
1 1

A “Hands-on” Introduction to
OpenMP*

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Tim Mattson

Intel Corp.

timothy.g.mattson@intel.com

2 2

Disclaimer
READ THIS … its very important

• The views expressed in this talk are those of the
speakers and not their employer.

• This is an academic style talk and does not address
details of any particular Intel product. You will learn
nothing about Intel products from this presentation.

• This was a team effort, but if we say anything really
stupid, it’s our fault … don’t blame our collaborators.

Third party names are the property of their owners.

Acknowledgements

• This course is based on a long series of tutorials presented at

Supercomputing conferences. The following people helped prepare

this content:

– J. Mark Bull (the University of Edinburgh)

– Rudi Eigenmann (Purdue University)

– Barbara Chapman (University of Houston)

– Larry Meadows, Sanjiv Shah, and Clay Breshears (Intel Corp).

• Some slides are based on a course I teach with Kurt Keutzer of UC

Berkeley. The course is called “CS194: Architecting parallel

applications with design patterns”. These slides are marked with the

UC Berkeley ParLab logo:

3

Introduction

• OpenMP is one of the most common parallel programming

models in use today.

• It is relatively easy to use which makes a great language to

start with when learning to write parallel software.

• Assumptions:

– We assume you know C. OpenMP supports Fortran and C++, but

we will restrict ourselves to C.

– We assume you are new to parallel programming.

– We assume you have access to a compiler that supports OpenMP

(more on that later).

4

5

Preliminaries:

• Our plan ... Active learning!
– We will mix short lectures with short exercises.

• Download exercises and reference materials.

• Please follow these simple rules
– Do the exercises we assign and then change things around and

experiment.
– Embrace active learning!

–Don’t cheat: Do Not look at the solutions before you complete an
exercise … even if you get really frustrated.

6

Agenda

• Getting started with OpenMP

• Working with threads

• Synchronization in OpenMP

• Loop and single worksharing constructs

• OpenMP Data Environment

• OpenMP tasks

• Closing Comments

7

OpenMP* Overview:

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP MASTER
C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

OpenMP: An API for Writing Multithreaded
Applications

A set of compiler directives and library routines
for parallel application programmers

Greatly simplifies writing multi-threaded (MT)
programs in Fortran, C and C++

Standardizes last 20 years of SMP practice

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

8

OpenMP Basic Defs: Solution Stack

OpenMP Runtime library

OS/system support for shared memory and threading

Directives,

Compiler
OpenMP library

Environment

variables

Application

End User

Shared Address Space

Proc3 Proc2 Proc1 ProcN

9

OpenMP core syntax

• Most of the constructs in OpenMP are compiler directives.
#pragma omp construct [clause [clause]…]

– Example

#pragma omp parallel num_threads(4)

• Function prototypes and types in the file:

#include <omp.h>

• Most OpenMP* constructs apply to a “structured block”.
– Structured block: a block of one or more statements with one point of

entry at the top and one point of exit at the bottom.

– It’s OK to have an exit() within the structured block.

10

Compiler notes: Intel on Windows

• Launch SW dev environment

• cd to the directory that holds
your source code

 Build software for program
foo.c

 icl /Qopenmp foo.c

 Set number of threads
environment variable

 set OMP_NUM_THREADS=4

 Run your program

 foo.exe

11

Compiler notes: Visual Studio

• Start “new project”

• Select win 32 console project

– Set name and path

– On the next panel, Click “next” instead of finish so you can select an

empty project on the following panel.

– Drag and drop your source file into the source folder on the visual

studio solution explorer

– Activate OpenMP

– Go to project properties/configuration properties/C.C++/language

… and activate OpenMP

• Set number of threads inside the program

• Build the project

• Run “without debug” from the debug menu.

12

Compiler notes: Other

• Linux and OS X with gcc:

> gcc -fopenmp foo.c

> export OMP_NUM_THREADS=4

> ./a.out

• Linux and OS X with PGI:

> pgcc -mp foo.c

> export OMP_NUM_THREADS=4

> ./a.out

for the Bash shell

Shared memory Computers

• Shared memory computer : any computer composed of

multiple processing elements that share an address space.

Two Classes:

– Symmetric multiprocessor (SMP): a shared address space with

“equal-time” access for each processor, and the OS treats every

processor the same way.

– Non Uniform address space multiprocessor (NUMA): different

memory regions have different access costs … think of memory

segmented into “Near” and “Far” memory.

Proc3 Proc2 Proc1 ProcN

Shared Address Space

Programming shared memory

computers

funcA() var1

 var2

main()

 funcA()

 funcB()

array1

array2

Stack

text

data

heap

Process

• An instance of a

program execution.

• The execution

context of a running

program … i.e. the

resources

associated with a

program’s

execution.

Process ID

User ID

Group ID

Files

Locks

Sockets

Stack Pointer

Program Counter

Registers

Programming shared memory

computers

funcA() var1

 var2

main()

 funcA()

 funcB()

array1

array2

Thread

0

Stack

text

data

heap

funcB() var1

 var2

 var3

Process ID

User ID

Group ID

Files

Locks

Sockets

Stack Pointer

Program Counter

Registers

Stack Pointer

Program Counter

Registers

Thread

1

Stack

Threads:

• Threads are "light

weight processes”

• Threads share

Process state

among multiple

threads … this

greatly reduces the

cost of switching

context.

A shared memory program

 An instance of a program:

 One process and lots of

threads.

 Threads interact through

reads/writes to a shared

address space.

 OS scheduler decides

when to run which

threads … interleaved

for fairness.

 Synchronization to

assure every legal order

results in correct results.

thread

Private

thread

Private

thread

Private

thread

Private

thread

Private

Shared

Address Space

17

OpenMP Overview:
How do threads interact?

• OpenMP is a multi-threading, shared address model.
– Threads communicate by sharing variables.

• Unintended sharing of data causes race conditions:
– race condition: when the program’s outcome changes as the threads are

scheduled differently.

• To control race conditions:
– Use synchronization to protect data conflicts.

• Synchronization is expensive so:
– Change how data is accessed to minimize the need for synchronization.

18

Exercise 1, Part A: Hello world
Verify that your environment works

• Write a program that prints “hello world”.

int main()

{

 int ID = 0;

 printf(“ hello(%d) ”, ID);

 printf(“ world(%d) \n”, ID);

}

int main()

{

 int ID = 0;

 printf(“ hello(%d) ”, ID);

 printf(“ world(%d) \n”, ID);

}

19

Exercise 1, Part B: Hello world
Verify that your OpenMP environment works

• Write a multithreaded program that prints “hello world”.

int main()

{

 int ID = 0;

 printf(“ hello(%d) ”, ID);

 printf(“ world(%d) \n”, ID);

}

int main()

{

 int ID = 0;

 printf(“ hello(%d) ”, ID);

 printf(“ world(%d) \n”, ID);

}

#pragma omp parallel

{

}

#include <omp.h>

Linux and OS X gcc -fopenmp

PGI Linux pgcc -mp

Intel windows icl /Qopenmp

Intel Linux and OS X icpc –openmp

20

Agenda

• Getting started with OpenMP

• Working with threads

• Synchronization in OpenMP

• Loop and single worksharing constructs

• OpenMP Data Environment

• OpenMP tasks

• Closing Comments

21

OpenMP Programming Model:

Fork-Join Parallelism:

Master thread spawns a team of threads as needed.

Parallelism added incrementally until performance goals
are met: i.e. the sequential program evolves into a
parallel program.

Parallel Regions
Master

Thread

in red

A Nested

Parallel

region

A Nested

Parallel

region

Sequential Parts

22

Thread Creation: Parallel Regions

• You create threads in OpenMP* with the parallel construct.

• For example, To create a 4 thread Parallel region:

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

 int ID = omp_get_thread_num();

 pooh(ID,A);

}

 Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread

executes a

copy of the

code within

the

structured

block

Each thread

executes a

copy of the

code within

the

structured

block

Runtime function to

request a certain

number of threads

Runtime function to

request a certain

number of threads

Runtime function

returning a thread ID

Runtime function

returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

23

Thread Creation: Parallel Regions

• You create threads in OpenMP* with the parallel construct.

• For example, To create a 4 thread Parallel region:

double A[1000];

#pragma omp parallel num_threads(4)

{

 int ID = omp_get_thread_num();

 pooh(ID,A);

}

 Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread

executes a

copy of the

code within

the

structured

block

Each thread

executes a

copy of the

code within

the

structured

block

clause to request a certain

number of threads

clause to request a certain

number of threads

Runtime function

returning a thread ID

Runtime function

returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

Thread Creation: Parallel Regions

• Each thread executes
the same code
redundantly.

 double A[1000];

#pragma omp parallel num_threads(4)

{

 int ID = omp_get_thread_num();

 pooh(ID, A);

}

 printf(“all done\n”);

omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single

copy of A is

shared

between all

threads.

A single

copy of A is

shared

between all

threads.

Threads wait here for all threads to finish

before proceeding (i.e. a barrier)

Threads wait here for all threads to finish

before proceeding (i.e. a barrier)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

OpenMP: what the compiler does

#pragma omp parallel num_threads(4)

{

 foobar ();

}

void thunk ()

{

 foobar ();

}

pthread_t tid[4];

for (int i = 1; i < 4; ++i)

 pthread_create (

 &tid[i],0,thunk, 0);

thunk();

for (int i = 1; i < 4; ++i)

 pthread_join (tid[i]);

 The OpenMP compiler generates code

logically analogous to that on the right

of this slide, given an OpenMP pragma

such as that on the top-left

 All known OpenMP implementations

use a thread pool so full cost of threads

creation and destruction is not incurred

for reach parallel region.

 Only three threads are created because

the last parallel section will be invoked

from the parent thread.

26

Exercises 2 to 4:
Numerical Integration


4.0

(1+x2)
dx = 

0

1

 F(xi)x  
i = 0

N

Mathematically, we know that:

We can approximate the

integral as a sum of

rectangles:

Where each rectangle has

width x and height F(xi) at

the middle of interval i.

4.0

2.0

1.0

X
0.0

27

Exercises 2 to 4: Serial PI Program

static long num_steps = 100000;

double step;

int main ()

{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i=0;i< num_steps; i++){

 x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 pi = step * sum;

}

28

Exercise 2

• Create a parallel version of the pi program using a

parallel construct (#pragma omp parallel).

• Pay close attention to shared versus private

variables.

• In addition to a parallel construct, you will need the

runtime library routines

–int omp_get_num_threads();

–int omp_get_thread_num();

–double omp_get_wtime();

Time in Seconds since a fixed

point in the past

Thread ID or rank

Number of threads in the

team

29

Serial PI Program

static long num_steps = 100000;

double step;

int main ()

{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i=0;i< num_steps; i++){

 x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 pi = step * sum;

}

30

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int i, nthreads; double pi, sum[NUM_THREADS];

 step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);

 #pragma omp parallel

 {

 int i, id,nthrds;

 double x;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 if (id == 0) nthreads = nthrds;

 for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {

 x = (i+0.5)*step;

 sum[id] += 4.0/(1.0+x*x);

 }

 }

 for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i] * step;

}

Example: A simple Parallel pi program
Promote scalar to an

array dimensioned by

number of threads to

avoid race condition.

Promote scalar to an

array dimensioned by

number of threads to

avoid race condition.

This is a common

trick in SPMD

programs to create

a cyclic distribution

of loop iterations

This is a common

trick in SPMD

programs to create

a cyclic distribution

of loop iterations

Only one thread should copy

the number of threads to the

global value to make sure

multiple threads writing to the

same address don’t conflict.

Only one thread should copy

the number of threads to the

global value to make sure

multiple threads writing to the

same address don’t conflict.

31

Algorithm strategy:
The SPMD (Single Program Multiple Data) design pattern

• Run the same program on P processing elements where P

can be arbitrarily large.

• Use the rank … an ID ranging from 0 to (P-1) … to select

between a set of tasks and to manage any shared data

structures.

This pattern is very general and has been used to support

most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern … it is

probably the most commonly used pattern in the history of

parallel programming.

This pattern is very general and has been used to support

most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern … it is

probably the most commonly used pattern in the history of

parallel programming.

Results*

32

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW

thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

threads 1st

SPMD

1 1.86

2 1.03

3 1.08

4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

33

Why such poor scaling? False sharing
• If independent data elements happen to sit on the same cache line, each

update will cause the cache lines to “slosh back and forth” between threads

… This is called “false sharing”.

• If you promote scalars to an array to support creation of an SPMD program,

the array elements are contiguous in memory and hence share cache lines

… Results in poor scalability.

• Solution: Pad arrays so elements you use are on distinct cache lines.

Sum[0] Sum[1] Sum[2] Sum[3] Sum[0] Sum[1] Sum[2] Sum[3]
Core 0 Core 1

L1 $ lines L1 $ lines

HW thrd. 0 HW thrd. 1 HW thrd. 2 HW thrd. 3

Shared last level cache and connection to I/O and DRAM

34

#include <omp.h>

static long num_steps = 100000; double step;

#define PAD 8 // assume 64 byte L1 cache line size

#define NUM_THREADS 2

void main ()

{ int i, nthreads; double pi, sum[NUM_THREADS][PAD];

 step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);

 #pragma omp parallel

 { int i, id,nthrds;

 double x;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 if (id == 0) nthreads = nthrds;

 for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {

 x = (i+0.5)*step;

 sum[id][0] += 4.0/(1.0+x*x);

 }

 }

 for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i][0] * step;

}

Example: eliminate False sharing by padding the sum array

Pad the array

so each sum

value is in a

different

cache line

Pad the array

so each sum

value is in a

different

cache line

Results*: pi program padded accumulator

35

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW

thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st

SPMD

1st

SPMD

padded

1 1.86 1.86

2 1.03 1.01

3 1.08 0.69

4 0.97 0.53

Do we really need to pad our arrays?

• Padding arrays requires deep knowledge of the cache

architecture. Move to a machine with different sized

cache lines and your software performance falls apart.

• There has got to be a better way to deal with false sharing.

36

37

Agenda

• Getting started with OpenMP

• Working with threads

• Synchronization in OpenMP

• Loop and single worksharing constructs

• OpenMP Data Environment

• OpenMP tasks

• Closing Comments

38

OpenMP Overview:
How do threads interact?

• OpenMP is a multi-threading, shared address model.

–Threads communicate by sharing variables.

• Unintended sharing of data causes race conditions:

–race condition: when the program’s outcome

changes as the threads are scheduled differently.

• To control race conditions:

–Use synchronization to protect data conflicts.

• Synchronization is expensive so:

–Change how data is accessed to minimize the

need for synchronization.

Recall our high level

overview of OpenMP?

Synchronization:

• Synchronization: bringing one or more threads to a well

defined and known point in their execution.

• The two most common forms of synchronization are:

Mutual exclusion: Define a block of code that only

one thread at a time can execute.

Barrier: each thread wait at the barrier until all

threads arrive.

40

Synchronization

• High level synchronization:

–critical

–atomic

–barrier

–ordered

• Low level synchronization

–flush

–locks (both simple and nested)

Synchronization is used

to impose order

constraints and to

protect access to shared

data

41

Synchronization: Barrier

• Barrier: Each thread waits until all threads arrive.

#pragma omp parallel

{

 int id=omp_get_thread_num();

 A[id] = big_calc1(id);

#pragma omp barrier

 B[id] = big_calc2(id, A);

}

42

Synchronization: critical

• Mutual exclusion: Only one thread at a time can enter a
critical region.

float res;

#pragma omp parallel

{ float B; int i, id, nthrds;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 for(i=id;i<niters;i+=nthrds){

 B = big_job(i);

#pragma omp critical

 res += consume (B);

 }

}

Threads wait

their turn – only

one at a time

calls consume()

Threads wait

their turn – only

one at a time

calls consume()

43

Synchronization: Atomic (basic form)

• Atomic provides mutual exclusion but only applies to the
update of a memory location (the update of X in the following
example)

#pragma omp parallel

{

 double tmp, B;

 B = DOIT();

 tmp = big_ugly(B);

 #pragma omp atomic

 X += tmp;

}

Additional forms of atomic were added in OpenMP 3.1.

We will discuss these later.

The statement inside the

atomic must be one of the

following forms:

• x binop= expr

• x++

• ++x

• x—

• --x

X is an lvalue of scalar type

and binop is a non-overloaded

built in operator.

44

Exercise 3

• In exercise 2, you probably used an array to create space

for each thread to store its partial sum.

• If array elements happen to share a cache line, this leads

to false sharing.
– Non-shared data in the same cache line so each update invalidates the

cache line … in essence “sloshing independent data” back and forth

between threads.

• Modify your “pi program” from exercise 2 to avoid false

sharing due to the sum array.

#pragma omp parallel

#pragma omp critical

int omp_get_num_threads();

int omp_get_thread_num();

double omp_get_wtime();

Pi program with false sharing*

45

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW

thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

threads 1st

SPMD

1 1.86

2 1.03

3 1.08

4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

Recall that promoting sum

to an array made the

coding easy, but led to

false sharing and poor

performance.

46

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ double pi; step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{

 int i, id,nthrds; double x, sum;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 if (id == 0) nthreads = nthrds;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 for (i=id, sum=0.0;i< num_steps; i=i+nthreads){

 x = (i+0.5)*step;

 sum += 4.0/(1.0+x*x);

 }

 #pragma omp critical

 pi += sum * step;

}

}

Example: Using a critical section to remove impact of false sharing

Sum goes “out of scope” beyond the parallel

region … so you must sum it in here. Must

protect summation into pi in a critical region

so updates don’t conflict

Sum goes “out of scope” beyond the parallel

region … so you must sum it in here. Must

protect summation into pi in a critical region

so updates don’t conflict

No array, so

no false

sharing.

No array, so

no false

sharing.

No array, so

no false

sharing.

Create a scalar local to

each thread to

accumulate partial

sums.

Create a scalar local to

each thread to

accumulate partial

sums.

Results*: pi program critical section

47

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW

thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st

SPMD

1st

SPMD

padded

SPMD

critical

1 1.86 1.86 1.87

2 1.03 1.01 1.00

3 1.08 0.69 0.68

4 0.97 0.53 0.53

48

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ double pi; step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{

 int i, id,nthrds; double x;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 if (id == 0) nthreads = nthrds;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 for (i=id, sum=0.0;i< num_steps; i=i+nthreads){

 x = (i+0.5)*step;

 #pragma omp critical

 pi += 4.0/(1.0+x*x);

 }

}

pi *= step;

}

Example: Using a critical section to remove impact of false sharing

What would happen if

you put the critical

section inside the loop?

What would happen if

you put the critical

section inside the loop?

What would happen if

you put the critical

section inside the loop?

Be careful

where you put

a critical

section

49

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ double pi; step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{

 int i, id,nthrds; double x, sum;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 if (id == 0) nthreads = nthrds;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 for (i=id, sum=0.0;i< num_steps; i=i+nthreads){

 x = (i+0.5)*step;

 sum += 4.0/(1.0+x*x);

 }

 sum = sum*step;

 #pragma atomic

 pi += sum ;

}

}

Example: Using an atomic to remove impact of false sharing

Sum goes “out of scope” beyond the parallel

region … so you must sum it in here. Must

protect summation into pi so updates don’t

conflict

Sum goes “out of scope” beyond the parallel

region … so you must sum it in here. Must

protect summation into pi so updates don’t

conflict

No array, so

no false

sharing.

No array, so

no false

sharing.

No array, so

no false

sharing.

Create a scalar local to

each thread to

accumulate partial

sums.

Create a scalar local to

each thread to

accumulate partial

sums.

50

Agenda

• Getting started with OpenMP

• Working with threads

• Synchronization in OpenMP

• Loop and single worksharing constructs

• OpenMP Data Environment

• OpenMP tasks

• Closing Comments

51

SPMD vs. worksharing

• A parallel construct by itself creates an SPMD or
“Single Program Multiple Data” program … i.e.,
each thread redundantly executes the same code.

• How do you split up pathways through the code
between threads within a team?

–This is called worksharing
–Loop construct

–Sections/section constructs

–Single construct

–Task construct

52

The loop worksharing Constructs

• The loop worksharing construct splits up loop iterations
among the threads in a team

#pragma omp parallel

{

#pragma omp for

 for (I=0;I<N;I++){

 NEAT_STUFF(I);

 }

}

Loop construct

name:

•C/C++: for

•Fortran: do

The variable I is made “private” to each

thread by default. You could do this

explicitly with a “private(I)” clause

53

Loop worksharing Constructs
A motivating example

for(i=0;i<N;i++) { a[i] = a[i] + b[i];} for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel

{

 int id, i, Nthrds, istart, iend;

 id = omp_get_thread_num();

 Nthrds = omp_get_num_threads();

 istart = id * N / Nthrds;

 iend = (id+1) * N / Nthrds;

 if (id == Nthrds-1)iend = N;

 for(i=istart;i<iend;i++) { a[i] = a[i] + b[i];}

}

#pragma omp parallel

{

 int id, i, Nthrds, istart, iend;

 id = omp_get_thread_num();

 Nthrds = omp_get_num_threads();

 istart = id * N / Nthrds;

 iend = (id+1) * N / Nthrds;

 if (id == Nthrds-1)iend = N;

 for(i=istart;i<iend;i++) { a[i] = a[i] + b[i];}

}

#pragma omp parallel

#pragma omp for

 for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel

#pragma omp for

 for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel

region

OpenMP parallel

region and a

worksharing for

construct

54

loop worksharing constructs:
The schedule clause

• The schedule clause affects how loop iterations are mapped
onto threads

–schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.

–schedule(dynamic[,chunk])

– Each thread grabs “chunk” iterations off a queue until all iterations
have been handled.

– schedule(guided[,chunk])

– Threads dynamically grab blocks of iterations. The size of the block
starts large and shrinks down to size “chunk” as the calculation

proceeds.

–schedule(runtime)

– Schedule and chunk size taken from the OMP_SCHEDULE
environment variable (or the runtime library).

–schedule(auto)

– Schedule is left up to the runtime to choose (does not have to be
any of the above).

55

Schedule Clause When To Use

STATIC Pre-determined and
predictable by the
programmer

DYNAMIC Unpredictable, highly
variable work per
iteration

GUIDED

Special case of dynamic
to reduce scheduling
overhead

AUTO When the runtime can
“learn” from previous
executions of the same
loop

loop work-sharing constructs:
The schedule clause

Least work at

runtime :

scheduling done

at compile-time

Least work at

runtime :

scheduling done

at compile-time

Most work at

runtime :

complex

scheduling logic

used at run-time

Most work at

runtime :

complex

scheduling logic

used at run-time

Combined parallel/worksharing construct

• OpenMP shortcut: Put the “parallel” and the
worksharing directive on the same line

 double res[MAX]; int i;

#pragma omp parallel

{

 #pragma omp for

 for (i=0;i< MAX; i++) {

 res[i] = huge();

 }

}

These are equivalent These are equivalent

 double res[MAX]; int i;

#pragma omp parallel for

 for (i=0;i< MAX; i++) {

 res[i] = huge();

 }

57

Reduction

• We are combining values into a single accumulation variable
(ave) … there is a true dependence between loop iterations
that can’t be trivially removed

• This is a very common situation … it is called a “reduction”.

• Support for reduction operations is included in most parallel
programming environments.

 double ave=0.0, A[MAX]; int i;

 for (i=0;i< MAX; i++) {

 ave + = A[i];

 }

 ave = ave/MAX;

 How do we handle this case?

58

Reduction
• OpenMP reduction clause:

reduction (op : list)

• Inside a parallel or a work-sharing construct:

– A local copy of each list variable is made and initialized depending

on the “op” (e.g. 0 for “+”).

– Updates occur on the local copy.

– Local copies are reduced into a single value and combined with

the original global value.

• The variables in “list” must be shared in the enclosing

parallel region.

 double ave=0.0, A[MAX]; int i;

#pragma omp parallel for reduction (+:ave)

 for (i=0;i< MAX; i++) {

 ave + = A[i];

 }

 ave = ave/MAX;

59

OpenMP: Reduction operands/initial-values

• Many different associative operands can be used with reduction:

• Initial values are the ones that make sense mathematically.

Operator Initial value

+ 0

* 1

- 0

min Largest pos. number

max Most neg. number

C/C++ only

Operator Initial value

& ~0

| 0

^ 0

&& 1

|| 0

Fortran Only

Operator Initial value

.AND. .true.

.OR. .false.

.NEQV. .false.

.IEOR. 0

.IOR. 0

.IAND. All bits on

.EQV. .true.

60

Single worksharing Construct

• The single construct denotes a block of code that is
executed by only one thread (not necessarily the master
thread).

• A barrier is implied at the end of the single block (can
remove the barrier with a nowait clause).

#pragma omp parallel

{

 do_many_things();

#pragma omp single

 { exchange_boundaries(); }

 do_many_other_things();

}

61

Exercise 4: Pi with loops

• Go back to the serial pi program and parallelize it with a

loop construct

• Your goal is to minimize the number of changes made to

the serial program.

#pragma omp parallel

#pragma omp for reduction(+:var)

#pragma omp critical

int omp_get_num_threads();

int omp_get_thread_num();

double omp_get_wtime();

62

Serial PI Program

static long num_steps = 100000;

double step;

int main ()

{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i=0;i< num_steps; i++){

 x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 pi = step * sum;

}

63

Example: Pi with a loop and a reduction

#include <omp.h>

static long num_steps = 100000; double step;

void main ()

{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 #pragma omp parallel

 {

 double x;

 #pragma omp for reduction(+:sum)

 for (i=0;i< num_steps; i++){

 x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 }

 pi = step * sum;

}

Create a scalar local to each thread to hold

value of x at the center of each interval

Create a scalar local to each thread to hold

value of x at the center of each interval

Create a team of threads …

without a parallel construct, you’ll

never have more than one thread

Create a team of threads …

without a parallel construct, you’ll

never have more than one thread

Break up loop iterations

and assign them to

threads … setting up a

reduction into sum.

Note … the loop indix is

local to a thread by default.

Break up loop iterations

and assign them to

threads … setting up a

reduction into sum.

Note … the loop indix is

local to a thread by default.

Results*: pi with a loop and a reduction

64

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW

thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st

SPMD

1st

SPMD

padded

SPMD

critical

PI Loop

1 1.86 1.86 1.87 1.91

2 1.03 1.01 1.00 1.02

3 1.08 0.69 0.68 0.80

4 0.97 0.53 0.53 0.68

65

Agenda

• Getting started with OpenMP

• Working with threads

• Synchronization in OpenMP

• Loop and single worksharing constructs

• OpenMP Data Environment

• OpenMP tasks

• Closing Comments

66

Data environment:
Default storage attributes

• Shared Memory programming model:
– Most variables are shared by default

• Global variables are SHARED among threads
– Fortran: COMMON blocks, SAVE variables, MODULE variables

– C: File scope variables, static

– Both: dynamically allocated memory (ALLOCATE, malloc, new)

• But not everything is shared...
– Stack variables in subprograms(Fortran) or functions(C) called

from parallel regions are PRIVATE

– Automatic variables within a statement block are PRIVATE.

67

 double A[10];

 int main() {

 int index[10];

 #pragma omp parallel

 work(index);

 printf(“%d\n”, index[0]);

 }

extern double A[10];

void work(int *index) {

 double temp[10];

 static int count;

 ...

}

Data sharing: Examples

temp

A, index, count

temp temp

A, index, count

A, index and count are

shared by all threads.

temp is local to each

thread

A, index and count are

shared by all threads.

temp is local to each

thread

68

Data sharing:
Changing storage attributes

• One can selectively change storage attributes for constructs
using the following clauses*

– SHARED

– PRIVATE

– FIRSTPRIVATE

• The final value of a private inside a parallel loop can be

transmitted to the shared variable outside the loop with:

– LASTPRIVATE

• The default attributes can be overridden with:

– DEFAULT (PRIVATE | SHARED | NONE)

*All data clauses apply to parallel constructs and worksharing constructs except

“shared” which only applies to parallel constructs.

DEFAULT(PRIVATE) is Fortran only

69

Data Sharing: Private Clause

void wrong() {

 int tmp = 0;

#pragma omp parallel for private(tmp)

 for (int j = 0; j < 1000; ++j)

 tmp += j;

 printf(“%d\n”, tmp);

}

• private(var) creates a new local copy of var for each thread.

– The value of the private copies is uninitialized

– The value of the original variable is unchanged after the region

tmp was not

initialized

tmp was not

initialized

tmp is 0 here tmp is 0 here

Firstprivate Clause

• Variables initialized from shared variable

• C++ objects are copy-constructed

70

incr = 0;

#pragma omp parallel for firstprivate(incr)

for (i = 0; i <= MAX; i++) {

 if ((i%2)==0) incr++;

 A[i] = incr;

}

incr = 0;

#pragma omp parallel for firstprivate(incr)

for (i = 0; i <= MAX; i++) {

 if ((i%2)==0) incr++;

 A[i] = incr;

}
Each thread gets its own copy

of incr with an initial value of 0

Each thread gets its own copy

of incr with an initial value of 0

71

Example: Pi program … minimal changes

#include <omp.h>

static long num_steps = 100000; double step;

void main ()

{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

#pragma omp parallel for private(x) reduction(+:sum)

 for (i=0;i< num_steps; i++){

 x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 pi = step * sum;

}

Note: we created a

parallel program without

changing any executable

code and by adding 2

simple lines of text!

Note: we created a

parallel program without

changing any executable

code and by adding 2

simple lines of text!

i private by

default

i private by

default

i private by

default

For good OpenMP

implementations,

reduction is more

scalable than critical.

For good OpenMP

implementations,

reduction is more

scalable than critical.

For good OpenMP

implementations,

reduction is more

scalable than critical.

72

Exercise 5: Mandelbrot set area

• The supplied program (mandel.c) computes the area of a

Mandelbrot set.

• The program has been parallelized with OpenMP, but we

were lazy and didn’t do it right.

• Find and fix the errors (hint … the problem is with the data
environment).

• Once you have a working version, try to optimize the
program.
– Try different schedules on the parallel loop.

– Try different mechanisms to support mutual exclusion … do the
efficiencies change?

Exercise 5: The Mandelbrot Area program
#include <omp.h>

define NPOINTS 1000

define MXITR 1000

void testpoint(void);

struct d_complex{

 double r; double i;

};

struct d_complex c;

int numoutside = 0;

int main(){

 int i, j;

 double area, error, eps = 1.0e-5;

#pragma omp parallel for default(shared) \

 private(c,eps)

 for (i=0; i<NPOINTS; i++) {

 for (j=0; j<NPOINTS; j++) {

 c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;

 c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;

 testpoint();

 }

 }

area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-

numoutside)/(double)(NPOINTS*NPOINTS);

 error=area/(double)NPOINTS;

} 73

void testpoint(void){

struct d_complex z;

 int iter;

 double temp;

 z=c;

 for (iter=0; iter<MXITR; iter++){

 temp = (z.r*z.r)-(z.i*z.i)+c.r;

 z.i = z.r*z.i*2+c.i;

 z.r = temp;

 if ((z.r*z.r+z.i*z.i)>4.0) {

 numoutside++;

 break;

 }

 }

}

When I run this program, I get a

different incorrect answer each

time I run it … there is a race

condition!!!!

Exercise 5: Area of a Mandelbrot set

• Solution is in the file mandel_par.c

• Errors:

– Eps is private but uninitialized. Two solutions

– It’s read-only so you can make it shared.

– Make it firstprivate

– The loop index variable j is shared by default. Make it private.

– The variable c has global scope so “testpoint” may pick up the global

value rather than the private value in the loop. Solution … pass C as

an arg to testpoint

– Updates to “numoutside” are a race. Protect with an atomic.

74

Debugging parallel programs

• Find tools that work with your environment and learn to use

them. A good parallel debugger can make a huge

difference.

• But parallel debuggers are not portable and you will

assuredly need to debug “by hand” at some point.

• There are tricks to help you. The most important is to use

the default(none) pragma

75

#pragma omp parallel for default(none) private(c, eps)

 for (i=0; i<NPOINTS; i++) {

 for (j=0; j<NPOINTS; j++) {

 c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;

 c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;

 testpoint();

 }

 }

}

Using

default(none)

generates a

compiler

error that j is

unspecified.

Exercise 5 solution: The Mandelbrot Area program

#include <omp.h>

define NPOINTS 1000

define MXITR 1000

struct d_complex{

 double r; double i;

};

void testpoint(struct d_complex);

struct d_complex c;

int numoutside = 0;

int main(){

 int i, j;

 double area, error, eps = 1.0e-5;

#pragma omp parallel for default(shared) private(c, j) \

 firstpriivate(eps)

 for (i=0; i<NPOINTS; i++) {

 for (j=0; j<NPOINTS; j++) {

 c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;

 c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;

 testpoint(c);

 }

 }

area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-

numoutside)/(double)(NPOINTS*NPOINTS);

 error=area/(double)NPOINTS;

} 76

void testpoint(struct d_complex c){

struct d_complex z;

 int iter;

 double temp;

 z=c;

 for (iter=0; iter<MXITR; iter++){

 temp = (z.r*z.r)-(z.i*z.i)+c.r;

 z.i = z.r*z.i*2+c.i;

 z.r = temp;

 if ((z.r*z.r+z.i*z.i)>4.0) {

 #pragma omp atomic

 numoutside++;

 break;

 }

 }

}

Other errors found using a

debugger or by inspection:

• eps was not initialized

• Protect updates of numoutside

• Which value of c die testpoint()

see? Global or private?

77

Agenda

• Getting started with OpenMP

• Working with threads

• Synchronization in OpenMP

• Loop and single worksharing constructs

• OpenMP Data Environment

• OpenMP tasks

• Closing Comments

78

Consider simple list traversal

 p=head;

 while (p) {

 process(p);

 p = p->next;

 }

• Given what we’ve covered about OpenMP, how would you
process this loop in Parallel?

• Remember, the loop worksharing construct only works with
loops for which the number of loop iterations can be
represented by a closed-form expression at compiler time.
While loops are not covered.

OpenMP Tasks

• Tasks are independent units of work.

• Tasks are composed of:

– code to execute

– data environment

– internal control variables (ICV)

• Threads perform the work of each task.

• The runtime system decides when tasks

are executed

– Tasks may be deferred

– Tasks may be executed immediately

Serial Parallel

Task Construct – Explicit Tasks

#pragma omp parallel

{

 #pragma omp single

 {

 node * p = head;

 while (p) {

 #pragma omp task firstprivate(p)

 process(p);

 p = p->next;

 }

 }

}

#pragma omp parallel

{

 #pragma omp single

 {

 node * p = head;

 while (p) {

 #pragma omp task firstprivate(p)

 process(p);

 p = p->next;

 }

 }

}

1. Create

a team of

threads.

2. One thread

executes the single

construct

… other threads

wait at the implied

barrier at the end of

the single construct

3. The “single” thread

creates a task with its own

value for the pointer p

4. Threads waiting at the barrier execute

tasks.

Execution moves beyond the barrier once

all the tasks are complete

#pragma omp parallel

{

 #pragma omp single

 { //block 1

 node * p = head;

 while (p) { // block 2

 #pragma omp task

 process(p);

 p = p->next; //block 3

 }

 }

}

Execution of tasks

Have potential to parallelize irregular patterns and recursive function calls

Block 1

Block 2

Task 1

Block 2

Task 2

Block 2

Task 3

Block 3

Block 3

T
im

e

Single

Threaded

Block 1

Thr1 Thr2 Thr3 Thr4

Block 2

Task 2

Block 2

Task 1

Block 2

Task 3

Time

Saved

Id
le

Id
le

When are tasks guaranteed to complete
• Tasks are guaranteed to be complete at thread barriers:

#pragma omp barrier

• or task barriers
#pragma omp taskwait

82

#pragma omp parallel

{

#pragma omp task

foo();

#pragma omp barrier

#pragma omp single

{

#pragma omp task

bar();

}

}

#pragma omp parallel

{

#pragma omp task

foo();

#pragma omp barrier

#pragma omp single

{

#pragma omp task

bar();

}

}

Multiple foo tasks created

here – one for each thread

All foo tasks guaranteed to

be completed here

One bar task created here

bar task guaranteed to be

completed here

int fib (int n)

{

int x,y;

 if (n < 2) return n;

#pragma omp task

 x = fib(n-1);

#pragma omp task

 y = fib(n-2);

#pragma omp taskwait

 return x+y

}

int fib (int n)

{

int x,y;

 if (n < 2) return n;

#pragma omp task

 x = fib(n-1);

#pragma omp task

 y = fib(n-2);

#pragma omp taskwait

 return x+y

}

Data Scoping with tasks: Fibonacci example.

n is private in both tasks

What’s wrong here?

 A task’s private variables are

undefined outside the task

x is a private variable

y is a private variable

This is an instance of the

divide and conquer design

pattern

int fib (int n)

{

int x,y;

 if (n < 2) return n;

#pragma omp task shared (x)

 x = fib(n-1);

#pragma omp task shared(y)

 y = fib(n-2);

#pragma omp taskwait

 return x+y;

}

int fib (int n)

{

int x,y;

 if (n < 2) return n;

#pragma omp task shared (x)

 x = fib(n-1);

#pragma omp task shared(y)

 y = fib(n-2);

#pragma omp taskwait

 return x+y;

}

Data Scoping with tasks: Fibonacci example.

n is private in both tasks

x & y are shared

Good solution

we need both values to

compute the sum

List ml; //my_list

Element *e;

#pragma omp parallel

#pragma omp single

{

 for(e=ml->first;e;e=e->next)

#pragma omp task

 process(e);

}

List ml; //my_list

Element *e;

#pragma omp parallel

#pragma omp single

{

 for(e=ml->first;e;e=e->next)

#pragma omp task

 process(e);

}

Data Scoping with tasks: List Traversal example

What’s wrong here?

Possible data race !

Shared variable e

updated by multiple tasks

List ml; //my_list

Element *e;

#pragma omp parallel

#pragma omp single

{

 for(e=ml->first;e;e=e->next)

#pragma omp task firstprivate(e)

 process(e);

}

List ml; //my_list

Element *e;

#pragma omp parallel

#pragma omp single

{

 for(e=ml->first;e;e=e->next)

#pragma omp task firstprivate(e)

 process(e);

}

Data Scoping with tasks: List Traversal example

Good solution – e is

firstprivate

87

Exercise 5: tasks in OpenMP

• Start with your pi program.

• Parallelize this program using tasks.

88

OpenMP PI Program:
Loop level parallelism pattern

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int i; double x, pi, sum =0.0;

 step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);

#pragma omp parallel for private(x) reduction (+:sum)

 for (i=0;i< num_steps; i++){

 x = (i+0.5)*step;

 sum += 4.0/(1.0+x*x);

 }

 pi = sum * step;

}

Results*: pi with tasks

89

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW

thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st

SPMD

SPMD

critical

PI Loop Pi tasks

1 1.86 1.87 1.91 1.87

2 1.03 1.00 1.02 1.00

3 1.08 0.68 0.80 0.76

4 0.97 0.53 0.68 0.52

90

Agenda

• Getting started with OpenMP

• Working with threads

• Synchronization in OpenMP

• Loop and single worksharing constructs

• OpenMP Data Environment

• OpenMP tasks

• Closing Comments

91

Summary

• We have now covered the most commonly used features of

OpenMP.

• To close, let’s consider some of the key parallel design

patterns we’ve discussed..

92

SPMD: Single Program Mulitple Data

• Run the same program on P processing elements where P

can be arbitrarily large.

• Use the rank … an ID ranging from 0 to (P-1) … to select

between a set of tasks and to manage any shared data

structures.

This pattern is very general and has been used to support

most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern … it is

probably the most commonly used pattern in the history of

parallel programming.

This pattern is very general and has been used to support

most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern … it is

probably the most commonly used pattern in the history of

parallel programming.

93

OpenMP Pi program: SPMD pattern

#include <omp.h>
void main (int argc, char *argv[])
{
 int i, pi=0.0, step, sum = 0.0;
 step = 1.0/(double) num_steps ;
#pragma omp parallel firstprivate(sum) private(x, i)
{ int id = omp_get_thread_num();
 int numprocs = omp_get_num_threads();
 int step1 = id *num_steps/numprocs ;
 int stepN = (id+1)*num_steps/numprocs;
 if (stepN != num_steps) stepN = num_steps;
 for (i=step1; i<stepN; i++)
 { x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }
 #pragma omp critical
 pi += sum *step ;
 }
}

94

Loop parallelism

• Collections of tasks are defined as iterations of one or more

loops.

• Loop iterations are divided between a collection of

processing elements to compute tasks in parallel.

This design pattern is heavily used with data parallel design

patterns.

OpenMP programmers commonly use this pattern.

#pragma omp parallel for shared(Results) schedule(dynamic)

for(i=0;i<N;i++){

 Do_work(i, Results);

}

Divide and Conquer Pattern

• Use when:

–A problem includes a method to divide into subproblems
and a way to recombine solutions of subproblems into a
global solution.

• Solution

–Define a split operation

–Continue to split the problem until subproblems are
small enough to solve directly.

–Recombine solutions to subproblems to solve original
global problem.

• Note:

–Computing may occur at each phase (split, leaves,
recombine).

Divide and conquer

• Split the problem into smaller sub-problems. Continue until
the sub-problems can be solve directly.

 3 Options:

 Do work as you split

into sub-problems.

 Do work only at the

leaves.

 Do work as you

recombine.

Program: OpenMP tasks (divide and conquer pattern)
#include <omp.h>

static long num_steps = 100000000;

#define MIN_BLK 10000000

double pi_comp(int Nstart,int Nfinish,double step)

{ int i,iblk;

 double x, sum = 0.0,sum1, sum2;

 if (Nfinish-Nstart < MIN_BLK){

 for (i=Nstart;i< Nfinish; i++){

 x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);
 }

 }

 else{

 iblk = Nfinish-Nstart;

 #pragma omp task shared(sum1)

 sum1 = pi_comp(Nstart, Nfinish-iblk/2,step);

 #pragma omp task shared(sum2)

 sum2 = pi_comp(Nfinish-iblk/2, Nfinish, step);

 #pragma omp taskwait

 sum = sum1 + sum2;

 }return sum;

}
97

 int main ()

 {

 int i;

 double step, pi, sum;

 step = 1.0/(double) num_steps;

 #pragma omp parallel

 {

 #pragma omp single

 sum = pi_comp(0,num_steps,step);

 }

 pi = step * sum;

 }

98

Learning more about OpenMP:
OpenMP Organizations

• Online video course
– http://www.intel.com/content/www/us/en/education/university/parallel-programming-

initiative/openmp-videos.html

• OpenMP architecture review board URL, the

“owner” of the OpenMP specification:

www.openmp.org

• OpenMP User’s Group (cOMPunity) URL:

www.compunity.org

Get involved, join compunity and help

define the future of OpenMP

Get involved, join compunity and help

define the future of OpenMP

99

Books about OpenMP

An excellent book about using

OpenMP … though out of date

(OpenMP 2.5)

A book about how to “think

parallel” with examples in

OpenMP, MPI and Java

Background references

100

A general reference that puts

languages such as OpenMP

in perspective (by Sottile,

Mattson, and Rasmussen)

An excellent introduction and

overview of multithreaded

programming (by Clay Breshears)

The OpenMP reference card

http://openmp.org/mp-documents/OpenMP3.1-CCard.pdf

A two page summary of all the OpenMP constructs … don’t write OpenMP code without it.

