition of a system in which multiple tasks
are logically active at one time.

 Parallelism: A condition of a system in which multiple tasks
are actually active at one time.

Programs

Concurrent

Programs

Parallel

Programs

17

Concurrency in Action: a web server

 An Web Server is a Concurrent Application (the problem is

fundamentally defined in terms of concurrent tasks):

 An arbitrary, large number of clients make requests which reference

per-client persistent state

 Consider an Image Server, which relieves load on primary web servers

by storing, processing, and serving only images

Images Images
The Internet The Internet

Image

Server

Image

Server

Web

Server

Web

Server

Client Client
Client Client

Client Client
Client Client

18

Images Images
The Internet The Internet

Image

Server

Image

Server

Web

Server

Web

Server

Client Client

Concurrency in Action: a web server

HTTP Request

 A Web Server is a Concurrent Application (the problem is fundamentally

defined in terms of concurrent tasks):

 An arbitrary, large number of clients make requests which reference

per-client persistent state

 Consider an Image Server, which relieves load on primary web servers

by storing, processing, and serving only images

For each

client …

19

Images Images
The Internet The Internet

Image

Server

Image

Server

Web

Server

Web

Server

Client Client

Concurrency in Action: a web server

Image Request

HTML doc.

 A Web Server is a Concurrent Application (the problem is fundamentally

defined in terms of concurrent tasks):

 An arbitrary, large number of clients make requests which reference

per-client persistent state

 Consider an Image Server, which relieves load on primary web servers

by storing, processing, and serving only images

For each

client …

20

Images Images
The Internet The Internet

Image

Server

Image

Server

Web

Server

Web

Server

Client Client

Concurrency in Action: a web server

Images

 A Web Server is a Concurrent Application (the problem is fundamentally

defined in terms of concurrent tasks):

 An arbitrary, large number of clients make requests which reference

per-client persistent state

 Consider an Image Server, which relieves load on primary web servers

by storing, processing, and serving only images

For each

client …

21

Concurrency in Action: a web server

 The Web server, image server, and clients (you have to plan on having

many clients) all execute at the same time

 The problem of one or more clients interacting with a web server not

only contains concurrency, the problem is fundamentally current. It

doesn’t exist as a serial problem.

Concurrent application: An application for which

the problem definition is fundamentally concurrent.

22

Concurrency in action: Mandelbrot Set

 The Mandelbrot set: An iterative map in the complex plane

czz nn 

2

1 z0 = 0, c is constant

 Color each point in

the complex plain

of C values based

on convergence or

divergence of the

iterative map.

CReal

C
im

a
g
in

a
ry

23

Concurrency in action: Mandelbrot Set

int mandel (complex C) {

 int n;

 double a = C.real();

 double b = C.imag();

 double zr = 0.0 , zi = 0.0;

 double tzr , tzi ;

 n = 0;

 while (n < max_iters && sqrt (zr*zr + zi*zi) < t) {

 tzr = (zr*zr - zi*zi) + a;

 tzi = (zr*zi + zr*zi) + b;

 zr = tzr ;

 zi = tzi ;

 n = n+1;

 }

 return n;

}

Function to compute the iterative map for

a single point C where

C = a + b * i

Where i is the square root of (-1)

“t” is a constant that

defines a threshold

beyond which we

consider the iterative

map to diverge.

24

Concurrency in action: Mandelbrot Set

 To generate the famous Mandelbrot set image, we use the function

mandel(C) where C comes from the points in the complex plane.

 At each point C, use

n=mandel(C) to determine if:

 The map converges

(n=max_iters), assign the

color black

 The map diverges

(n<max_iters), assign the

color based on the value of

n

 The computation for each point

is independent of all the other

points … a so-called

embarrassingly parallel problem

.

CReal

C
im

a
g
in

a
ry

25

Concurrency in action: Mandelbrot Set

 The following is simplified code for the serial Mandelbrot program.

for (i=0; i<N; i++){

 for (j=0; j<N; j++) {

 complex c = get_const_at_pixel(i,j);

 complex image[i][j] = mandel(c);

 }

}

26

Concurrency in action: Mandelbrot Set

 The following is simplified code for the serial Mandelbrot program.

 Loop iterations are independent, so we can create a parallel version of

this program as follows …

for (i=0; i<N; i++){

 for (j=0; j<N; j++) {

 complex c = get_const_at_pixel(i,j);

 complex image[i][j] = mandel(c);

 }

}

• Combine the two loops into one big loop

and execute them in parallel

27

Concurrency in action: Mandelbrot Set

 The problem of

generating an image of

the Mandelbrot set can

be viewed serially.

 We choose to exploit the

concurrency contained in

this problem so we can

generate the image in

less time

Parallel application: An application composed of

tasks that actually execute concurrently in order to (1)

consider larger problems in fixed time or (2) complete in

less time for a fixed size problem.

28

Concurrency vs. Parallelism: wrap up

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

 Key points:
 A web server had concurrency in its problem definition … it doesn’t

make sense to even think of writing a “serial web server”.

 The Mandelbrot program didn’t have concurrency in its problem
definition. It would take a long time, but it could be serial

 Both cases use concurrency:
 A concurrent application is

concurrent by definition.

 A parallel application solves a
problem that could be serial, but
it is run in parallel by …

1. find concurrency in the
problem

2. expose the concurrency in
the source code.

3. exploit the exposed
concurrency to complete a
job in less time.

29

The Parallel programming process:

Original Problem Tasks, shared and local data

Find Concurrency

(Decomposition)

30

Decomposition in parallel programs

 Every parallel program is based on

concurrency … i.e. tasks defined by

an application that can run at the

same time.

 EVERY parallel program requires a

task decomposition and a data

decomposition:

 Task decomposition: break the

application down into a set of

tasks that can execute

concurrently..

 Data decomposition: How must

the data be broken down into

chunks and associated with

threads/processes to make the

parallel program run efficiently.

31

Decomposition in parallel programs

 Every parallel program is based on

concurrency … i.e. tasks defined by

an application that can run at the

same time.

 EVERY parallel program requires a

task decomposition and a data

decomposition:

 Task decomposition: break the

application down into a set of

tasks that can execute

concurrently..

 Data decomposition: How must

the data be broken down into

chunks and associated with

threads/processes to make the

parallel program run efficiently.

What’s a task

decomposition for this

problem?

32

Decomposition in parallel programs

 Every parallel program is based on

concurrency … i.e. tasks defined by

an application that can run at the

same time.

 EVERY parallel program requires a

task decomposition and a data

decomposition:

 Task decomposition: break the

application down into a set of

tasks that can execute

concurrently..

 Data decomposition: How must

the data be broken down into

chunks and associated with

threads/processes to make the

parallel program run efficiently.

Hint: Think of the source

code and work that is

compute-intensive that can

execute independently

for (i=0; i<N; i++){

 for (j=0; j<N; j++) {

 complex c = get_const_at_pixel(i,j);

 complex image[i][j] = mandel(c);

 }

}

33

Decomposition in parallel programs

 Every parallel program is based on

concurrency … i.e. tasks defined by

an application that can run at the

same time.

 EVERY parallel program requires a

task decomposition and a data

decomposition:

 Task decomposition: break the

application down into a set of tasks

that can execute concurrently..

 Data decomposition: How must the

data be broken down into chunks

and associated with

threads/processes to make the

parallel program run efficiently.

Task: the computation required

for each pixel … the body of the

loop for a pair (i,j).

34

Decomposition in parallel programs

 Every parallel program is based on

concurrency … i.e. tasks defined by

an application that can run at the

same time.

 EVERY parallel program requires a

task decomposition and a data

decomposition:

 Task decomposition: break the

application down into a set of

tasks that can execute

concurrently..

 Data decomposition: How must

the data (the complex plain, C)

be broken down into chunks and

associated with

threads/processes to make the

parallel program run efficiently.

Suggest a data decomposition for

this problem … assume a quad

core shared memory PC.

35

Map the pixels into row blocks and

deal them out to the cores. This

will give each core a memory

efficient block to work on.

Decomposition in parallel programs

 Every parallel program is based on

concurrency … i.e. tasks defined by

an application that can run at the

same time.

 EVERY parallel program requires a

task decomposition and a data

decomposition:

 Task decomposition: break the

application down into a set of tasks

that can execute concurrently..

 Data decomposition: How must the

data (the complex plain, C) be

broken down into chunks and

associated with threads/processes to

make the parallel program run

efficiently.

36

Map the pixels into row blocks and

deal them out to the cores. This

will give each core a memory

efficient block to work on.

Decomposition in parallel programs

 Every parallel program is based on

concurrency … i.e. tasks defined by

an application that can run at the

same time.

 EVERY parallel program requires a

task decomposition and a data

decomposition:

 Task decomposition: break the

application down into a set of tasks

that can execute concurrently..

 Data decomposition: How must the

data (the complex plain, C) be

broken down into chunks and

associated with threads/processes to

make the parallel program run

efficiently.

But given this data decomposition, it is

effective to think of a task as the update

to a pixel? Should we update our task

definition given the data decomposition?

37

Map the pixels into row blocks and

deal them out to the cores. This

will give each core a memory

efficient block to work on.

Decomposition in parallel programs

 Every parallel program is based on

concurrency … i.e. tasks defined by

an application that can run at the

same time.

 EVERY parallel program requires a

task decomposition and a data

decomposition:

 Task decomposition: break the

application down into a set of tasks

that can execute concurrently..

 Data decomposition: How must the

data (the complex plain, C) be

broken down into chunks and

associated with threads/processes to

make the parallel program run

efficiently.

Yes. You go back and forth between

task and data decomposition until you

have a pair that work well together. In

this case, let’s define a task as the

update to a row-block

38

The Parallel programming process:

Original Problem Tasks, shared and local data

Find Concurrency

(Decomposition)

39

The Parallel programming process:

Original Problem Tasks, shared and local data

Find Concurrency

(Decomposition)

Implementation

strategy

Corresponding source code

Program SPMD_Emb_Par ()

{

 TYPE *tmp, *func();

 global_array Data(TYPE);

 global_array Res(TYPE);

 int N = get_num_procs();

 int id = get_proc_id();

 if (id==0) setup_problem(N,DATA);

 for (int I= 0; I<N;I=I+Num){

 tmp = func(I);

 Res.accumulate(tmp);

 }

}

Program SPMD_Emb_Par ()

{

 TYPE *tmp, *func();

 global_array Data(TYPE);

 global_array Res(TYPE);

 int N = get_num_procs();

 int id = get_proc_id();

 if (id==0) setup_problem(N,DATA);

 for (int I= 0; I<N;I=I+Num){

 tmp = func(I);

 Res.accumulate(tmp);

 }

}

Program SPMD_Emb_Par ()

{

 TYPE *tmp, *func();

 global_array Data(TYPE);

 global_array Res(TYPE);

 int N = get_num_procs();

 int id = get_proc_id();

 if (id==0) setup_problem(N,DATA);

 for (int I= 0; I<N;I=I+Num){

 tmp = func(I);

 Res.accumulate(tmp);

 }

}

Program SPMD_Emb_Par ()

{

 TYPE *tmp, *func();

 global_array Data(TYPE);

 global_array Res(TYPE);

 int Num = get_num_procs();

 int id = get_proc_id();

 if (id==0) setup_problem(N, Data);

 for (int I= ID; I<N;I=I+Num){

 tmp = func(I, Data);

 Res.accumulate(tmp);

 }

}

Units of execution + new shared data for extracted

dependencies

40

The Parallel programming process:

Original Problem Tasks, shared and local data

Find Concurrency

(Decomposition)

Implementation

strategy

Corresponding source code

Program SPMD_Emb_Par ()

{

 TYPE *tmp, *func();

 global_array Data(TYPE);

 global_array Res(TYPE);

 int N = get_num_procs();

 int id = get_proc_id();

 if (id==0) setup_problem(N,DATA);

 for (int I= 0; I<N;I=I+Num){

 tmp = func(I);

 Res.accumulate(tmp);

 }

}

Program SPMD_Emb_Par ()

{

 TYPE *tmp, *func();

 global_array Data(TYPE);

 global_array Res(TYPE);

 int N = get_num_procs();

 int id = get_proc_id();

 if (id==0) setup_problem(N,DATA);

 for (int I= 0; I<N;I=I+Num){

 tmp = func(I);

 Res.accumulate(tmp);

 }

}

Program SPMD_Emb_Par ()

{

 TYPE *tmp, *func();

 global_array Data(TYPE);

 global_array Res(TYPE);

 int N = get_num_procs();

 int id = get_proc_id();

 if (id==0) setup_problem(N,DATA);

 for (int I= 0; I<N;I=I+Num){

 tmp = func(I);

 Res.accumulate(tmp);

 }

}

Program SPMD_Emb_Par ()

{

 TYPE *tmp, *func();

 global_array Data(TYPE);

 global_array Res(TYPE);

 int Num = get_num_procs();

 int id = get_proc_id();

 if (id==0) setup_problem(N, Data);

 for (int I= ID; I<N;I=I+Num){

 tmp = func(I, Data);

 Res.accumulate(tmp);

 }

}

Units of execution + new shared data for extracted

dependencies

Programming Notations

we will consider:

• OpenMP

• OpenCL

• CUDA

• MPI

Outline

• Motivation: We all must be parallel programmers

• Key concepts in parallel Computing

– Basic definitions: Parallelism and Concurrency

– Notions of parallel performance

– The limits of scalability

– Sources of parallel overhead

• An introduction to parallel hardware

• Software for parallel systems: key design patterns

• Closing comments

41

42

Parallel Performance

 MP Linpack benchmark, order 1000 matrix (solve a dense system of

linear equations … the dense linear algebra computational pattern).

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50

G
F

lo
p
s

cores

 Intel SCC 48 processor, 500 MHz core, 1 GHz router, DDR3 at 800 MHz.

43

Talking about performance

)(

)1(
)(

PTime

Time
PS

par

seq


PPS )(

 Perfect Linear Speedup:
happens when no parallel
overhead and algorithm is
100% parallel.

 Speedup: the increased
performance from running
on P processors

44

Performance scalability

 HP Linpack benchmark, order 1000 matrix (solve a dense system of

linear equations … the dense linear algebra computational pattern).

Intel SCC 48 processor,

500 Mhz core, 1 Ghz

router, DDR3 at 800 Mhz.

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60

Cores

S
p
e
e
d
u
p
 =

 T
p

a
r(
1
)/

T
p
a

r(
P

)

The 48-core SCC processor: the programmer’s view, T, G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig,

P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, Proceedings SC10, New Orleans 2010

45

Performance scalability

 HP Linpack benchmark, order 1000 matrix (solve a dense system of

linear equations … the dense linear algebra computational pattern).

Intel SCC 48 processor,

500 Mhz core, 1 Ghz

router, DDR3 at 800 Mhz.

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60

Cores

The 48-core SCC processor: the programmer’s view, T, G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig,

P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, Proceedings SC10, New Orleans 2010

Notice anything

strange about this

scalability plot? S
p
e
e
d
u
p
 =

 T
p

a
r(
1
)/

T
p
a

r(
P

)

46

Performance scalability

 HP Linpack benchmark, order 1000 matrix (solve a dense system of

linear equations … the dense linear algebra computational pattern).

Intel SCC 48 processor,

500 Mhz core, 1 Ghz

router, DDR3 at 800 Mhz.

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60

Cores

The 48-core SCC processor: the programmer’s view, T, G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig,

P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, Proceedings SC10, New Orleans 2010

The speedup is

greater than the

number of cores! S
p
e
e
d
u
p
 =

 T
p

a
r(
1
)/

T
p
a

r(
P

)

47

Talking about performance

)(

)1(
)(

PTime

Time
PS

par

seq


PPS )(

PPS )(

 Perfect Linear Speedup:
happens when no parallel
overhead and algorithm is
100% parallel.

 Super-linear Speedup: Speed
grows faster than the number of
processing elements

 Speedup: the increased
performance from running
on P processors

48

Performance scalability

 HP Linpack benchmark, order 1000 matrix (solve a dense system of

linear equations … the dense linear algebra computational pattern).

Intel SCC 48 processor,

500 Mhz core, 1 Ghz

router, DDR3 at 800 Mhz.

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60

Cores

The 48-core SCC processor: the programmer’s view, T, G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig,

P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, Proceedings SC10, New Orleans 2010

What caused our

superlinear speedup?

S
p
e
e
d
u
p
 =

 T
p

a
r(
1
)/

T
p
a

r(
P

)

49

SuperLlnear Speedup

 HP Linpack benchmark, order 1000 matrix (solve a dense system of

linear equations … the dense linear algebra computational pattern).

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60

Cores
0.03 GFs

0.245 GFs

0.78 GFs

3.45 GFs

2.4 GFs

1.6 GFs
Why is this

number so

small?

Intel SCC 48 processor,

500 Mhz core, 1 Ghz

router, DDR3 at 800 Mhz.

S
p
e
e
d
u
p
 =

 T
p

a
r(
1
)/

T
p
a

r(
P

)

50

Why the Superlinear speedup?

R = router, MC = Memory Controller,

P54C
16KB L1-D$
16KB L1-I$

256KB
unified

L2$

Mesh
I/F

To
Router

P54C
16KB L1-D$
16KB L1-I$

256KB
unified

L2$

Message
Passing
Buffer
16 KB

R R

Tile Tile

Tile

Tile Tile

Tile

Tile

Tile

R

Tile

Tile

R

Tile

Tile

R

Tile Tile

Tile

R

Tile

R

to PCI

Tile

Tile

R

Tile

Tile

R

Tile Tile

Tile

R

Tile

R

R R R R R R

R R R R R R

R MC

MC MC

MC

• Intel SCC 48 core research chip

• SCC caches are so small, even a small portion of our O(1000) matrices won’t fit.

 Hence the single node performance measures memory overhead.

• As you add more cores, the aggregate cache size grows.

 Eventually the tiles of the matrices being processed fits in the caches and

performance sharply increases  superlinear speedup.

P54C = second generation

Pentium® core,

The 48-core SCC processor: the programmer’s view, T, G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig,

P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, Proceedings SC10, New Orleans 2010

51

A more typical speedup plot

 CHARMM molecular dynamics program running the myoglobin benchmark on an

Intel Paragon XP/S supercomputer with 32 Mbyte nodes running OSF R 1.2. (The

nbody computational pattern). Speedup relative to running the parallel program on one node.

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600
Nodes

Porting Applications to the MP-Paragon Supercomputer: The CHARMM Molecular Dynamics program,

T.G. Mattson, Intel Supercomputers User’s Group meeting, 1995.

Strong scaling … the

speedup trends for a fixed

size problem.

S
p
e
e
d
u
p
 =

 T
p

a
r(
1

)/
T

p
a

r(
P

)

52

Efficiency

 Efficiency measures how well the parallel system’s resources are
being utilized.

 Where P is the number of nodes and T is the elapsed
runtime.

P

PS

PTimeP

Time

par

seq)(

)(*


53

Efficiency

 CHARMM molecular dynamics program running the myoglobin benchmark on an

Intel Paragon XP/S supercomputer with 32 Mbyte nodes running OSF R 1.2. (The

nbody computational pattern). Speedup relative to running the parallel program on one node.

Nodes

E
ff
ic

ie
n
c
y

Porting Applications to the MP-Paragon Supercomputer: The CHARMM Molecular Dynamics program, T.G. Mattson, Intel

Supercomputers User’s Group meeting, 1995.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600

Outline

• Motivation: We all must be parallel programmers

• Key concepts in parallel Computing

– Basic definitions: Parallelism and Concurrency

– Notions of parallel performance

– The limits of scalability

– Sources of parallel overhead

• An introduction to parallel hardware

• Software for parallel systems: key design patterns

• Closing comments

54

55

Amdahl's Law: History

 Gene Amdahl was a computer

architect in the 1960's at IBM

 In 1967, refuted the idea that parallel

computing was a practical path to

improving program performance.

 Example: Compare these two systems IBM System 360, ca. 1964

• The IBM System 360:

• A single-processor machine, running at 16 MHz.

• 1 FP addition per 60 ns cycle, and 1 FP mul in ~10 60 ns cycles,

and execute multiple instructions simultaneously

• ILLIAC IV:

• “The first Supercomputer” … installed at NASA Ames in 1975.

• 256 processors … could perform 256 FP adds in 240 ns.

56

Amdahl's Law

 Clearly, the ILLIAC will run programs much faster than the

S/360: It has 60x higher instruction throughput!

 ... if you always have 256 independent instructions

 Amdahl argued that large portions of many programs are not

parallelizable. Parallel hardware does not help serial code:

Each block is 1 s …

Runtime = 3 s

Runtime = 2.25 s The “middle

second” runs

perfectly parallel

on 4 threads

57

Amdahl's Law

𝑇𝑖𝑚𝑒𝑠𝑒𝑞 = 𝑇𝑖𝑚𝑒𝑆𝑒𝑟𝑖𝑎𝑙 + 𝑇𝑖𝑚𝑒𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑧𝑎𝑏𝑙𝑒

 What is the maximum speedup you can expect from a parallel program?

 Consider a sequential program with runtime:

𝑇𝑖𝑚𝑒𝑆𝑒𝑞

 We can think of this program as consisting of two parts … one that can
benefit from multiple processing elements (parallel) and a second part that
is fundamentally serial.

 The runtime is therefore:

 We can express this in terms of a fraction of the program that is serial and
a fraction of the program that is parallel or

𝑇𝑖𝑚𝑒𝑠𝑒𝑞 = 𝑠𝑒𝑟𝑖𝑎𝑙_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ∗ 𝑇𝑖𝑚𝑒𝑠𝑒𝑞 + parallel_fraction * Timeseq

58

Amdahl’s Law

 If we run the program on P processing elements and assume linear
speedup, then our time for the parallel program becomes:

seqpar Time
P

fractionparallel
fractionserialPTime *)

_
_()(

 If you had an unlimited number of processors:

 If the serial_fraction is a and the parallel_fraction is (1- a), the speedup is:

 The maximum possible speedup is:

a

1
S Amdahl’s

Law

𝑆 𝑃 =
𝑇𝑖𝑚𝑒𝑠𝑒𝑞

𝑇𝑖𝑚𝑒𝑝𝑎𝑟(𝑃)
=

𝑇𝑖𝑚𝑒𝑠𝑒𝑞

𝛼 +
1 − 𝛼

𝑃
∗ 𝑇𝑖𝑚𝑒𝑠𝑒𝑞

=
1

(𝛼 +
1 − 𝛼

𝑃
)

lim
𝑃→∞

1 − 𝛼

𝑃
= 0

0

59

Amdahl's Law and the CHARMM MD

program
 We Profiled CHARMM running on the Paragon XPS to find the time

spent in code that was not parallelized … concluded that CHARMM

has a serial fraction of ~0.003.

 The maximum possible speedup is: S= 1/0.003 = 333

0

50

100

150

200

250

0 100 200 300 400 500 600

Est. from serial fraction

Observed

Nodes

S
p
e
e
d
u
p
 =

 T
p

a
r(
1
)/

T
p
a

r(
P

)

60

What if the problem size grows

 Consider the dense linear algebra

 A key feature is that operations between matrices (such as LU

factorization or matrix multiplication) scale as the cube of the order

of the matrix.

 Assume we can parallelize the linear algebra operation (O(N3)) but

not the loading of the matrices from memory (O(N2)). How does the

serial fraction vary with matrix order (assume loading from memory

is much slower than a floating point op).

What would plots of runtime vs. problem size look like

for the N squared and N cubed terms?

What would plots of serial fraction vs. problem size look

like for the N squared and N cubed terms?

61

What if the problem size grows

 Consider dense linear algebra

 A key feature is that operations between matrices (such as LU factorization

or matrix multiplication) scale as the cube of the order of the matrix.

 Assume we can parallelize the linear algebra operation (O(N3)) but not the

loading of the matrices from memory (O(N2)). How does the serial fraction

vary with matrix order (assume loading from memory is much slower than a

floating point op).

0

100000

200000

300000

400000

500000

600000

700000

0 20 40 60 80

O(N^2)

O(N^3)
0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80

Runtime vs.

matrix order Serial fraction

vs. matrix order

62

What if the problem size grows

 Consider the dense linear algebra design pattern (which we will cover in

much more detail later).

 A key feature is that operations between matrices (such as LU factorization

or matrix multiplication) scale as the cube of the order of the matrix.

 Assume we can parallelize the linear algebra operation (O(N3)) but not the

loading of the matrices from memory (O(N2)). How does the serial fraction

vary with matrix order (assume loading from memory is much slower than a

floating point op).

-1E+09

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

0 500 1000 1500 2000

O(N^2)

O(N^3)

Runtime vs.
matrix order

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000

Serial fraction vs.
matrix order

For much larger Matrix orders …

63

Weak Scaling: a response to Amdahl

 Gary Montry and John Gustafson (1988, Sandia National Laboratories)

observed that for many problems the serial fraction of a function of the

problem size (N) decreases:

 In other words … if parallelizable computations asymptotically dominate the

runtime, then you can increase a problem size until limitations due to

Amdahl’s law can be ignored. This is an easier form of scalability for a

programmer to meet … so its called “weak scaling”:

 Weak Scaling: Performance of an application when the problem size

increases with the number of processors (fixed size problem per node)

0)(lim
arg




N
elNN
a

PNPS el ),(arg

)1(*)
)(1

)((

)1(
),(

seq

seq

T
P

N
N

T
NPS

a
a






64

Example of weak scaling

http://www.spscicomp.org/ScicomP16/presentations/PRACE_ScicomP.pdf

A time dependent

Quantum

simulation of

helium atoms

with 20 grid units

per processing

element.

IBM Blue Gene P,

0.85 GHz,

PowerPC 450, 4-

way processors

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
e
c
s
)

Cores

65

Example of weak scaling

http://www.spscicomp.org/ScicomP16/presentations/PRACE_ScicomP.pdf

A time dependent

Quantum

simulation of

helium atoms

with 20 grid units

per processing

element.

IBM Blue Gene P,

0.85 GHz,

PowerPC 450, 4-

way processors

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
e
c
s
)

Cores

What does ideal scaling look

on the time vs. cores plot

when you have ideal scaling?

66

Example of weak scaling

http://www.spscicomp.org/ScicomP16/presentations/PRACE_ScicomP.pdf

A time dependent

Quantum

simulation of

helium atoms

with 20 grid units

per processing

element.

IBM Blue Gene P,

0.85 GHz,

PowerPC 450, 4-

way processors

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
e
c
s
)

Cores

For a “perfectly scalable”

application, the trend line for

weak scaling should be flat.

Outline

• Motivation: We all must be parallel programmers

• Key concepts in parallel Computing

– Basic definitions: Parallelism and Concurrency

– Notions of parallel performance

– The limits of scalability

– Sources of parallel overhead

• An introduction to parallel hardware

• Software for parallel systems: key design patterns

• Closing comments

67

68

Limitations to scalability

 Remember the speedup plot we discussed earilier?

69

Limitations to scalability

 Remember the speedup plot we discussed from last time?

Why does the app.

Scale worse than

we’d expect from

Amdahl’s law?

70

Why does the app.

Scale worse than

we’d expect from

Amdahl’s law?

Limitations to scalability

 Remember the speedup plot we discussed from last time?

Amdahl’s law ignores

overheads associated

with the implementation

of the parallelism.

These overheads may

have a huge impact on

observed speedups.

71

Parallel overheads: The algorithmic

structure of many HPC codes (part 1)

 A large fraction of HPC applications (such as CHARMM) use a message

passing notation with the Single Program Multiple Data or SPMD design

pattern.

Original program Parallel program

72

Parallel overheads: The algorithmic

structure of many HPC codes (part 2)

 And many SPMD programs use an

additional simplification … “Bulk

Synchronous Processing”.

 Each process maintains a local view of

the global data

 A problem is broken down into phases

each composed of two subphases:

• Compute on local view of data (the

“squiggles” in the figure)

• Communicate to update global view

on all processes (collective

communication).

 Continue phases until complete

0 1 2 3

Process IDs

T
im

e

73

Parallel overheads with the Bulk

Synchronous Processing pattern

 Two major sources of parallel

overhead:

0 1 2 3

Process IDs

T
im

e

1. Load imbalance: the slowest process

determines when everyone is done.

Time waiting for other processes to

finish (i.e. unequal lengths of the

“squiggles” in the figure) is time

wasted.

2. Communication overhead: A cost

only incurred by the parallel

program. Grows with the number of

processes for collective comm.

74 Source: CS267 Lecture 7

Collective Data Movement

A

B

D

C

A B C D

A B C D

A B C D

A B C D

Allgather
P0

P1

P2

P3

P0

P1

P2

P3

A

B

D

C

A+B+C+D
AllReduce A+B+C+D

A+B+C+D

A+B+C+D

P0

P1

P2

P3

P0

P1

P2

P3

75

Molecular dynamics

 The potential energy, U(r), is divided

into two parts:

 Bonded terms – Groups of atoms

connected by chemical bonds.

 Non-bonded terms – longer range

forces (e.g. electrostatic).

• An N-body problem … i.e. every

atom depends on every other

atom, an O(N2) problem.
Bonds, angles and torsions

Source: Izaguirre, Ma and Skeel, SAC’03 slides, March 10 2003

 Models motion of atoms in
molecular systems by solving
Newton’s equations of motion:

76

Molecular dynamics simulation

real atoms(3,N)

real force(3,N)

int neighbors(MX,N)

// Every PE has a copy of atoms and force

loop over time steps

 parallel loop over atoms

Compute neighbor list (for my atoms)

Compute nonbonded forces (my atoms and neighbors)

Barrier

All reduce (Sum force arrays, each PE gets a copy)

Compute bonded forces (for my atoms)

Integrate to Update position (for my atoms)

All_gather(update atoms array)

 end loop over atoms

end loop

We used a cutoff method … the

potential energy drops off quickly so

atoms beyond a neighborhood can be

ignored in the nonbonded force calc.

77

Molecular dynamics simulation

real atoms(3,N)

real force(3,N)

int neighbors(MX,N) //MX = max neighbors an atom may have

// Every PE has a copy of atoms and force

loop over time steps

 parallel loop over atoms

Compute neighbor list (for my atoms)

Compute long range forces (my atoms and neighbors)

Barrier

All reduce (Sum force arrays, each PE gets a copy)

Compute bonded forces (for my atoms)

Integrate to Update position (for my atoms)

All_gather(update atoms array)

 end loop over atoms

end loop

synchronization

Collective

Communication

78

Limitations to scalability

 Remember the speedup plot we discussed from last time?

Why does the app.

Scale worse than

we’d expect from

Amdahl’s law?

79

CHARMM Myoglobin Benchmark

 Percent of runtime for the different phases of the computation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

integ

list

comm

wait

Ebond

Enon

512 256 128 64 148 32 16 8 1

Number of Nodes

P
e

rc
e

n
t
o

f
to

ta
l
ru

n
ti
m

e

CHARMM running on

a distributed memory,

MPP supercomputer

using a message

passing library (NX)

80

CHARMM Myoglobin Benchmark

 Percent of runtime for the different phases of the computation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

integ

list

comm

wait

Ebond

Enon

512 256 128 64 148 32 16 8 1

Number of Nodes

P
e

rc
e

n
t
o

f
to

ta
l
ru

n
ti
m

e

Enon (the n-body term) scales better than

the other computational terms. This was

taken into account in the Serial fraction

estimate for the Amdahl’s law analysis

O(N)

O(N)

O(N2)

O(MX*N)

81

Charm Myoglobin Benchmark

 Percent of runtime for the different phases of the computation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

integ

list

comm

wait

Ebond

Enon

512 256 128 64 148 32 16 8 1

Number of Nodes

P
e

rc
e

n
t
o

f
to

ta
l
ru

n
ti
m

e

The fraction of time spent waiting grows

with the number of nodes due to two

factors: (1) the cost of the barrier grows

with the number of nodes, and (2) variation

in the work for each node increases as

node count grows … load imbalance.

82

Synchronization overhead

 Processes finish their work and must assure that all processes are
finished before the results are combined into the global force array.

 This is parallel overhead since this doesn’t occur in a serial
program.

 The synchronization construct itself takes time and in some
cases (such as a barrier) the cost grows with the number of
nodes.

CPU 3 CPU 3

CPU 2 CPU 2

CPU 1 CPU 1

CPU 0 CPU 0

CPU 3 CPU 3

CPU 2 CPU 2

CPU 1 CPU 1

CPU 0 CPU 0

Time

83

CPU 3 CPU 3

CPU 2 CPU 2

CPU 1 CPU 1

Load imbalance

 If some processes finish their share of the computation early, the

time spent waiting for other processors is wasted.

 This is an example of Load Imbalance

Time

CPU 0 CPU 0

CPU 3 CPU 3

CPU 2 CPU 2

CPU 1 CPU 1

CPU 0 CPU 0

84

Charm Myoglobin Benchmark

 Percent of runtime for the different phases of the computation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

integ

list

comm

wait

Ebond

Enon

512 256 128 64 148 32 16 8 1

Number of Nodes

P
e

rc
e

n
t
o

f
to

ta
l
ru

n
ti
m

e

The communication growth is the chief

culprit limiting performance in this case.

85

Communication

 On distributed-memory machines (e.g. a cluster), communication

can only occur by sending discrete messages over a network

 The sending processor marshals the shared data from the

application's data structures into a message buffer

 The receiving processor must wait for the message to arrive ...

 ... and un-pack the data back into data structures

Time

CPU 0

CPU 3

86

Communication

 On distributed-memory machines (e.g. a cluster), communication

can only occur by sending discrete messages over a network

 The sending processor marshals the shared data from the

application's data structures into a message buffer

 The receiving processor must wait for the message to arrive ...

 ... and un-pack the data back into data structures

 If the communication protocol is synchronous, then the sending

processor must wait for acknowledgement that the message was

received

Time

CPU 0

CPU 3

87

Charm Myoglobin Benchmark

 Percent of runtime for the different phases of the computation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

integ

list

comm

wait

Ebond

Enon

512 256 128 64 148 32 16 8 1

Number of Nodes

P
e

rc
e

n
t
o

f
to

ta
l
ru

n
ti
m

e

Remember these are

collective comms.

Composed of multiple

messages each of

which incur these

overheads

88

Limitations to scalability

 Remember the speedup plot we discussed from last time?

Sync, wait, and

comm. overheads

combined explain

this gap

Outline

• Motivation: We all must be parallel programmers

• Key concepts in parallel Computing

• An introduction to parallel hardware

• Software for parallel systems: key design patterns

• Closing Comments

89

Outline

• Motivation: We all must be parallel programmers

• Key concepts in parallel Computing

• An introduction to parallel hardware

– History of parallel hardware

– The major building blocks of modern parallel systems

– Multicore processors

– The GPU

• Software for parallel systems: key design patterns

• Closing Comments

90

91

Tracking Supercomputers: Top500

 Top500: a list of the 500 fastest computers in the world (www.top500.org)

 Computers ranked by solution to the MPLinpack benchmark:

 Solve Ax=b problem for any order of A

 List released twice per year: in June and November

Current number 1 (June 2013) Rmax=33.9 PFLOPS

Tianhe-2, NUDT, Intel Ivy Bridge + Xeon Phi cluster

17.8 megawatts, >3million cores

1 PFLOP

1 TFLOP

Source: http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf

92

Hardware Architectures for High

Performance Computing (HPC)

Symmetric

Multiprocessor

(SMP)

Non-uniform

Memory

Architecture

(NUMA)

Massively

Parallel

Processor

(MPP)

Cluster

Single Instruction

Multiple Data (SIMD)
Multiple Instruction

Multiple Data (MIMD)

Parallel Computers

Shared Address Space Disjoint Address Space

Distributed

Computing

93

Hardware Architectures for High

Performance Computing (HPC)

Symmetric

Multiprocessor

(SMP)

Non-uniform

Memory

Architecture

(NUMA)

Massively

Parallel

Processor

(MPP)

Cluster

Single Instruction

Multiple Data (SIMD)
Multiple Instruction

Multiple Data (MIMD)

Parallel Computers

Shared Address Space Disjoint Address Space

Distributed

Computing

The dominant branch and

our focus in this lecture

Discussed later

with GPUs

94

The birth of Supercomputing

 The CRAY-1A:

 2.5-nanosecond clock,

 64 vector registers,

 1 million 64-bit words of high-

speed memory.

 Peak speed:

• 80 MFLOPS scalar.

• 250 MFLOPS vector (but

this was VERY hard to

achieve)

 Cray software … by 1978

 Cray Operating System

(COS),

 the first automatically

vectorizing Fortran compiler

(CFT),

 Cray Assembler Language

(CAL) were introduced.

 On July 11, 1977, the CRAY-1A, serial

number 3, was delivered to NCAR. The

system cost was $8.86 million ($7.9

million plus $1 million for the disks).

http://www.cisl.ucar.edu/computers/gallery/cray/cray1.jsp

95

0

10

20

30

40

50

60

Vector

History of Supercomputing:

The Era of the Vector Supercomputer  Large mainframes that operated on vectors of data

 Custom built, highly specialized hardware and software

 Multiple processors in an shared memory configuration

 Required modest changes to software (vectorization)

The Cray C916/512 at the Pittsburgh

Supercomputer Center

C
ra

y
 2

 (
4
),

 1
9
8
5

C
ra

y
 Y

M
P

 (
8
),

 1
9
8
9

C
ra

y
 T

9
3
2
 (

3
2
),

 1
9
9
6

P
e
a
k

 G
F

L
O

P
S

C
ra

y
 C

9
1
6
 (

1
6
),

 1
9
9
1

Vector

96

The attack of the killer micros

 The Caltech Cosmic

Cube developed by

Charles Seitz and

Geoffrey Fox in1981

 64 Intel 8086/8087

processors

 128kB of memory per

processor

 6-dimensional hypercube

network

http://calteches.library.caltech.edu/3419/1/Cubism.pdf

The cosmic cube, Charles Seitz

Communications of the ACM, Vol 28, number 1 January

1985, p. 22

Launched the “attack of

the killer micros”
Eugene Brooks, SC’90

http://calteches.library.caltech.edu/3419/1/Cubism.pdf

97

0

20

40

60

80

100

120

140

160

180

200

Vector MPP

It took a while, but MPPs came to

dominate supercomputing

 Parallel computers with large numbers of microprocessors

 High speed, low latency, scalable interconnection networks

 Lots of custom hardware to support scalability

 Required massive changes to software (parallelization)

Paragon XPS-140 at Sandia

National labs in Albuquerque

NM

P
e
a
k

 G
F

L
O

P
S

iP
S

C
\8

6
0
(1

2
8
)

1
9
9
0
.

P
a
ra

g
o

n
 X

P
S

 1
9
9
3

T
M

C
 C

M
5

-(
1
0
2
4
)

1
9
9
2

Vector MPP

98

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Vector MPP CCOTS MPP

IB
M

 S
P

/5
7
2
 (

4
6
0
)

In
te

l
T

F
L

O
P
,

 (
4
5

3
6

)

The cost advantage of mass market COTS

 MPPs using Mass market Commercial off the shelf (COTS)

microprocessors and standard memory and I/O components

 Decreased hardware and software costs makes huge systems

affordable

P
e
a
k
 G

F
L
O

P
S

ASCI Red TFLOP Supercomputer

Vector MPP COTS MPP

99

The MPP future looked bright … but

then clusters took over

 A cluster is a collection of connected, independent computers that work

in unison to solve a problem.

 Nothing is custom … motivated users could build cluster on their own

 First clusters appeared in

the late 80’s (Stacks of

“SPARC pizza boxes”)

 The Intel Pentium Pro in

1995 coupled with Linux

made them competitive.

 NASA Goddard’s Beowulf

cluster demonstrated

publically that high visibility

science could be done on

clusters.

 Clusters made it easier to

bring the benefits due to

Moores’s law into working

supercomputers

100

Top 500 list: System Architecture

*Constellation: A cluster for which the number of processors on a node is greater than the number of

nodes in the cluster. I’ve never seen anyone use this term outside of the top500 list.

*

Source: http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf

Outline

• Motivation: We all must be parallel programmers

• Key concepts in parallel Computing

• An introduction to parallel hardware

– History of parallel hardware

– The major building blocks of modern parallel systems

– Multicore processors

– The GPU

• Software for parallel systems: key design patterns

101

102

How do we connect cores together?
 A symmetric multiprocessor (SMP) consists of a collection

of processors that share a single address space:
 Multiple processing elements.

 A shared address space with “equal-time” access for each processor.

 The OS treats every processor the same

Proc3 Proc2 Proc1 ProcN

Shared Address Space

103

How realistic is this model?

 Some of the old
supercomputer
mainframes followed this
model,

 But as soon as we added caches to
CPUs, the SMP model fell apart.

 Caches … all memory is equal, but
some memory is more equal than
others.

A CPU with lots of cache …

104

Memory Hierarchies

 A typical microprocessor memory hierarchy

I-cache

TLB

CPU D-cache

U
n

ifie
d

 C
a

c
h

e

R
e
g
 F

ile

RAM

 Instruction cache and data cache pull data from a unified cache that maps onto
RAM.

 TLB implements virtual memory and brings in pages to support large memory
foot prints.

1 ns

1 ns

10 ns 100 ns

1 ns

105

NUMA* issues on a Multicore Machine

2-socket Clovertown Dell PE1950

2 threads, 2 cores,

sharing a cache

2 threads, 2 cores, 1

socket, no shared cache

A single quad-

core chip is a

NUMA

machine!

2 threads, 2 cores, 2 sockets

$ $

Xeon® 5300

Processor block

diagram

Third party names are the property of their owners.

*NUMA == Non Uniform Memory architecture … memory is shared but access times vary.

Outline

• Motivation: We all must be parallel programmers

• Key concepts in parallel Computing

• An introduction to parallel hardware

– History of parallel hardware

– The major building blocks of modern parallel systems

– Multicore processors

– The GPU

• Software for parallel systems: key design patterns

• Closing comments

106

107

What happened to SIMD?

Symmetric

Multiprocessor

(SMP)

Non-uniform

Memory

Architecture

(NUMA)

Massively

Parallel

Processor

(MPP)

Cluster

Single Instruction

Multiple Data (SIMD)*
Multiple Instruction

Multiple Data (MIMD)

Parallel Computers

Shared Address Space Disjoint Address Space

Distributed

Computing

SIMD and sx86 multimedia extensions.

10
8

Source: Bryan Catanzaro, NVIDIA, UCB Parlab Bootcamp, 2013

109

NVIDIA GTX 480

Graphics only

i.e. texture cache,

interpolation hardware

General compute + graphics

16 “Streaming multiprocessors”

Memory Controllers

500 Double-precision GFLOPs

16 Multiprocessors

32 ALUs/processor

110 110

The end of the discrete GPU

GMCH
GPU

ICH

CPU
CPU

DRAM

GMCH = graphics memory control hub,
ICH = Input/output control hub

• A modern platform has:

– CPU(s)

– GPU(s)

– DSP processors

– … other?

• Current designs put
this functionality
onto a single chip …
mitigates the PCIe
bottleneck in
GPGPU computing!

Intel® Core™ i5-2500K Desktop Processor
(Sandy Bridge) Intel HD Graphics 3000 (2011)

Absorption into CPU (remove “off chip” penalty) but
uncertain standards story  success unclear

Absorption into CPU (remove “off chip” penalty) but
uncertain standards story  success unclear

Outline

• Motivation: We all must be parallel programmers

• Key concepts in parallel Computing

• An introduction to parallel hardware

• Software for parallel systems: key design patterns

• Closing comments

111

112

The Parallel programming process:

Original Problem Tasks, shared and local data

Find Concurrency

(Decomposition)

Implementation

strategy

Corresponding source code

Program SPMD_Emb_Par ()

{

 TYPE *tmp, *func();

 global_array Data(TYPE);

 global_array Res(TYPE);

 int N = get_num_procs();

 int id = get_proc_id();

 if (id==0) setup_problem(N,DATA);

 for (int I= 0; I<N;I=I+Num){

 tmp = func(I);

 Res.accumulate(tmp);

 }

}

Program SPMD_Emb_Par ()

{

 TYPE *tmp, *func();

 global_array Data(TYPE);

 global_array Res(TYPE);

 int N = get_num_procs();

 int id = get_proc_id();

 if (id==0) setup_problem(N,DATA);

 for (int I= 0; I<N;I=I+Num){

 tmp = func(I);

 Res.accumulate(tmp);

 }

}

Program SPMD_Emb_Par ()

{

 TYPE *tmp, *func();

 global_array Data(TYPE);

 global_array Res(TYPE);

 int N = get_num_procs();

 int id = get_proc_id();

 if (id==0) setup_problem(N,DATA);

 for (int I= 0; I<N;I=I+Num){

 tmp = func(I);

 Res.accumulate(tmp);

 }

}

Program SPMD_Emb_Par ()

{

 TYPE *tmp, *func();

 global_array Data(TYPE);

 global_array Res(TYPE);

 int Num = get_num_procs();

 int id = get_proc_id();

 if (id==0) setup_problem(N, Data);

 for (int I= ID; I<N;I=I+Num){

 tmp = func(I, Data);

 Res.accumulate(tmp);

 }

}

Units of execution + new shared data for extracted

dependencies

Parallel computing: It’s old

113

Late 70’s

Cray 1 (1976) Cray 2 (1985) Cray C-90 (1991)

Cosmic cube (1983)
Paragon (1993)

ASCI Red (1997)

Clusters (late 80’s)

Late 80’s Late 90’s

Vector Computers

Cluster Computers

Massively Parallel Processors (MPP)

Linux PC Clusters

(~1995)

Third party names are the property of their owners.

We tried to solve the parallel programming problem

by searching for the right programming environment

ABCPL

ACE

ACT++

Active messages

Adl

Adsmith

ADDAP

AFAPI

ALWAN

AM

AMDC

AppLeS

Amoeba

ARTS

Athapascan-0b

Aurora

Automap

bb_threads

Blaze

BSP

BlockComm

C*.

"C* in C

C**

CarlOS

Cashmere

C4

CC++

Chu

Charlotte

Charm

Charm++

Cid

Cilk

CM-Fortran

Converse

Code

COOL

CORRELATE

CPS

CRL

CSP

Cthreads

CUMULVS

DAGGER

DAPPLE

Data Parallel C

DC++

DCE++

DDD

DICE.

DIPC

DOLIB

DOME

DOSMOS.

DRL

DSM-Threads

Ease .

ECO

Eiffel

Eilean

Emerald

EPL

Excalibur

Express

Falcon

Filaments

FM

FLASH

The FORCE

Fork

Fortran-M

FX

GA

GAMMA

Glenda

GLU

GUARD

HAsL.

Haskell

HPC++

JAVAR.

HORUS

HPC

IMPACT

ISIS.

JAVAR

JADE

Java RMI

javaPG

JavaSpace

JIDL

Joyce

Khoros

Karma

KOAN/Fortran-S

LAM

Lilac

Linda

JADA

WWWinda

ISETL-Linda

ParLin

Eilean

P4-Linda

Glenda

POSYBL

Objective-Linda

LiPS

Locust

Lparx

Lucid

Maisie

Manifold

Mentat

Legion

Meta Chaos

Midway

Millipede

CparPar

Mirage

MpC

MOSIX

Modula-P

Modula-2*

Multipol

MPI

MPC++

Munin

Nano-Threads

NESL

NetClasses++

Nexus

Nimrod

NOW

Objective Linda

Occam

Omega

OpenMP

Orca

OOF90

P++

P3L

p4-Linda

Pablo

PADE

PADRE

Panda

Papers

AFAPI.

 Para++

Paradigm

Parafrase2

Paralation

Parallel-C++

Parallaxis

ParC

ParLib++

ParLin

Parmacs

Parti

pC

pC++

PCN

PCP:

PH

PEACE

PCU

PET

PETSc

PENNY

Phosphorus

POET.

Polaris

POOMA

POOL-T

PRESTO

P-RIO

Prospero

Proteus

QPC++

PVM

PSI

PSDM

Quake

Quark

Quick Threads

Sage++

SCANDAL

 SAM

pC++

SCHEDULE

SciTL

POET

SDDA.

SHMEM

SIMPLE

Sina

SISAL.

distributed smalltalk

SMI.

SONiC

Split-C.

SR

Sthreads

Strand.

SUIF.

Synergy

Telegrphos

SuperPascal

TCGMSG.

Threads.h++.

TreadMarks

TRAPPER

uC++

UNITY

UC

V

ViC*

Visifold V-NUS

VPE

Win32 threads

WinPar

WWWinda

 XENOOPS

XPC

Zounds

ZPL

Parallel programming environments in the 90’s

Third party names are the property of their owners.

115

Throwing new languages at the problem didn’t work:
the “Dead Architecture Society”

Alliant

ETA

Encore

Sequent

SGI

Myrias

Intel SSD

BBN

IBM

Workstation/PC clusters

Masspar

Thinking machines

ICL/DAP

Goodyear

Multiflow

FPS

KSR

Denelcore HEP

Tera/MTA – now Cray

Shared

Memory

MIMD

Distributed

Memory

MIMD

SIMD

Other

1980 1990 2000

Any product names on this slide are the property of their owners.

P
e
rc

e
n
ta

g
e

60

tr

y

40

tr

y

24 6

Language obsessions: More isn’t always

better

• The Draeger Grocery Store

experiment consumer choice :

– Two Jam-displays with coupon’s for

purchase discount.

– 24 different Jam’s

– 6 different Jam’s

– How many stopped by to try samples

at the display?

– Of those who “tried”, how many bought

jam?

The findings from this study show that an extensive array of options can at
first seem highly appealing to consumers, yet can reduce their subsequent
motivation to purchase the product.
Iyengar, Sheena S., & Lepper, Mark (2000). When choice is demotivating: Can one desire too much of a good thing? Journal of Personality and Social

Psychology, 76, 995-1006.

The findings from this study show that an extensive array of options can at
first seem highly appealing to consumers, yet can reduce their subsequent
motivation to purchase the product.
Iyengar, Sheena S., & Lepper, Mark (2000). When choice is demotivating: Can one desire too much of a good thing? Journal of Personality and Social

Psychology, 76, 995-1006.

3

b
u
y

30

b
u
y

My optimistic view from 2005 …

We’ve learned our

lesson … we emphasize

a small number of

industry standards

118 118

But we didn’t learn our lesson
History is repeating itself!

Third party names are the property of their owners.

 A small sampling of Programming environments from the
NEW golden age of parallel programming (from the literature 2010-2012)

Note: I’m not criticizing these technologies. I’m criticizing our collective

urge to create so many of them.

AM++

ArBB

BSP

C++11

C++AMP

Charm++

Chapel

Cilk++

CnC

coArray Fortran

Codelets

Copperhead

CUDA

DryadOpt

Erlang

Fortress

GA

GO

Gossamer

GPars

GRAMPS

Hadoop

HMPP

ISPC

Java

Liszt

MapReduce

MATE-CG

MCAPI

MPI

NESL

OoOJava

OpenMP

OpenCL

OpenSHMEM

OpenACC

PAMI

Parallel Haskell

ParalleX

PATUS

PLINQ

PPL

Pthreads

PXIF

PyPar

Plan42

RCCE

Scala

SIAL

STAPL

STM

SWARM

TBB

UPC

Win32

threads

X10

XMT

ZPL

Maybe its time to try something different?

119

120
13 dwarves

PLPP: Pattern

language of

Parallel

Programming

121

Graph-Algorithms

Dynamic-Programming

Dense-Linear-Algebra

Sparse-Linear-Algebra

Model-View-Controller

Iterative-Refinement

Map-Reduce

Layered-Systems

Puppeteer

Pipe-and-Filter

Agent-and-Repository

Process-Control

Event-Based/Implicit-Invocation

Arbitrary-Static-Task-Graph

Unstructured-Grids

Structured-Grids

Graphical-Models

Finite-State-Machines

Backtrack-Branch-and-Bound

N-Body-Methods

Circuits

Spectral-Methods

Monte-Carlo

Applications

Structural Patterns Computational Patterns

OPL Pattern Language (Keutzer & Mattson 2010)

Task-Parallelism

Divide and Conquer
Data-Parallelism

Pipeline

Discrete-Event

Geometric-Decomposition

Speculation

SPMD

Kernel-Par.
Fork/Join

Actors

Vector-Par

Distributed-Array

Shared-Data

Shared-Queue

Shared-Map

Parallel Graph Traversal

Coordinating Processes

Stream processing

Parallel Execution Patterns

Parallel Algorithm Strategy Patterns

Implementation Strategy Patterns

Communication

Shared Address Space Threads

Task Driven Execution

Algorithms and Data structure Program structure

Synchronization

Loop-Par.

Workpile

Thread/proc management

Concurrency Foundation constructs (not expressed as patterns)

Task Decomposition

Data Decomposition

Ordered task groups

Data sharing

Design Evaluation

Finding Concurrency Patterns

Source: Keutzer and Mattson Intel Technology Journal, 2010

•Spectral methods

•MapReduce

122

•Pipe-and-Filter

Pattern examples

Structural Patterns: Define the software structure .. Not what is computed

•Iterative refinement

Computational Patterns: Define the computations “inside the boxes”

•Structured mesh

Parallel Patterns: Defines parallel algorithms

•Fork-join •SPMD •Data parallel

123

Seven strategies for parallelizing

software

 These seven strategies for parallelizing software give us:

 Names: so we can communicate better

 Categories: so we can gather and share information

 A palette (like an artist’s palette) of approaches that is:

• Necessary: we should consider them all and

• Sufficient: once we have considered them all then we don’t’

have to worry that we forgot something

124

Parallel Algorithmic Strategies

Result Parallelism

Geometric

Decomposition

Geometric

Decomposition

Task

Parallelism

Task

Parallelism
Divide and

Conquer

Divide and

Conquer

Data

Parallelism

Data

Parallelism

Specialist

Parallelism

Pipeline Pipeline Discrete

Event

Discrete

Event

Agenda Parallelism

Speculation Speculation

Data Tasks Flow of Data

Application

125

Data Parallelism Pattern

 Use when:

 Your problem is defined in terms of collections of data
elements operated on by a similar (if not identical)
sequence of instructions; i.e. the concurrency is in the
data.

 Solution

 Define collections of data elements that can be updated
in parallel.

 Define computation as a sequence of collective
operations applied together to each data element.

Data 1 Data 2 Data 3 Data n

Tasks

……

126

Task Parallelism Pattern

 Solution

 Define the set of tasks and a way to detect when

the computation is done.

 Manage (or “remove”) dependencies so the

correct answer is produced regardless of the

details of how the tasks execute.

 Schedule the tasks for execution in a way that

keeps the work balanced between the processing

elements of the parallel computer and

 Use when:

 The problem naturally decomposes into a

distinct collection of tasks

127

Task Parallelism in practice

 Embarrassingly parallel:

 The tasks are independent, so the parallelism is

“so easy to exploit it’s embarrassing”.

 Separable dependencies:

 Turn a problem with dependent tasks into an

“embarrassingly parallel” by “replicating data

between tasks, doing the work, then recombining

data (often a reduction) to restore global state.

 Functional Decomposition

 A task is associated with a functional

decomposition of the problem to produce a coarse

grained parallel program

Its becoming common to associate

this case as the prototypical “task

parallel” approach … but to us old-

timers, the previous two cases are

overwhelming more common.

128

Divide and Conquer Pattern

 Use when:

 A problem includes a method to divide into
subproblems and a way to recombine solutions of
subproblems into a global solution.

 Solution

 Define a split operation

 Continue to split the problem until subproblems are
small enough to solve directly.

 Recombine solutions to subproblems to solve original
global problem.

 Note:

 Computing may occur at each phase (split, leaves,
recombine).

129

Divide and conquer

 Split the problem into smaller sub-problems. Continue until the sub-
problems can be solve directly.

 3 Options:

 Do work as you split

into sub-problems.

 Do work only at the

leaves.

 Do work as you

recombine.

130

Pipeline Pattern

 Use when:

 Your problem can be described as data flowing
through a sequence of computational stages

 Solution

 Define a set of stages setup
with data-flow connections
between them.

 Set up input/output channels
to support data driven
execution.

 Parallelism comes from
multiple stages acrive at one
time.

131

Geometric Decomposition

 Use when:

 The problem is organized around a central data structure that

can be decomposed into smaller segments (chunks) that can be

updated concurrently.

 Solution

 Typically, the data structure is updated iteratively where a new

value for one chunk depends on neighboring chunks.

 The computation breaks down into three components: (1)

exchange boundary data, (2) update the interiors or each chunk,

and (3) update boundary regions. The optimal size of the chunks

is dictated by the properties of the memory hierarchy.
x-sweep

z
-s

w
e

e
p

 Note:

 This pattern is often used with the

Structured grid and linear algebra

computational strategy pattern.

132

Speculation

 Use when:

 Suppose that the computation has been decomposed
into a number of tasks that are not completely
independent, but where conflicts are expected to only
infrequently occur when the computation is actually
executed. Solution

 Solution:
 An effective solution may be to just run the tasks independently,

that is speculate that no conflicts will occur, and then clean up
after the fact and retry in the rare situations where a conflict does
occur. Two essential element of this solution are:

1. Have an easily identifiable safety check to determine
whether the computation ran without conflicts and can thus
be committed

2. The ability to rollback and re-compute the cases where
conflicts occur.

133

Speculative Parallelism

 Speculative Parallelism:

 Speculate on state of dependencies

 Check validities of speculations

 Recompute as needed to correct any mis-speculations

Source: Narayanan Sundaram of UC Berkeley

134

Discrete-Event

 Use when:

 The computation has been structured as loosely connected

sequence of tasks that interact at unpredictable points in time.

 Solution

 Setup an event handler infrastructure

 Launch a collection of tasks whose interaction is handled

through the event handler. The handler is an intermediary

between tasks, and in many cases the tasks do not need to

know the source or destination for the events.

 Note:

 Discrete event is often used with problems, such as GUIs and

discrete event simulations, that are handled with the Event-

based implicit invocation, model-view-controller, or process

control patterns.

135

Graph-Algorithms

Dynamic-Programming

Dense-Linear-Algebra

Sparse-Linear-Algebra

Model-View-Controller

Iterative-Refinement

Map-Reduce

Layered-Systems

Puppeteer

Pipe-and-Filter

Agent-and-Repository

Process-Control

Event-Based/Implicit-Invocation

Arbitrary-Static-Task-Graph

Unstructured-Grids

Structured-Grids

Graphical-Models

Finite-State-Machines

Backtrack-Branch-and-Bound

N-Body-Methods

Circuits

Spectral-Methods

Monte-Carlo

Applications

Structural Patterns Computational Patterns

OPL Pattern Language (Keutzer & Mattson 2010)

Task-Parallelism

Divide and Conquer
Data-Parallelism

Pipeline

Discrete-Event

Geometric-Decomposition

Speculation

SPMD

Kernel-Par.
Fork/Join

Actors

Vector-Par

Distributed-Array

Shared-Data

Shared-Queue

Shared-Map

Parallel Graph Traversal

Coordinating Processes

Stream processing

Parallel Execution Patterns

Parallel Algorithm Strategy Patterns

Implementation Strategy Patterns

Communication

Shared Address Space Threads

Task Driven Execution

Algorithms and Data structure Program structure

Synchronization

Loop-Par.

Workpile

Thread/proc management

Concurrency Foundation constructs (not expressed as patterns)

Task Decomposition

Data Decomposition

Ordered task groups

Data sharing

Design Evaluation

Finding Concurrency Patterns

Source: Keutzer and Mattson Intel Technology Journal, 2010

7 patterns to turn

algorithms into code

136

Seven strategies for implementing our

algorithms as software

 These seven strategies for implementing our parallel algorithms give

us:

 Names: so we can communicate better

 Categories: so we can gather and share information

 A palette (like an artist’s palette) of approaches that is:

• Necessary: we should consider them all and

• Sufficient: once we have considered them all then we don’t’

have to worry that we forgot something

SPMD

Actors

Fork/Join

Workpile

Program structure

Loop-Parallel

Kernel-Parallel

Vector-Parallel

Implementation Strategy Patterns

137

Implementation Strategy patterns

 The most commonly used implementation strategy patterns:

SPMD One program replicated, specialized by ID and NumProcs

Fork-Join Single thread forks a team as needed and later joins

Work-pile Create a pile of tasks for a set of workers to process

Loop-Parallel Make expensive loops independent and use a “parallel for”

Vector-Parallel Unroll loops to expose blocks, vector ops process blocks

Kernel-Parallel Fine-Grained SPMD kernels . Large numbers to address little’s law.

 Programming models are often optimized around the needs

of these patterns. For “our” programming models:

 MPI: SPMD, work-pile

 OpenMP: Loop-parallel, fork-join … SPMD on large NUMA systems.

 OpenCL and CUDA: Kernel-parallelism

 OpenACC: Loop-parallel and Kernel Parallel

Outline

• Motivation: We all must be parallel programmers

• Key concepts in parallel Computing

• An introduction to parallel hardware

• Software for parallel systems: key design patterns

• Closing comments

138

Parallel programming is really hard

• Programming is hard whether you write serial or parallel

code.

– Parallel programming is just a new wrinkle added to the already

tough problem of writing high quality, robust and efficient code.

• Why does Parallel programming seems so complex?

– The literature overwhelms with hundreds of languages/APIs and a

countless assortment of algorithms.

– Experienced parallel programmers love to tell “war stories” of

Herculean efforts to make applications scale … which can scare

people away.

– It’s new: synchronization, scalable algorithms, distributed data

structures, concurrency bugs, memory models … hard or not it’s a

bunch of new stuff to learn.

13
9

Third party names are the property of their owners.

But it’s really not that bad (part 1): parallel libraries

The Networking and Information Technology Research and Development (NITRD)

Source: Kathy Yelick
Source: Kathy Yelick

But its really not that bad: part 2

• Don’t let the glut of parallel programming languages confuse

you.

• Leave research languages to C.S. researchers and stick to the

small number of broadly used languages/APIs:

– Industry standards:

– Pthreads (eventually, C++’11 threads)

– OpenMP

– MPI

– OpenCL

– TBB (For C++ … might be replaced by parallelism in C++ standard?)

– or a broadly deployed solutions tied to your platform of choice

– CUDA and OpenACC (for NVIDIA platforms and PGI compilers)

– .NET and C++ AMP (Microsoft)

141 Third party names are the property of their owners.

But its really not that bad : part 3

• Most algorithms

are based on a

modest number

of recurring

patterns.

142

• Almost every parallel program is written in terms of just 7

basic patterns:

– SPMD

– Kernel Parallelism

– Fork/join

– Actors

– Vector Parallelism

– Loop Parallelism

– Work Pile

Parallel programming is easy

• So all you need to do is:

– Pick your language.

– I suggest sticking to industry standards and open source so you can

move around between hardware platforms:

143

– SPMD

– Kernel Parallelism

– Fork/join

– Actors

– Vector Parallelism

– Loop Parallelism

– Work Pile

– Learn the key 7 patterns

– Master the few patterns common to your platform and application

domain … for example, most application programmers just use

these three patterns

– SPMD – Loop Parallelism – Kernel Parallelism

– pthreads – OpenCL – OpenMP – MPI – TBB

Third party names are the property of their owners.

144

Comparing parallel programming

languages/APIs

Units of

Execution

A distinct executable agent that carries out the work

of a program. Examples include the threads

managed by an OS, processes running on the node

of a cluster, or work-items in an OpenCL program

Tasks/mapping Tasks are a logically related set of operations used to

organize the computations in a program. A key

aspect of a parallel program is how these tasks are

associated (or mapped) onto the units of execution.

Coordination Mechanisms to manage units of execution (e.g.

create, destroy, suspend) and how they interact (e.g.

synchronization and communication).

Hardware targets Most programming models were designed with a

particular class of parallel hardware in mind.

 To compare programming languages and APIs at a high level, we can

think in terms of four key elements

145

* MIMD (multiple instruction multiple data) and heterogeneous computers will be covered in a latter lecture on

parallel hardware. The SPMD (single Program Multiple Data) and kernel parallelism patterns will be covered in

our parallel design patterns lecture.

Comparing parallel programming

languages/APIs
Units of

execution

Tasks/mapping Coordination Hardware

targets

Pthreads threads Fork join Shared variables

and explicit

synchronization

constructs

Shared

address space

computers

OpenMP threads Teams of threads

with worksharing

(loops and tasks)

Shared variables

and

synchronization

constructs

Shared

address space

computers

MPI processes SPMD* Message passing Any MIMD*

computer

OpenCL Work-items Kernel parallelism* Heterogeneous

computers*

CUDA CUDA-threads Kernel parallelism* NVIDIA GPUs

If you become overwhelmed during this course …

• Come back to this slide and remind yourself … things are not

as bad as they seem

146 Third party names are the property of their owners.

