Detection of Cosmic Rays in Space (...and not only in Space...)

M. Ricci INFN Laboratori Nazionali Frascati

NF mini-workshop series

1st Synergy LNF-OAR Workshop

April 16th-17th 2014 Auditorium Bruno Touschek, Laboratori Nazionali di Frascati -INFN

A Century of Cosmic Rays

• Victor Hess ascended to 5000 m in a balloon in 1912

• ... and noticed that his electroscope discharged more rapidly as altitude increased

• Not expected, as background radiation was thought to be terrestrial. Extraterrestrial origin, confirming previous hints by Theodore Wulf and Domenico Pacini

•1934: CR association to SNe proposed on energetic grounds (Baade and Zwicky)

•Almost 80 years later evidence is still circumstantial

•Late 70's: Diffusive shock accelerations is proposed (Krymskii 77, Bell 78)

Height above sea level (km)

Cosmic Rays main questions

- Where do they come from? \rightarrow **SOURCES**
- How and where they are getting accelerated? → ACCELERATION
- How do they propagate through the interstellar medium? \rightarrow **PROPAGATION**
- Are they galactic or also extragalactic? \rightarrow **TRANSITION**
- What kind of interaction do they undergo? → **INTERACTIONS**
- What role do they play in the energy budget of the interstellar medium?
- Do we find hints of the on exotic particles as relic from the early Universe, as antimatter and dark matter?

Space Missions and LDBF

Cosmic Ray Protons and Helium

FOR PROTONS: $\gamma_{80-232GV} = 2.85 \pm 0.015(stat) \pm 0.004(syst)$ $\gamma_{>232GV} = 2.67 \pm 0.03(stat) \pm 0.05(syst)$

FOR HELIUM: $\gamma_{80-240GV} = 2.766 \pm 0.01(stat) \pm 0.027(syst)$ $\gamma_{>240GV} = 2.477 \pm 0.06(stat) \pm 0.03(syst)$

Excellent overlap with previous experiments

BESS (ICRC974)

Bridge with ATIC & CREAM toward high energy

γ_{30-1000GeV, p} = 2.782 +- 0.003 (stat) +- 0.004 (syst)

$$\gamma_{15-6\ 00 \text{GeV/n, he}} = 2.71 + 0.01 \text{ (stat)} + 0.007 \text{ (syst)}$$

$$\gamma_T = \frac{dlog(\phi_T)}{logT} = (\gamma_R - 1)\frac{T^2 + Tmc^2}{T^2 + 2Tmc^2} + \frac{T}{T + mc^2}$$

SPECTRAL ANOMALIES IN GALACTIC COSMIC RAYS

THE HARDENING IN THE SPECTRUM OF PROTONS AND HELIUM NUCLEI AT ~200 GV (AND POSSIBLY OTHER NUCLEI AS WELL) IS PUZZLING AND MAY BE SUGGESTIVE OF SOME INTERESTING PHYSICS:

+ LOCAL ENVIRONMENT

+ ACCELERATION PHYSICS

+ ANOMALIES IN THE DIFFUSIVE TRANSPORT

P. Blasi – ICRC 2013

BUT... AMS-02 RAISES A PROBLEM IN THIS SECTOR

Proton and Helium Nuclei Spectra

The break of the CR spectrum of p and He

What's happening? Systematics? Statistics? How to solve this "tension" ? Not only AMS vs. PAMELA but also vs. other experiments (BESS, CREAM, ATIC etc.)

The game is in progress – Careful review of data

Stay tuned!

Cosmic Ray Electrons

Electrons can tell us about local GCR sources

- High energy electrons have a high energy loss rate $\propto E^2$
 - Lifetime of ~ 10^5 years for >1 TeV electrons
- Transport of GCR through interstellar space is a diffusive process
 - Implies that source of high energy electrons are < 1 kpc away

Only a handful of SNR meet the lifetime & distance criteria Kobayashi et al., ApJ 601 (2004) 340 calculations show structure in electron spectrum at high energy

Electron Spectrum

diffusive models

New results from AMS 4) Electron Spectrum

(Electron plus Positron) Spectrum comparison with recent measurements

Astrophysical Explanation: Pulsars

- Mechanism: the spinning B of the pulsar strips e⁻ that accelerated in the outer magnetosphere emit γ that produce e[±]. But pairs are trapped in the cloud. After (4-5)x10⁴ years pulsars leave remanent and pairs are liberated (e.g. P. Blasi & E. Amato, arXiv:1007.4745).
- Young (T < 10⁵ years) and nearby (< 1kpc)
- If not: too much diffusion, low energy, too low flux.
- Geminga: 157 parsecs from Earth and 370,000 years old
- B0656+14: 290 parsecs from Earth and 110,000 years old.
- Not a new idea, e.g.: Harding & Ramaty, ICRC 2 (1987), Boulares, ApJ 342 (1989), Atoyan et al. PRD 52 (1995)

Need of measurements above 1 TeV for electrons

Planned missions →

CALorimetric Electron Telescope (CALET)

- Instrument: High Energy Electron and Gamma-Ray Telescope
- Carrier: HTV: H-IIA Transfer Vehicle
- Attach Point on the JEM-EF: #9 for heavy (< 2000 kg) payloads
- Nominal Orbit: 407 km, 51.6° inclination
- Launch plan: FY 2013
- Life Time: ≥ 5 years

|--|--|--|--|

Firenze Pisa Siena Roma Tor Verga

1 GeV ~ 20 TeV for electrons 20 MeV ~ TeV for gamma-rays Weight: 500 kg GF (fiducial volume): ~ 0.12 m²sr Power Consumption: 640 W Data Rate: 300 kbps

CALET Overview

□ Observation

- > Electrons : 1 GeV 10 TeV
- Gamma-rays : 10 GeV-10 TeV (GRB > 1 GeV)
- + Gamma-ray Bursts : 7 keV-20 MeV
- Protons, Heavy Nuclei: several 10 GeV- 1000 TeV (per particle)
- > Solar Particles and Modulated Particles
- in Solar System: 1 GeV-10 GeV (Electrons)

Instrument

High Energy Electron and Gamma-Ray Telescope:

- CHarge Detector (CHD) (Charge Measurement in Z=1-40)
- 2(X,Y)
- Total Absorption Calorimeter (TASC) (Energy Measurement, Particle ID)
 PWO 20mm × 20mm × 320mm
 Total Depth of PWO: 27 X₀ (24cm), 1.35 λ₁

DAMPE: DArk Matter Particle Explorer

DAMPE: One of the Five Approved Satellite Missions of the Chinese Academy of Sciences

- Hard X-ray Modulation Telescope (HXMT)
- Quantum Science Experimental Satellite
- Dark Matter Particle Detection Satellite (DAMPE)
- Retrievable Scientific Experimental Satellite
- Kuafu Space Weather Project (3 satellite)

DArk Matter Particle Explorer (DAMPE) satellite

Energy range: 1 GeV-10 TeV Particle type: electron, gamma-ray, heavy ions Energy resolution: 1.5%@800GeV Spatial resolution: 0.1degree@500GeV Background level: 1%@800GeV p/e separation: <1% Top scin GF: 0.5m².sr Si tracke

Top scintillators Si tracker (5 layers) BGO calorimeter Neutron detector

- Satellite < 1900 kg
- Payload ~1340kg
- Power: 840W
- Lifetime > 3 years

DAMPE Mission

- Approved for construction (phase C/D) in Dec. 2011
- \circ Scheduled launch date 2015
- To be Launched by CZ-2D rockets

The DAMPE Collaboration

- Purple Mountain Observatory, CAS, Nanjing
- Institute of High Energy Physics, CAS, Beijing
- National Space Science Center, CAS, Beijing
- University of Science and Technology of China, Hefei
- Institute of Modern Physics, CAS, Lanzhou
- University of Geneva, Switzerland
- INFN Perugia, Italy
- INFN Bari, Italy

Cosmic Ray Antimatter (antiparticles)

Indirect search for Dark Matter

Positron Energy Spectrum

PAMELA, AMS and FERMI Positron Fraction Compared to Expectation

e* energy [GeV]

Two approaches to understanding this difference between data and predictions:

- 1. Look for new primary sources of positrons.
 - Annihilation of dark matter
 - Positron production and acceleration by pulsars
- 2. Look at modifications of Galactic cosmic-ray propagation models.
 - Three kinds of modification have been presented in recent publications.
PAMELA Antiproton energy spectrum

Antiproton/Proton Ratio

- Excellent agreement between BESS-Polar II and PAMELA in common energy range
- BESS-Polar I ratio flatter at low energy than BESS-Polar II or PAMELA due to solar modulation

Indirect Detection

M. Schumann (AEC Bern) – Dark Matter Summary

A Challenging Puzzle for CR Physics

Review: CR Antiparticles

• Dark matter interpretation of the positron excess is possible

- In conflict with the non-observation of an excess in anti-proton data
- → would need leptophilic dark matter
- Pulsars might be the better explanation at the moment

Indirect Dark Matter Searches

- No Evidence in the data for dark matter in the antiproton flux measurement by AMS, PAMELA ,etc
- But there was excitement about the positron excess seen by PAMELA, FERMI-LAT etc
 - The shape of the energy spectrum is consistent with eg KK- WIMPs → but the flux is a factor of 100-1000 too big for a thermal relic
- NEW: This positron excess has beer seen with high precision by AMS
- At this point, pulsars are a more likely explanation

What about heavy antinuclei?

 The discovery of one nucleus of antimatter (Z≥2) in the cosmic rays would have profound implications for both particle physics and astrophysics.

 For a Baryon Symmetric Universe Gamma rays limits put any domain of antimatter more than 100 Mpc away

(Steigman (1976) Ann Rev. Astr. Astrophys., 14, 339; Dudarerwicz and Wolfendale (1994) M.N.R.A. 268, 609, A.G. Cohen, A. De Rujula and S.L. Glashow, Astrophys. J. 495, 539, 1998)

Limits on antimatter (antiHe and antiD)

Cosmic Rays of Extreme Energies

The main topics of UHE Cosmic Rays

- Anisotropies
- Composition
- Interaction Processes on Cosmic backgrounds
- Magnetic Fields
- Galactic to Extragalactic Transition
- Acceleration Mechanisms
- Sources

HE-CR: ICRC2013 Spectra

THE SPECTRUM OF COSMIC RAYS

Spectrum around the Knee

Energy Spectrum *E* > 10^{17.5} eV

 TA 4-year spectrum published ---> updated to 5 years
Auger energy scale updated by 16~10%, energy dependent, within prev. uncertainties.
Auger energy uncertainty improved from 22% to 14%.

UHECR Physics – The main questions

- Spectrum features GZK effect?
- Sources?
- Mass composition?

- Anisotropy?

The GZK (Greisen Zatsepin Kuzmin) Limit

$$p + \gamma_{cmb} \to \Delta^{+} \to p + \pi^{0}$$
$$\to \Delta^{+} \to n + \pi^{+}$$

- When this process is energetically allowed (~ 5 x 10¹⁹ eV), space becomes <u>opaque</u> to cosmic rays
- Sources of CR with energies above the GZK limit must be 'close', < 100 Mpc
- ie: within the well known local galactic cluster...
- No known acceleration sites for such high energies...

Current Observatories of Ultrahigh Energy Cosmic Rays

Telescope Array Utah, USA (5 country collaboration) 700 km² array 3 fluorescence telescopes

Pierre Auger Observatory Mendoza, Argentina (19 country collaboration) 3,000 km² array 4 fluorescence telescopes

The Pierre Auger Observatory

Argentina Australia Brasil Bolivia* Croatia Czech Rep. France Germany Italy Mexico Netherlands Poland Portugal Romania* Slovenia Spain UK USA Vietnam* *Associate Countries

The Telescope Array

(Evolution of Hi-Res)

Belgium Japan Korea Russia USA

A key result of Auger South and HiRes

The Auger Collaboration (2008a), Abbasi et al. (2008), Bergman (2008), Fukushima (2011)

Recently confirmed by Telescope Array

How to find the Sources?

GET A LOT MORE DATA above 60 EeV OVER THE WHOLE SKY

Auger + TA ~30 events/yr

 $1 \text{ EeV} = 10^{18} \text{ eV}$

UHECR status in just one word

Previous to Auger/HiRes/TA

After Auger/HiRes/TA

 $\frac{1 \text{ particle}}{100 \ km^2 \ yr \ sr}$

$$\begin{array}{c} 1 \text{ particle} \\ \hline & & & \\ \hline & & & \\ 1000 \end{array} km^2 yr sr \\ \hline \end{array}$$

A quantitative jump in exposure

(orders of magnitude: e.g., $10^3 \rightarrow 10^6 \text{ km}^2 \text{ yr sr}$)

is needed to effectively open such an astronomical window @ E > 10²⁰ eV

Go to SPACE! To look down on the Atmosphere!

increase exposure to EECR at least by 1 order of magnitude

- discover the nearby sources of UHECRs

JEM-EUSO Mission

pioneer the study of EECR from Space

Science Objectives

□ Main Objectives:

Astronomy and astrophysics through particle channel with extreme energies > 10²⁰ eV

Identification of individual sources with high statistics

- Measurement of the energy spectrum of individual sources
- Understanding of the acceleration processes and source dynamics

□ Exploratory objectives:

- Detection of extreme energy neutrinos
- Measurement of extreme energy gamma rays
- Study the intensity and topology of Galactic and extragalactic magnetic fields
- Global observation of atmospheric phenomena: nightglows, lightning and plasma discharges

JEM-EUSO Collaboration

Japan, USA, Korea, Mexico, Russia

 Europe: Bulgaria, France, Germany, Italy, Poland, Slovakia, Spain, Sweden, Switzerland
Africa: Algeria

□15 Countries, 75 Institutions, about 300 researchers

RIKEN, Tokyo: Leading institution

JEM-EUSO Observational Principle

JEM-EUSO is a new type of observatory on board the International Space Station (ISS), which observes transient luminous phenomena occurring in the Earth's atmosphere.

The telescope has a super wide field-ofview (60°) and a large diameter (2.5 m) and can operate in two modes: nadir and tilted

JEM-EUSO mission will initiate particle astronomy at ~10²⁰eV.

JEM-EUSO telescope observes fluorescence and Cherenkov photons generated by air showers created by extreme energetic cosmic rays

... and uniform exposure

Why JEM-EUSO? Large exposure + Full sky coverage

Contribution of gamma-ray experiments to Cosmic Ray research (quick look)

Gamma-Rays Eyes

Fermi

IACT – Imaging Atmospheric Cherenkov Telescopes $\sim 10^{10}$ to $< 10^{14}$ eV

HAWC

VERITAS

HESS

First evidence of proton acceleration in the Supernova Remnant W44 with AGILE

SNR W44

Fig 1 : SNR W44 as seen by AGILE for energies greater than 400 MeV

A. Giuliani et al. [AGILE Coll.], ApJ 742, 2011

Fig 3 :combined AGILE (red) and Fermi/LAT (green) spectra energy distribution (SED) for SNR W44. AGILE points are in the range 50 MeV- 10 GeV divided in six energy intervals. Fermi/LAT data span the energy range 0,2-30GeV (from Abdo et al, 2010)

Detection of the Characteristic Pion-decay Signature in Supernova Remnants

Direct evidence that cosmic-ray protons are accelerated in SNR

Aldo Morselli, INFN Roma Tor Vergata

FERMI

SUPERNOVA REMNANTS PRODUCE COSMIC RAYS

 $\texttt{http://www.nasa.gov/mission_pages/GLAST/news/supernova-cosmic-rays.html} (02.14.13)$

- "SNR paradigm": Galactic Cosmic Rays accelerated in SNRs:
 - provide environment for diffusive shock acceleration, energetics ok;
 - smoking gun: "pion bump" in gamma-ray emission.
- Fermi observations strongly disfavoring leptonic scenarios.
- Most of the gamma-ray emission must be of hadronic origin.
- (Difficult measurement involving the study of extended sources at low energies.)

Next Generation Gamma-ray Detectors

CTA: Cherenkov Telescope Array

Key design goals: 10-fold increased sensitivity at TeV energies 10-fold increased effective energy coverage Larger field of view for surveys Improved angular resolution Full sky coverage: an array in each hemisphere

HAWC: High Altitude Water Cherenkov

16 institutions,
57 people
Mexico: 15 institutions
54 people

to be completed in Aug 2014

- Launch foreseen by end 2018
- gamma-rays from 30 MeV up to 300GeV energies
- electrons/positrons in the TeV energy range and beyond
- proton/ion cosmic-rays up to the "knee"

GAMMA-400

- Mission approved by ROSCOSMOS (launch currently scheduled by November 2018)
- GAMMA-400 will be installed onboard the platform "Navigator" manufactured by Lavochkin
 - Scientific payload mass 4100 kg (rocket changed from Zenith to Proton-M)
 - Power budget 2000 W (like previously)
 - Telemetry downlink capability 100 GB/day
 - Lifetime \sim 10 yrs

Activities in INFN Laboratori Nazionali di Frascati and Roma Tor Vergata on Cosmic Rays Research in Space and related

• Running Missions

- o PAMELA
- FERMI (+INAF)
- AGILE (+INAF)

Planned Missions

- CALET (ready to launch 2014)
- o GAMMA 400
- JEM-EUSO (+INAF)
- CSES/LIMADOU

What Next

7-8 April 2014 Angelicum - Roma Europe/Rome timezone

Informazioni

Programma

L' INFN si interroga alla vigilia di importanti input sperimentali (LHC14, 1-ton DM), test-chiave nella decennale ricerca di una fisica nuova, oltre il Modello Standard, alla scala di energia del TeV.

Conclusions

- Cosmic-Ray/Astroparticle physics from space (and not only ...) is a fascinating field, fertile and rich of scientific potentials.
- Several important esperiments are, or going to, directly measuring cosmic-ray energy spectra, their composition and their antimatter component.
- Important results have already been published and soon more will come.
 Stay tuned, interesting times ahead!