OpenMP

A “Hands-on” Introduction to
OpenMP’

Tim Mattson
Intel Corp.

timothy.g.mattson@intel.com

1
* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Disclaimer intel)
READ THIS ... its very important

e The views expressed in this talk are those of the
speakers and not their employer.

e This is an academic style talk and does not address
details of any particular Intel product. You will learn
nothing about Intel products from this presentation.

e This was a team effort, but if we say anything really
stupid, it's our fault ... don’t blame our collaborators.

Third party names are the property of their owners.

Acknowledgements

» This course is based on a long series of tutorials presented at

Supercomputing conferences. The following people helped prepare
this content:

— J. Mark Bull (the University of Edinburgh)

— Rudi Eigenmann (Purdue University)

— Barbara Chapman (University of Houston)

— Larry Meadows, Sanjiv Shah, and Clay Breshears (Intel Corp).

« Some slides are based on a course | teach with Kurt Keutzer of UC
Berkeley. The course is called “CS194: Architecting parallel
applications with design patterns”. These slides are marked with the

UC Berkeley ParlLab logo:
/""P‘”K

Introduction

e OpenMP is one of the most common parallel programming
models in use today.

* |t is relatively easy to use which makes a great language to
start with when learning to write parallel software.

« Assumptions:

— We assume you know C. OpenMP supports Fortran and C++, but
we will restrict ourselves to C.

— We assume you are new to parallel programming.

— We assume you have access to a compiler that supports OpenMP
(more on that later).

Preliminaries:

* Our plan ... Active learning!
— We will mix short lectures with short exercises.

* Download exercises and reference materials.

* Please follow these simple rules

— Do the exercises we assign and then change things around and
experiment.

— Embrace active learning!

—Don’t cheat: Do Not look at the solutions before you complete an
exercise ... even if you get really frustrated.

Agenda

m) . Getting started with OpenMP
* Working with threads
« Synchronization in OpenMP
* Loop and single worksharing constructs
* OpenMP Data Environment
* OpenMP tasks
* Closing Comments

OpenMP’ Overview:

CSOMP FLUSH #pragma omp critical

CSOMP THREADPRIVATE (/ABC/) CALL OMP SET NUM THREADS (10)

-so0 OpenMP: An API for Writing Multithreaded
Applications

G20 =A set of compiler directives and library routines
vy for parallel application programmers
=Greatly simplifies writing multi-threaded (MT) =
- programs in Fortran, C and C++
#p: =Standardizes last 20 years of SMP practice
C$OMP PARALLEL COPYIN(/blk/) CSOMP DO lastprivate (XX)

Nthrds = OMP GET NUM PROCS () omp set lock (lck)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

OpenMP Basic Defs: Solution Stack

User

: Environment
OpenMP Runtime library

OS/system support for shared memory and threading

System layer

HW

Shared Address Space

OpenMP core syntax

« Most of the constructs in OpenMP are compiler directives.
#pragma omp construct [clause [clause]...]
— Example

#pragma omp parallel num_threads(4)
« Function prototypes and types in the file:
#include <omp.h>

« Most OpenMP* constructs apply to a “structured block”.

— Structured block: a block of one or more statements with one point of
entry at the top and one point of exit at the bottom.

— It's OK to have an exit() within the structured block.

Compiler notes: Intel on Windows

 Launch SW dev environment

 cd to the directory that holds i Intel

your source COde . Intel Parallel 5tudio XE 2013
& Intel Advisor XE 2013

E& Intel Inspector XE 2013

. Bl Intel Software Manager N
o Build software for program | .../ rune ampiier xe 2013

foo.c Parallel Studio XE 2013 with V52010
¢ icl /Qopenmp foo.c . Command Prompt Default Programs

| Parallel Studio XE
e Set number of threads =
environment variable BN Intel 64 Visual Studio 2010 m:

¢ set OMP_NUM_THREADS=4 | Parallel Studio XE with Intel Com

; Documentation
¢ Run your program . Getting Started -
¢ foo.exe

m

Computer

Control Panel

Devices and Printers

Help and Support

1 Back

| |JE‘.'-'“E" programs and files ju | shut down || »

e

Compiler notes: Visual Studio

 Start “new project”

« Select win 32 console project
— Set name and path

— On the next panel, Click “next” instead of finish so you can select an
empty project on the following panel.

— Drag and drop your source file into the source folder on the visual
studio solution explorer

— Activate OpenMP

— Go to project properties/configuration properties/C.C++/language
... and activate OpenMP

« Set number of threads inside the program
* Build the project
* Run “without debug” from the debug menu.

11

Compiler notes: Other

 Linux and OS X with gcc:

for the Bash shell

> gcc -fopenmp foo.c
>export OMP_NUM_THREADS=4
> .[a.out

 Linux and OS X with PGI:
>pgcc -mp foo.c
>export OMP_NUM_THREADS=4
> [a.out

/

12

Shared memory Computers

« Shared memory computer : any computer composed of
multiple processing elements that share an address space.
Two Classes:

— Symmetric multiprocessor (SMP): a shared address space with
“‘equal-time” access for each processor, and the OS treats every
processor the same way.

— Non Uniform address space multiprocessor (NUMA): different
memory regions have different access costs ... think of memory
segmented into “Near” and “Far” memory.

Proc, | |Proc, Proc, o o o |Procy

Shared Address Space

Stack

text

data

heap

funcA() var1
var2

Stack Pointer
Program Counter
Registers

Process ID
User ID
Group ID

Files
Locks
Sockets

Programming shared memory
computers

Process

* Aninstance of a
program execution.

 The execution
context of a running
program ... i.e. the
resources
associated with a
program’s
execution.

Programming shared memory
computers

data

heap

funcA() var1

var2

Stack Pointer
Program Counter
Registers

Stack Pointer
/> Program Counter
Registers

Process ID
User ID
Group ID

Files
Locks
Sockets

|
'Threads:
\» Threads are "light

- weight processes”

o Threads share

Process state
among multiple
threads ... this
greatly reduces the
cost of switching
context.

A shared memory program

® An instance of a program:

= One process and lots of
threads.

* Threads interact through
reads/writes to a shared
address space.

= OS scheduler decides
when to run which
threads ... interleaved
for fairness.

= Synchronization to
assure every legal order
results in correct results.

Private
Private
Shared

Address Space

Private
Private
Private

OpenMP Overview:
How do threads interact?

* OpenMP is a multi-threading, shared address model.
— Threads communicate by sharing variables.

« Unintended sharing of data causes race conditions:

— race condition: when the program’s outcome changes as the threads are
scheduled differently.

« To control race conditions:
— Use synchronization to protect data conflicts.

« Synchronization is expensive so:
— Change how data is accessed to minimize the need for synchronization.

17

Exercise 1, Part A: Hello world
Verify that your environment works

« Write a program that prints “hello world”.

int main()

{

int ID = 0;

printf(" hello(%d) *, ID);
printf(" world(%d) \n”, ID);

18

Exercise 1, Part B: Hello world
Verify that your OpenMP environment works

» Write a multithreaded program that prints “hello world”.

Linux and OS X gcc -fopenmp
#include <omp.h> PGI Linux pgcc -mp
int main() Intel windows icl /Qopenmp
{ Intel Linux and OS X |icpc —openmp
#pragma omp parallel
{
int ID = 0;

printf(“ hello(%d) ”, ID);
}printf(“ world(%d) \n”, ID);

}

19

Agenda

» Getting started with OpenMP
m=) . \Working with threads
« Synchronization in OpenMP
* Loop and single worksharing constructs
* OpenMP Data Environment
* OpenMP tasks
* Closing Comments

OpenMP Programming Model:

Fork-Join Parallelism:
¢ Master thread spawns a team of threads as needed.

¢ Parallelism added incrementally until performance goals
are met: i.e. the sequential program evolves into a
parallel program.

Parallel Regions A Nested
Master Parallel
Thread / i \ region
in red / —\‘
= T S ¢
/, o ’,

Sequential Parts

21

Thread Creation: Parallel Regions

* You create threads in OpenMP* with the parallel construct.
* For example, To create a 4 thread Parallel region:

double A[1000]; Runtime function to
Each thread omp_set_num_threads(4); «~— request a certain
executes a #praéma_omp?)arallel number of threads
copy of the
code within _
the int ID = omp_get thread num();
structured pooh(ID,A); "™\ Runtime function
block } returning a thread ID

e Each thread calls pooh(ID,A) for ID=0to 3

* The name “OpenMP” is the property of the OpenMP Architecture Review Board 22

Thread Creation: Parallel Regions

* You create threads in OpenMP* with the parallel construct.
* For example, To create a 4 thread Parallel region:

Each thread
executes a
copy of the

code within
the
structured
block

clause to request a certain
double A[1000]; number of threads

Vd

#pragma omp parallel num_threads(4)

{

int ID = omp_get thread _num();

pooh(ID,A); ™| Runtime function

} returning a thread ID

e Each thread calls pooh(ID,A) for ID=0to 3

23

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

Thread Creation: Parallel Regions

double A[1000];
e Fach thread executes #pragma omp parallel num_threads(4)
the same code {
redundantly. int ID = omp_get_thread_num();
pooh(ID, A);
}
double A[1000]; printf(“all done\n”);
omp_set num_threads(4)
A single
copy of Ais
shared __» pooh(0,A) pooh(1,A) pooh(2,A) pooh(3,A)
between all
threads.

printf(“allm Threads wait here for all threads to finish

before proceeding (i.e. a batrrier)
* The name “OpenMP” is the property of the OpenMP Architecture Review Board

OpenMP: what the compiler does

pragma omp parallel num_threads(4)

{
foobar ();

® The OpenMP compiler generates code
logically analogous to that on the right
of this slide, given an OpenMP pragma
such as that on the top-left

® All known OpenMP implementations
use a thread pool so full cost of threads
creation and destruction is not incurred
for reach parallel region.

® Only three threads are created because
the last parallel section will be invoked
from the parent thread.

void thunk ()

{
foobar ();

pthread t tid[4];
for (int 1 = 1; 1 < 4; ++1)
pthread create (
&tid[i],0,thunk, ©);
thunk();

for (int 1 = 1; i < 4; ++1i)
pthread join (tid[i]);

Exercises 2 to 4:
Numerical Integration

4.0 T=—
N
NG
\\
N\
\
O \
X
+
x
~ 20
o
q—
I
x
L
1.0
0.0
X

Mathematically, we know that:

1
J- (1+x2)
0

We can approximate the
integral as a sum of
rectangles:

N
Z F(x;)Ax =~
i=0

Where each rectangle has
width Ax and height F(x;) at
the middle of interval i.

dx =TT

26

Exercises 2 to 4: Serial Pl Program

static long num_steps = 100000;
double step;

int main ()

{ inti; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i< num_steps; i++){
X = (1+0.5)step;
sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

27

Exercise 2

 Create a parallel version of the pi program using a
parallel construct (#pragma omp parallel).

» Pay close attention to shared versus private
variables.

* In addition to a parallel construct, you will need the
runtime library routines

—int omp_get num_threads(); |
_ —__| Number of threads in the
—int omp_get_thread_num(); team

—double omp_get wtime(); \
Time in Seconds since a fixed
point in the past 28

Thread ID or rank

Serial Pl Program

static long num_steps = 100000;
double step;

int main ()

{ inti; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i< num_steps; i++){
X = (1+0.5)step;
sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

29

Example: A simple Parallel pi program

#include <omp.h> Promote scalar to an
static long num_steps = 100000; double step; array dimensioned by
#define NUM_THREADS 2 number of threads to
void main () avoid race condition.

{ int i, nthreads; double pi, sum[NUM_THREADS];
step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{

int i, id,nthrds: Only one thread should copy
: the number of threads to the

_dOl_Jble X, _ ' global value to make sure

id = omp_get_thread_num(); multiple threads writing to the

nthrds = omp_get_num_threads(); same address don’t conflict.

if id ==0) nthreads = nthrds;

for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) { ———

— (i+ * : is is a common
x=(i+0.5)'step; \ trick in SPMD
sum(id] += 4.0/(1.0+x™x); programs to create

} a cyclic distribution
} of loop iterations

for(i=0, pi=0.0;i<nthreads;i++)pi += sum([i] * step;

30

Algorithm strategy:

The SPMD (Single Program Multiple Data) design pattern

* Run the same program on P processing elements where P
can be arbitrarily large.

* Use the rank ... an ID ranging from 0 to (P-1) ... to select
between a set of tasks and to manage any shared data
structures.

This pattern is very general and has been used to support
most (if not all) the algorithm strategy patterns.

MPI| programs almost always use this pattern ... itis
probably the most commonly used pattern in the history of
parallel programming.

31

Results*

 Original Serial pi program with 100000000 steps ran in 1.83 seconds.

#include <omp.h>

static long num_steps = 100000, double step;
#define NUM_THREADS 2

void main ()

{ int i, nthreads; double pi, sum[NUM_THREADS]: threads 1st

TP N Sy e vy gt

step = 1.0/(double) num_steps; SPMD

omp_s=t num_threads(NUM_THREADS);
#pragma omp paraliel 1.86
1.03

i
1.08
0.97

inti, id.nthrds;

double x;

id =omp_get thread num();

nthrds = omp get num_threads();

i (id —0) nthreads = nthrds;

for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
¥ = (i+0.5)"step;
sum[id] +=4.0/(1.0+x™x);

AW IN| -~

ki

for(i=0, pi=0.0;i<nthreads;i++)pi += sumli] * step;

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 32

Why such poor scaling? False sharing

* If independent data elements happen to sit on the same cache line, each
update will cause the cache lines to “slosh back and forth” between threads
... This is called “false sharing”.

HW thrd. O HW thrd. 1
1

L1 $ lines

HW thrd. 2 HW thrd. 3

1

\
\
sum[1] | Sum[2]

Core 0

L1 $ lins

Sum|0]

\ |
Sum[1] | Sum[3]l

W

Shared last level cache and connection to I/O and DRAM

* If you promote scalars to an array to support creation of an SPMD program,
the array elements are contiguous in memory and hence share cache lines
... Results in poor scalability.

» Solution: Pad arrays so elements you use are on distinct cache lines.

33

#define PAD 8

Example: eliminate False sharing by padding the sum array
#include <omp.h>
static long num_steps = 100000; double step;

#define NUM_THREADS 2
void main ()
int i, nthreads; double pi, sum[NUM_THREADS][PAD];

{

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{

int 1, id,nthrds;

double x;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id == 0) nthreads = nthrds;

for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
x = (i+0.5)*step;
sum([id][0] += 4.0/(1.0+x*x);

}

for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i][0] * step;

/[assume 64 byte L1 cache line size

N

Pad the array
SO each sum
value is in a
different
cache line

34

Results*: pi program padded accumulator
 Original Serial pi program with 100000000 steps ran in 1.83 seconds.

Exam ple: eliminate False sharing by padding the sum array

#include <omp.h=

static long num_steps = 100000; double step;

#idefine PAD 8 fl assume 64 byte L1 cache line size
#define NUM_THREADS 2

void main)
{ int i, nthreads; double pi, sum[NUM_THREADS]PAD}; threads 1t 1 st

E R R et

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS); SPMD | SPMD

#pragma omp parallel padded

“{ 1.86 1.86

inti, id.nthrds:

T et oo oo oo o

double x;
id=omp_qget thread numi);

1.03 1.01

nthrds = omp_get _num_threads);
if (id ==0) nthreads = nthrds;

1.08 0.69

for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
¥ = (i+0.5)"step;

AN -

0.97 0.53

sum [id][0] += 4.0/(1.0+x*%);
1

for(i=0, pi=0.0;i<nthreads:i++)pi += sum[i][0] * step;

h

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

35

Do we really need to pad our arrays?

« Padding arrays requires deep knowledge of the cache
architecture. Move to a machine with different sized
cache lines and your software performance falls apart.

* There has got to be a better way to deal with false sharing.

36

Agenda

» Getting started with OpenMP
* Working with threads
) . Synchronization in OpenMP
* Loop and single worksharing constructs
* OpenMP Data Environment
* OpenMP tasks
* Closing Comments

OpenMP Overview: Recall our high level
How do threads interact? overview of OpenMP?

* OpenMP is a multi-threading, shared address model.

—Threads communicate by sharing variables.
* Unintended sharing of data causes race conditions:

—race condition: when the program’s outcome

changes as the threads are scheduled differently.

"0 control race conditions:
—Use synchronization to protect data conflicts.
« Synchronizallol 1S ExXperTsive So.

—Change how data is accessed to minimize the
need for synchronization.

38

Synchronization:

« Synchronization: bringing one or more threads to a well
defined and known point in their execution.

* The two most common forms of synchronization are:

i

I

-#

Barrier: each thread wait at the barrier until all
threads arrive.

ifl

Mutual exclusion: Define a block of code that only
one thread at a time can execute.

Synchronization

* High level synchronization:
—critical
—atomic
—barrier
—ordered

* Low level synchronization
—flush

Synchronization is used
to impose order
constraints and to
protect access to shared
data

—locks (both simple and nested)

40

Synchronization: Barrier

e Barrier: Each thread waits until all threads arrive.

#pragma omp parallel

{

int id=omp_get thread _num();
A[id] = big_calc1(id);
#pragma omp barrier

B[id] = big_calc2(id, A);

Synchronization: critical

« Mutual exclusion: Only one thread at a time can enter a

critical region.

Threads wait
their turn — only
one at a time
calls consume()

float res;
#pragma omp parallel
{ floatB; inti,id, nthrds;
id = omp_get thread _num();
nthrds = omp_get num_threads();
for(i=id;i<niters;i+=nthrds){
B = big_job(i);

#pragma omp critical
res += consume (B);

42

Synchronization: Atomic (basic form)

« Atomic provides mutual exclusion but only applies to the
update of a memory location (the update of X in the following
example)

#pragma omp parallel The statement inside the
atomic must be one of the
{ following forms:
double tmp, B; * X binop= expr
e X++
B = DOIT(); © ++X
[X_
tmp = big_ugly(B); . X
: X is an lvalue of scalar type
#pragma omp atomic and binop is a non-overloaded
X += tmp; built in operator.

}

Additional forms of atomic were added in OpenMP 3.1.

We will discuss these later.

43

Exercise 3

* |[n exercise 2, you probably used an array to create space
for each thread to store its partial sum.

* |f array elements happen to share a cache line, this leads
to false sharing.

— Non-shared data in the same cache line so each update invalidates the
cache line ... in essence “sloshing independent data” back and forth
between threads.

* Modify your “pi program” from exercise 2 to avoid false
sharing due to the sum array.

#pragma omp parallel
#pragma omp critical

int omp_get _num_threads();
int omp_get_thread _num();
double omp_get wtime();

44

Pi program with false sharing*

 Original Serial pi program with 100000000 steps ran in 1.83 seconds.

#include <omp.h=

static long num_steps = 100000, double step;
#define NUM_THREADS 2

void main ()

i int i, nthreads; double pi, sum[NUM_THREADS];

step = 1.0/(double) num_steps;

omp_s=t num_threads(NUM_THREADS);
#pragma omp paraliel
i

inti, id.nthrds;

double x;

id =omp_get thread num();

nthrds = omp get num_threads();

i (id —0) nthreads = nthrds;

for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
¥ = (i+0.5)"step;
sum[id] +=4.0/(1.0+x™x);

ki

for(i=0, pi=0.0;i<nthreads;i++)pi += sumli] * step;

Recall that promoting sum
to an array made the
coding easy, but led to
false sharing and poor

performance.
threads 1st
SPMD
1 1.86
2 1.03
3 1.08
4 0.97

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

45

Example: Using a critical section to remove impact of false sharing

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ double pi; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel Create a scalar local to
{ each thread to
int i, id,nthrds; double x, sum<€— accumulate partial
id = omp_get_thread_num(); sums.
nthrds = omp_get_num_threads();
if (id ==0) nthreads = nthrds;
id = omp_get_thread_num();
nthrds = omp_get_num_threads();
for (i=id, sum=0.0;i< num_steps; i=i+nthreads){ No array, so
x = (i+0.5)*step; no false
sum += 4.0/(1.0+x*x); €= sharing.
#p}ragma omp critical Sum goes “out of scope” beyond the parallel
pi += sum * step; € region ... so you mgst sum itin hgre. M'ust
) protect summation mtg pi in a critical region
) so updates don’t conflict

46

Results*: pi program critical section
 Original Serial p| program with 100000000 steps ran in 1.83 seconds.

EHEIITINE Usmg a critical section to remove impact of false sharmg

#include <omp_h>=
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ double pi;
omp_set_ num_threads(NUM_THREADS);
#pragma omp paraliel
{
inti, id.nthrds; double x, sum;
id =omp_get thread num();
nthrds = omp_get _num_threads();
if (n:l ==0) nthreads = nthrds;
=omp get thread nun[j;
"““E omp_oet_num_threads();
for (i=id, sum=0_0;i< num_steps; i=i+nthreadsy
¥ = (i+0.5)"step;
sum +=4.0/(1.0+x"x);

¥
#pragma omp critical
pi +=sum * step;
}
}

step = 1.0/(double) num_steps;

threads 1st 1st SPMD
SPMD SPMD critical
padded
1 1.86 1.86 1.87
2 1.03 1.01 1.00
3 1.08 0.69 0.68
4 0.97 0.53 0.53

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

47

Example: Using a critical section to remove impact of false sharing

#include <omp.h>

static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ double pi; step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{ Be careful
int i, id,nthrds; double x; where you put
id = omp_get_thread_num(); itical
nthrds = omp_get_num_threads(); d Cr'_ Ica
if (id == 0) nthreads = nthrds; section
id = omp_get_thread_num();
nthrds = omp_get_num_threads();
for (i=id, sum=0.0;i< num_steps; i=i+nthreads){ | \what would happen if
x = (i+0.5)"step; you put the critical
#pragma omp critical € section inside the loop?
pi +=4.0/(1.0+x*x);
}
}
pi *= step;
}

48

Example: Using an atomic to remove impact of false sharing

#include <omp.h>

static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ double pi; step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel Create a scalar local to
{ each thread to
int i, id,nthrds; double x, sum€— accumulate partial
id = omp_get_thread_num(); sums.

nthrds = omp_get_num_threads();
if (id ==0) nthreads = nthrds;
id = omp_get_thread_num();
nthrds = omp_get_num_threads();
for (i=id, sum=0.0;i< num_steps; i=i+nthreads){
x = (i+0.5)*step;

sum +=4.0/(1.0+x*x); €=
}

No array, so
no false
sharing.

sum = sum*step; Sum goes “out of scope” beyond the parallel
#pragma atomic region ... so you must sum it in here. Must

pi += sum : / protect summation into pi so updates don't

conflict

49

Agenda

» Getting started with OpenMP
* Working with threads
« Synchronization in OpenMP
) . Loop and single worksharing constructs
* OpenMP Data Environment
* OpenMP tasks
* Closing Comments

SPMD vs. worksharing

A parallel construct by itself creates an SPMD or
“Single Program Multiple Data” program ... i.e.,
each thread redundantly executes the same code.

* How do you split up pathways through the code
between threads within a team?

—This is called worksharing
—Loop construct
— Sections/section constructs
—Single construct
— Task construct

51

The loop worksharing Constructs

* The loop worksharing construct splits up loop iterations
among the threads in a team

#pragma omp parallel

{ Loop construct
#pragma omp for name:
for (1=0;I<N;l++){ . .
NEAT_STUFF()); ClC++: for
} *Fortran: do
}

N

The variable | is made “private” to each
thread by default. You could do this

explicitly with a “private(l)” clause

52

Loop worksharing Constructs
A motivating example

Sequential code for(i=0;i<N;i++) {al[i] = a[i] + b[i];}
#pragma omp parallel

{
int id, 1, Nthrds, istart, iend;
OpenMP parallel id = omp_get_thread_num();
region Nthrds = omp_get _num_threads();
istart =id * N / Nthrds;
lend = (id+1) * N / Nthrds;
if (id == Nthrds-1)iend = N;
for(i=istart;i<iend;i++) { a[i] = a[i] + bli];}
}

OpenMP parallel
region and a
worksharing for
construct

#pragma omp parallel
#pragma omp for
for(i=0;i<N;i++) {a[i] = a[i] + bli];}

53

loop worksharing constructs:

The schedule clause

* The schedule clause affects how loop iterations are mapped
onto threads

— schedule(static [,chunk])
— Deal-out blocks of iterations of size “chunk” to each thread.
— schedule(dynamicl[,chunk])

— Each thread grabs “chunk” iterations off a queue until all iterations
have been handled.

— schedule(guided[,chunk])

— Threads dynamically grab blocks of iterations. The size of the block
starts large and shrinks down to size “chunk™ as the calculation

proceeds.
— schedule(runtime)

— Schedule and chunk size taken from the OMP_SCHEDULE
environment variable (or the runtime library).

— schedule(auto)

— Schedule is left up to the runtime to choose (does not have to be
any of the above).

54

loop work-sharing constructs:
The schedule clause

Schedule Clause

STATIC

DYNAMIC

GUIDED

AUTO

When To Use

Pre-determined and
predictable by the
programmer

Unpredictable, highly
variable work per
iteration

Special case of dynamic
to reduce scheduling
overhead

When the runtime can
“learn” from previous
executions of the same
loop

Least work at
runtime :
scheduling done
at compile-time

Most work at
runtime :
complex
scheduling logic
used at run-time

Combined parallel/worksharing construct

* OpenMP shortcut: Put the “parallel” and the
worksharing directive on the same line

double res[MAX]; inti; double res[MAX]; inti;
#pragma omp parallel #pragma omp parallel for
{ for (i=0;i< MAX; i++) {
#pragma omp for res[i] = huge();
for (i=0;i< MAX; i++) { }

res[i] = huge();

. N 7

These are equivalent

Reduction
e How do we handle this case?

double ave=0.0, AIMAX]; inti;
for (i=0;i< MAX; i++) {
ave + = A[i];

}

ave = ave/MAX:

* We are combining values into a single accumulation variable
(ave) ... there is a true dependence between loop iterations
that can’t be trivially removed

* This is a very common situation ... it is called a “reduction”.

» Support for reduction operations is included in most parallel
programming environments.

57

Reduction

* OpenMP reduction clause:
reduction (op : list)
* Inside a parallel or a work-sharing construct:

— A local copy of each list variable is made and initialized depending
on the “op” (e.g. 0 for “+7).

— Updates occur on the local copy.
— Local copies are reduced into a single value and combined with
the original global value.
* The variables in “list” must be shared in the enclosing
parallel region.

double ave=0.0, AIMAX]; inti;
#pragma omp parallel for reduction (+:ave)
for (i=0;i< MAX; i++) {
ave + = A[i];
}

ave = ave/MAX;

58

OpenMP: Reduction operands/initial-values

« Many different associative operands can be used with reduction:
« Initial values are the ones that make sense mathematically.

Operator | Initial value
+ 0
* 1 Fortran Only
- 0 Operator | Initial value
min Largest pos. number "AND. true.
max Most neg. number OR. false.
.NEQV. false.
C/C++ only
Operator | Initial value IEOR. 0
P u IOR. 0
& ~0 JAND. All bits on
| 0 .EQV. true.
A 0
&& 1
0

59

Single worksharing Construct

* The single construct denotes a block of code that is

executed by only one thread (not necessarily the master
thread).

« A barrier is implied at the end of the single block (can
remove the barrier with a nowait clause).

#pragma omp parallel

{
do_many_things();

#pragma omp single
{ exchange boundaries(); }
do_many_other_things();

60

Exercise 4: Pi with loops

» Go back to the serial pi program and parallelize it with a

loop construct

* Your goal is to minimize the number of changes made to

the serial program.

#pragma omp parallel

#pragma omp for reduction(+:var)
#pragma omp critical

int omp_get_num_threads();

int omp_get _thread _num();
double omp get wtime();

61

Serial Pl Program

static long num_steps = 100000;
double step;

int main ()

{ inti; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i< num_steps; i++){
X = (1+0.5)step;
sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

62

Example: Pi with a loop and a reduction

#include <omp.h>

static long num_steps = 100000; double step;
void main ()
{ int i; double X, pi, sum = OO, Create a team of threads ...
step = 10/(double) num stepS' without a parallel construct, you'll
- ’ never have more than one thread

#pragma omp parallel <€~

{ Create a scalar local to each thread to hold
double x; <€ value of x at the center of each interval

#pragma omp for reduction(+:sum)
for (i=0;i< num_steps; i++){
X = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

pi = step * sum;

Break up loop iterations
and assign them to
threads ... setting up a
reduction into sum.

Note ... the loop indix is
local to a thread by default.

63

Results*: pi with a loop and a reduction

 Original Serial pi program with 100000000 steps ran in 1.83 seconds.

; ExampIeF‘lwuha E— T T S Pl Loop
SPMD | SPMD critical

#include <omp.h> padded

stafic long num_steps = 10000 186 | 1.86 1.87 1.91

void main ()

{ inti; double x, pi, st 2 1.03 1.01 1.00 1.02
step = 1.0/(double) num _9
#pragma om parawwllel 3 1.08 0.69 0.68 0.80
{ 4 0.97 0.53 0.53 0.68

double x;

#pragma omp for reduction(+:sum)
for (I=0;i= num_steps; i++}
¥ = (1+0.5)step;
sum = sum + 4.0/(1.0+x™x);

}

pi = step * sum;

)

}

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

Agenda

» Getting started with OpenMP

* Working with threads

« Synchronization in OpenMP

* Loop and single worksharing constructs
) . OpenMP Data Environment

* OpenMP tasks

* Closing Comments

Data environment:
Default storage attributes

» Shared Memory programming model:
— Most variables are shared by default

 Global variables are SHARED among threads

— Fortran: COMMON blocks, SAVE variables, MODULE variables
— C: File scope variables, static
— Both: dynamically allocated memory (ALLOCATE, malloc, new)

» But not everything is shared...

— Stack variables in subprograms(Fortran) or functions(C) called
from parallel regions are PRIVATE

— Automatic variables within a statement block are PRIVATE.

66

Data sharing: Examples

double A[10];
int main() {
int index[10];
#pragma omp parallel
work(index);
printf(“%d\n”, index[0]);
}

A, index and count are
shared by all threads.

temp is local to each
thread

A,

extern double A[10];
void work(int *index) {

double temp[10];
static int count;

index, count

temp

temp

temp

index, count

67

Data sharing:
Changing storage attributes

* One can selectively change storage attributes for constructs
using the following clauses™

- SHARED
- PRIVATE
- FIRSTPRIVATE

* The final value of a private inside a parallel loop can be
transmitted to the shared variable outside the loop with:
— LASTPRIVATE

 The default attributes can be overridden with:
- DEFAULT (PRIVATE | SHARED | NONE)
DEFAULT(PRIVATE) /s Fortran only

*All data clauses apply to parallel constructs and worksharing constructs except

“shared” which only applies to parallel constructs.
68

Data Sharing: Private Clause

 private(var) creates a new local copy of var for each thread.

— The value of the private copies is uninitialized

— The value of the original variable is unchanged after the region

void wrong() {
int tmp = 0;
#pragma omp parallel for private(tmp)
for (intj = 0; j < 1000; ++j)
tmp +=j;
printf(“%d\n”, tmp);

-/

tmp is 0 here

tmp was not
initialized

69

Firstprivate Clause

 Variables initialized from shared variable
« C++ objects are copy-constructed

iIncr = 0;
#pragma omp parallel for firstprivate(incr)
for (i=0; 1 <= MAX; i++) {

if ((i1%2)==0) incr++;

A[i] = incr; \
}

Each thread gets its own copy
of incr with an initial value of O

Example: Pi program ... minimal changes

#include <omp.h>

For good OpenMP
implementations,
reduction is more

static long num_steps = 100000; double step:;
void main ()
{ Inti; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
#pragma omp parallel for private(x) red
for (i=0;i< num_steps; i++){

default

scalable than critical.

uction(+:sum)

— X = (i+0.5)*step;
' private by / sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

Note: we created a
parallel program without
changing any executable
code and by adding 2
simple lines of text!

71

Exercise 5: Mandelbrot set area

* The supplied program (mandel.c) computes the area of a
Mandelbrot set.

* The program has been parallelized with OpenMP, but we
were lazy and didn’t do it right.

* Find and fix the errors (hint ... the problem is with the data
environment).

* Once you have a working version, try to optimize the
program.

— Try different schedules on the parallel loop.

— Try different mechanisms to support mutual exclusion ... do the
efficiencies change?

72

Exercise 5: The Mandelbrot Area program

#include <omp.h>

define NPOINTS 1000

define MXITR 1000

void testpoint(void);

struct d_complex{
double r; double i;

3

struct d_complex c;

int numoutside = 0;

int main(){
inti, j;
double area, error, eps = 1.0e-5;
#pragma omp parallel for default(shared) \
private(c,eps)
for (i=0; i<NPOINTS; i++) {
for (j=0; j<NPOINTS; j++) {
c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;
testpoint();
}

}
area=2.0*2.5*1.125%(double)(NPOINTS*NPOINTS-

numoutside)/(double)(NPOINTS*NPOINTS);
error=area/(double)NPOINTS;

}

void testpoint(void){
struct d_complex z;
int iter;
double temp;

Z=C;
for (iter=0; iter<MXITR; iter++){
temp = (z.r*z.r)-(z.i*z.i)+c.r;
Z.i = z.rz.i*2+c.i
z.r = temp;
if ((z.r*z.r+z.i*z.i)>4.0) {
numoutside++;
break;

}
}

When | run this program, | get a
different incorrect answer each
timelrunit ... there is a race
condition!!!! 7

Exercise 5: Area of a Mandelbrot set

 Solution is in the file mandel par.c

 Errors:

— Eps is private but uninitialized. Two solutions
— It's read-only so you can make it shared.
— Make it firstprivate
— The loop index variable j is shared by default. Make it private.

— The variable ¢ has global scope so “testpoint” may pick up the global
value rather than the private value in the loop. Solution ... pass C as
an arg to testpoint

— Updates to “numoutside” are a race. Protect with an atomic.

74

Debugging parallel programs

 Find tools that work with your environment and learn to use

them. A good parallel debugger can make a huge

difference.

« But parallel debuggers are not portable and you will

assuredly need to debug “by hand” at some point.

* There are tricks to help you. The most important is to use

the default(none) pragma

#pragma omp parallel for default(none) private(c, eps)
for (i=0; i<NPOINTS; i++) {
for (j=0; j<NPOINTS; j++) {
c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;
testpoint();

}
}

Using
default(none)
generates a
compiler
error that j is
unspecified.

75

Exercise 5 solution:

#include <omp.h>
define NPOINTS 1000
define MXITR 1000
struct d_complex{
double r; double i;
%
void testpoint(struct d_complex);
struct d_complex c;
int numoutside = 0;

int main(){
inti, j;
double area, error, eps = 1.0e-5;

The Mandelbrot Area program

void testpoint(struct d_complex c){
struct d_complex z;

int iter;

double temp;

Z=C;
for (iter=0; iter<MXITR; iter++){
temp = (z.r*z.r)-(z.i*z.i)+c.r;
Z.i = z.rz.i*2+c.i
z.r = temp;
if ((z.r*z.r+z.i*z.i)>4.0) {

#pragma omp parallel for default(shared) private(c, j) #pragma omp atomic
firstpriivate(eps) numoutside++;
for (i=0; i<NPOINTS; i++) { break;
for (j=0; j<NPOINTS; j++) { }
c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps; }
c.i = 1.125%(double)(j)/(double)(NPOINTS)+eps; }
testpoint(c); Other errors found using a
}} debugger or by inspection:

area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-

numoutside)/(double)(NPOINTS*NPOINTS);
error=area/(double)NPOINTS;

}

eps was not initialized
» Protect updates of numoutside
* Which value of c die testpoint()
see? Global or private? 7

Agenda

» Getting started with OpenMP
* Working with threads
« Synchronization in OpenMP
* Loop and single worksharing constructs
* OpenMP Data Environment
) . OpenMP tasks
* Closing Comments

Consider simple list traversal

« Given what we've covered about OpenMP, how would you
process this loop in Parallel?

p=head,;

while (p) {
process(p);
P = p->next;

 Remember, the loop worksharing construct only works with
loops for which the number of loop iterations can be
represented by a closed-form expression at compiler time.
While loops are not covered.

78

OpenMP Tasks

» Tasks are independent units of work.

» Tasks are composed of:
— code to execute
— data environment
— internal control variables (ICV)

* Threads perform the work of each task.

* The runtime system decides when tasks
are executed
— Tasks may be deferred
— Tasks may be executed immediately

Serial Parallel

Task Construct — Explicit Tasks

1. Create

#pragma omp parallel

{

2. One thread
executes the single
construct

... other threads
wait at the implied

barrier at the end of
the single construct

#pragma omp single

{

node * p = head;

a team of
threads.

3. The “single” thread
creates a task with its own

while (p) { value for the pointer p

#pragma omp task firstprivate(p)
process(p);

P = p->next;

}

tasks.

4. Threads waiting at the barrier execute

Execution moves beyond the barrier once
all the tasks are complete

Execution of tasks

Have potential to parallelize irregular patterns and recursive function calls

#pragma omp parallel Single Tl Thr2z Thi3 Thra
{ jhreaded —
#pragma omp single —
{ //Iijlock 1 . B2 -
node * p = head;
while (p) { // block 2 =
#pragma omp task Block 2)
process(p); e i
p = p->next; //block 3 3
} D
} L Time
} Saved
Block 2
Task 3
\/

When are tasks guaranteed to complete
» Tasks are guaranteed to be complete at thread barriers:
#pragma omp barrier

* or task barriers
#pragma omp taskwait

fpragma omp parallel
{ Multiple foo tasks created

here — one for each thread
fpragma omp task

foo();

#pragma omp barrier All foo tasks guaranteed to
fprragma omp single be completed here

{

fpragma omp task<_| One bar task created here
bar () ;

J

} bar task guaranteed to be
completed here

82

Data Scoping with tasks: Fibonacci example.

This is an instance of the
divide and conquer design

intfib (intn)

{ ‘\

pattern

S private in both tasks

n

int x,y;
if (n<2)return n;
#pragma omp task
x = fib(n-1);
#pragma omp task
y = fib(n-2);
#pragma omp taskwait
return x+y __

X is a private variable
y is a private variable

}

What's wrong here?

A task’s private variables are

undefined outside the task

Data Scoping with tasks: Fibonacci example.

intfib (intn)
{ \
n is private in both tasks
int x,y;
if (n<2)return n;
#pragma omp task shared (x) x & y are shared
x = fib(n-1); Good solution
#pragma omp task shared(y) we need both values to
y = fib(n-2); compute the sum
#pragma omp taskwait
return x+y;
}

Data Scoping With tasks: List Traversal example

List ml; //my list
Element *e; +
#pragma omp parallel
#pragma omp single

{

What's wrong here?

for (e=ml->first;e;e=e->next)
#pragma omp task
process (e) ;

}

Possible data race !
Shared variable e
updated by multiple tasks

Data Scoping With tasks: List Traversal example

List ml; //my list
Element *e;
#pragma omp parallel
#pragma omp single
{
for (e=ml->first;e;e=e->next)
#pragma omp task firstprivate (e)
process (e) ;

}

Good solution — e is
firstprivate

Exercise 5: tasks in OpenMP

o Start with your pi program.
 Parallelize this program using tasks.

OpenMP Pl Program:

Loop level parallelism pattern

#include <omp.h>

static long num_steps = 100000; double step;
#define NUM_THREADS 2

void main ()

{ int i; double x, pi, sum =0.0;

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel for private(x) reduction (+:sum)
for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum +=4.0/(1.0+x*x);

}

pi = sum * step;

}

88

Results*: pi with tasks
 Original Serial pi program with 100000000 steps ran in 1.83 seconds.

vvvvvvvvvvvvvvv

| Finclude <omp.h>
taticlong num_steps = 100000000;
i pdefine MIN_BLK 10000000

[intiiblk
. | double x, sum = 0.0,sum1, sumz;
if (Nfinish-Nstart = MIN_BLK}
for (i=Nstart;i= Nfinish; i++H
x= (i+0.5)=tep,
sum = sum + 40001 .0+,

h

h

elzef
iblk = Nfinish-Nstart,
#pragmaomp task shared({sum1)

#pragmaomp task shared({suma2)
#pragmaomp taskwait

sum = suml + sum?z;
return sum;

double pi_comp(int Nstart,int Nfinish double step)

int main (}

i

int

P

double step, pi, sum;

step=1.0/{double) num_steps;

o e o o PN |

suml = Ei 0 mgm M finizh-iblks

sumz = pi_comp(Nfinish-iblk/Z, Nfinish,

threads 1st SPMD | Pl Loop | Pitasks
SPMD critical
1 1.86 1.87 1.91 1.87
2 1.03 1.00 1.02 1.00
3 1.08 0.68 0.80 0.76
4 0.97 0.53 0.68 0.52

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

Agenda

» Getting started with OpenMP
* Working with threads
« Synchronization in OpenMP
* Loop and single worksharing constructs
* OpenMP Data Environment
* OpenMP tasks
) . Closing Comments

Summary

* We have now covered the most commonly used features of
OpenMP.

* To close, let's consider some of the key parallel design
patterns we've discussed..

91

SPMD: Single Program Mulitple Data

* Run the same program on P processing elements where P
can be arbitrarily large.

* Use the rank ... an ID ranging from 0 to (P-1) ... to select
between a set of tasks and to manage any shared data
structures.

This pattern is very general and has been used to support
most (if not all) the algorithm strategy patterns.

MPI| programs almost always use this pattern ... itis
probably the most commonly used pattern in the history of
parallel programming.

92

OpenMP Pi program: SPMD pattern

#include <omp.h>
void main (int argc, char *argv[])
{
int i, pi=0.0, step, sum = 0.0;
step = 1.0/(double) num_steps ;
#pragma omp parallel firstprivate(sum) private(x, i)
{ intid = omp_get_thread_num();
int numprocs = omp_get_num_threads();
int stepl = id *num_steps/numprocs ;
int stepN = (id+1)*num_steps/numprocs;
if (stepN !'= num_steps) stepN = num_steps;
for (i=stepl; i<stepN; i++)
{ X = (i+0.5)*step;
sum += 4.0/(1.0+x*x);
)

#pragma omp critical
pi += sum *step ;
)

}

93

Loop parallelism

* Collections of tasks are defined as iterations of one or more
loops.

» Loop iterations are divided between a collection of
processing elements to compute tasks in parallel.

#pragma omp parallel for shared(Results) schedule(dynamic)

for(i=0;i<N;i++){
Do_work(i, Results);

}

This design pattern is heavily used with data parallel design
patterns.

OpenMP programmers commonly use this pattern.

94

Divide and Conquer Pattern

 Use when:

— A problem includes a method to divide into subproblems
and a way to recombine solutions of subproblems into a
global solution.

 Solution
— Define a split operation

— Continue to split the problem until subproblems are
small enough to solve directly.

— Recombine solutions to subproblems to solve original
global problem.

* Note:

— Computing may occur at each phase (split, leaves,
recombine).

Divide and conquer

» Split the problem into smaller sub-problems. Continue until
the sub-problems can be solve directly.

‘ problem ‘

. 3 Options:
splil
/ \ 0 Do work as you split

subproblem subproblem ‘ |nt0 Sub-prOblemS

,/ e \ ,/ i \ 0 Do work only at the

subproblem ‘ subproblem subproblem ‘ subproblem ‘ |eaveS
solve solve solve solve H DO Work as you
‘ ' ' recombine.

snbsolution suhsolution

subsolution ‘ subhsolution ‘

) o)) B

subszsolution ‘ subsolution ‘

\wge/

‘ zolution ‘

Program: OpenMP tasks (divide and conquer pattern)

Hinclude <omp.h>
static long num_steps = 100000000;
#define MIN_BLK 10000000
double pi_comp(int Nstart,int Nfinish,double step)
K inti,iblk;
double x, sum = 0.0,sum1, sum2;
if (Nfinish-Nstart < MIN_BLK)
for (i=Nstart;i< Nfinish; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
}

else{
iblk = Nfinish-Nstart;
#pragma omp task shared(sum1)
sum1 = pi_comp(Nstart,
#pragma omp task shared(sum2)
sum?2 = pi_comp(Nfinish-iblk/2, Nfinish,
#pragma omp taskwait
sum = sum1 + sum2;
return sum;

|

int main ()
{
int i;
double step, pi, sum;
step = 1.0/(double) num_steps;
#pragma omp parallel
{
#pragma omp single
sum = pi_comp(0,num_steps,step);
}

pi = step * sum;

Nfinish-iblk/2,step);

step);

Learning more about OpenMP:
OpenMP Organizations

 Online video course

- httpz/www.intel.com/content/www/us/en/education/university/parallel-programming-
initiative/openmp-videos.html

* OpenMP architecture review board URL, the
“owner” of the OpenMP specification:

www.openmp.org

* OpenMP User’s Group (cOMPunity) URL.:

www.compunity.org

Get involved, join compunity and help
define the future of OpenMP

98

Books about OpenMP

F
ey

PATTERNS
FOR PARALLEL
I?RO(RAHAH\(

PUHTABLE SHAHEI] MEMUR LLEL HGEHﬂMIHG

BARBARA CHAPMAN,

GABRIELE I105T, DAVID). KUCK
AND RUUD VAN DER PAS

An excellent book about using A book about how to “think

OpenMP ... though out of date parallel” with examples in
(OpenMP 2.5) OpenMP, MPI and Java

99

Background references

[ey Se—_—

INTRODULCTLON T
Concurrency in
Programming
Languages

ML EEHEW [Mok

elsT v HY L, MaAarTsoN

SRl E KRassUSsEN

A general reference that puts
languages such as OpenMP
in perspective (by Sottile,
Mattson, and Rasmussen)

. The Art of Concurrency

A Theamd Monkoy’s Gude 1o W bing Parated A ped cations

An excellent introduction and
overview of multithreaded

programming (by Clay Breshears)

100

The OpenMP reference card

A two page summary of all the OpenMP constructs ... don’t write OpenMP code without it.

OpenbP 3.1 &P C/C++ Symitax Ouick Reference Cand

Catd P b ale P rieTan S ki Dipas

Funtime Library Routines

el e i
el Paallen i =

=

T e o L

Directives

A Dk ciabie der e nole b e
ptaradog dalrnibud o e S At st
-

arypl b

Tim g sk) g Wy Tead D e ladrd

s an dbwbmns

o T By
LR =

Pl [

The skl a] brew e o Pevmk sl dah
[

h:.::lﬁl—hl—:'-l

o b
W sk vy |

el e e

B b 1
i
—
o T
Leagpia.d]
The e el s e Dl Tom laaares, ol
man o ik Beimd a4 vl e b b B
g A Crmmis

Py s e B b | fnnar, |
A

e
witenln
P b
[Fo—.

L T
i]« i

o e
o U b i

(A
i by
e bl

i e sl e bl ok s o
A
b o e s L ma - e B
e

ik Torvmd ram b a st o e alarn
Ko evgamrils arsibee s firn ol e ks i
e o b Akl
el ke Tevmd ke bl e
o gl s it sl ol o ke,
b o sy Tk i i g md v
L e
i, T e v i g w alg depard
e s waks iy e
Fonliom T n mkon wud s e L b
o st o

h;-——-l—lﬂ—'ﬁlll—:'-l
Femea e mle
[riseess e

=

o b

e
ot b

E
el

wl R
sarded ol L gl Lea

t?:::rnl—h.l—'.'-l

el
L
e 1
e

Faanliail Loog [[La.1]

Thm el v Lol mad 4 ek e iy
i e g o ey el
s md rn Al ke e e

Py s o ol - b | i,

+
A e e b o el = B i s, o i
[T T R S ——
e —

i e 0] Lo [
i b g e o ool s b
i L L T

vl maplaian u, il
1

n.-.* LA g

mhmﬁ'ﬂ

T e |
gl e e g e b B il
ol ke i

Pyt e) e s | s |
=
[-
Nmmw e b
[—r—

¥
=]
Mg es’ By s momdid iy o e o il
drmlen med U ownll oo w0 e
e alars,

Thom ek cronids] iy e il L. " dela
al W L

el]
Tt i e -.d.l-hldl'l-l.l'rl.l.d.l.'
o s b S o sl o g el

Pomy =t o g Lot

-nr_rE:id sm P dalen ek E

Bmadal i e Bl T len e
= il i vl oy bl b
ks

- ——"—
Covicad [1iL)

"--Il.lilnﬂu.ﬂu—.hn-'h e dkrd
s s g Torwd e

EEE—

Rwrviar [FA W)
g B e k]
il Wl U s] g 1.
Pyt e b ol
Tt 4]
i bl e | o el e om s il
bl i o s e
Fooma o o Leimad
Facesiic [5
T i rmira | s e, B v . e g
bmalia i sl o e i il Bac ek Lk
En mmaldilyor = iiim e dlln ma e By Tevmie
Frmeaopelaeh mmd el spler ok,
rarrair d

Prm-aorpeleh ok
[l =)

T e L

Frva o b g |

-.u—r—l

i i =
F - ol o b - r.-.."
Ivhnl_l.i{
Tt sk ol al e Ko
q-d-n-h.l--l-.-lr-n.

el s g e b, o Pom e skl
[T A —

!T:HH—HJ—:' -l

I...-l--—.-.-l
Bemles o raerais

e
el v |
cmm

o Sl
ot 1
e

i W nak red by e sy
r—‘“ﬁ
v e ahrd o Yo map

arear
T R
s i | pae.

L e Lo o] 107
fam s v ared ek o]
Sk,

o il e
Sk L T Bl B madir

sl U
e]
T

Wi a w et o v b
s . b g vl a2 i
s Py e e s
e

e T P o T . s
rearrd

ol e e | vy, mn

Sl e e o s e
anid Ly b o e g
el al e g e B
s

ol e g v ma rt

Tl v Do (Dl o gl Sremd
e T gy Pae e e e der ol
Tom -

ol gl _ e m
el b i o s aaa
o e g

il e 1 e i

e e
il ek, B i

b e i b e mdpnkewd
P o B ko 1y ey
L

"

b, L ko o B by 7
P e L]
AV i ol s el
daard

e ool]
St i i b e e,
e

il el il o |

ks U rulan of' B sl v £ il
vl ey T owedel o sl B el
g aemm

b Ll

i
= e | . el
e s am iy

u—._..l_u—l_l-q-u.
B rmr ol tm B ded
=
i e i 2 L e
s
w1
Ll o s e ke

s ey el
o

i el i

[N Se—
B e darr—ir | e
i o ke m e il wy
o e _pel_ el s
N L
ey e Pl e
F il

u::n_..l‘_,—n-_l—l_-q
B . ber e o e
i Brm B Brrl e B

= o e
Bl v, b i e sl e o -

Pt A B o v b
e e, i,)
il i .

bk i g a1 L

Clauses

Thed ol vl e

-

* iy
Wil m P b megrd W
mdew

oy arsd siaamy

o i e rd L B
e find 1 s el 1

vl b ol el s, 51 bl

B iy B e o e i

- B e

[rtys=y

e e _pel_ ey
i . B vt o rkrd B
——

T

Lok iy | i

[T

s B el

bl o Bl el
i . o] i i b
jrr——

Pirw i gt ek b
simi e

sl e g w e el

Pl ex
e e

Environmant Variables

- E_ 5

Py T Ty
Sl n T o b o U e el by
—p g

[- P

e 8]l D B
B e T e
am an e i iy wd b B
L 1 |

[o doy Ao X LA
e
= =

e e
sl bl T v

e
e M L L

R WO e i
s B e o % ke B
ey m | i brae ar ko
Vsl A i by o e,
T e T
e B e

o o ks Tl 1
= ek ek al

vharmih
Dy mw v ey b e
b e b s -
sarudal

b
L LTl R
bis i

B
Drdam mw w e e b
bt b, e . v ol o

S wrw i ey e b

R AP Y [Mep—
s iy o g T by]
|l o o s

D Loy i [28.4]

e s e e e s
b e] o Pl
e g iy dw

T TERRRE.

e) T

Alrmma v b e g,

EU T

e By e 5 bt o e
Alrmaa

g | arim 1 Bemams o B

el
g oty o el ey

T Vi b e w
T

(D N i

i dmd Aw e o B
1y Py

A
bl nai e e el

e Ty ikl e

(1]
dhalin i acwleie daisd
e ke o L o Tl

ORAF_EAEIR el ||| W)
ks U s e v % b o P
W s o’ o sl i e s il
b e S . e
skm ey Gl sm e daa
1 el e o B, s . e 2

=
crdln bemer Lemm

vl

arugey b e k] s

http://openmp.org/mp- documents/OpenMP3 1-CCard.pdf

