
Combination Of Message Queues And GPUs
For The Event Building of the PANDA Experiment

Ludovico Bianchi, Forschungszentrum Jülich, Germany

M
itg

lie
d

de
s H

el
m

ho
ltz

-G
em

ei
ns

ch
a�

Online Tracking with GPUs at PANDA

PANDA Experiment

AntiProton Annihilation at Darmstadt
⚫Fixed proton target
⚫1.5–15 GeV/c antiproton beam

Conclusions & OutlookTest system response

Test system with CUDA and FairMQ

FairMQDevice

Sender

Receiver

GpuReceiver

GpuSender

FairMQMessage

FairMQTransportFactory

Process

FairMQ framework

FairMQTransportFactoryZMQ

FairMQMessageZMQ

FairMQSocket

FairMQSocketZMQ

Generate

User code

ZeroMQ implementation

CUDA code

GPU 1

CPU 1
GpuSender

Generate

GPU 2

CPU 2

Process

GpuReceiver

GPU

CPU
GpuSender

Generate

Receiver1

GPU

CPU
GpuSender

Generate Process

GpuReceiver

GPU 1

CPU 1
GpuSender

Generate

GPU 2

CPU 2
Receiver

Message size/kB
1 10 210 310

A
vg

 tr
an

sm
is

si
on

 ra
te

/(M
B

/s
)

0

5

10

15

20

25

GpuSender to Receiver
GpuSender to GpuReceiver
GpuSender to Receiver, over Network
GpuSender to GpuReceiver, over Network

⚫Triplet Finder algorithm
 on single GPU: 6x106 hits/s
⚫PANDA requirements: 10⁹ hits/s
➔ Online tracking with multiGPU system
 in a heterogeneous event building stage

FairMQ

⚫First basic test system integrating CUDA GPU code
 and FairMQ

Future developments:

⚫More realistic simulation of PANDA DAQ chain
 - Implement simulated events, tracking algorithms
 - Integration with FPGA pre-processing stage
 - MultiGPU setup

⚫Performance study and optimization

⚫Deeper GPU integration
 - Device access to FairMQ classes
 - GPU-enabled transport libraries (nanomsg API)

⚫Study response of data generation and transmission chain:
 compare transmission rate in the test system as a function
 of the number of events for different configurations
⚫Limited transmission rate depends on test system,
 and available network bandwidth:
 FairMQ has no maximum throughput limit

⚫Sender/Receiver: create/read message
 over transport factory
⚫GpuSender: creates message, calls
 Generate on GPU to create test data payload
⚫GpuReceiver: reads message, calls Process
 on GPU to perform operations on test data
 payload
⚫Example GPU code for the test system
 Generate: Random number generator
 (cuRAND)
 Process: Parallel data manipulation

Cross-compilation of CUDA C and FairRoot C++ using CMake

GpuSender to Receiver

GpuSender to GpuReceiver

__global__ void kernel();
extern cudaWrapper() { kernel();}

extern "C" cudaWrapper();
void cpuCaller() {cudaWrapper();};

CUDA_ADD_LIBRARY(fmqcuda cudaCode.cu)
set(DEPENDENCIES fmqcuda FairMQ)

FairMQMessage* msg = fTransportFactory->CreateMessage(sizeof(Content));
memcpy(msg->GetData(), payload, sizeof(Content));
fPayloadOutputs->at(0)->Send(msg);

⚫Support for many programming
 languages and hardware architectures
⚫Versatile: capable of inter-thread, inter-
 process or inter-node communication
⚫Scalable to large, complex systems

⚫Data transport layer in FairRoot
 framework, based on message queues
⚫Abstraction front-end for transport
 libraries (ZeroMQ, nanomsg ...)
⚫Message-based system, inherently
 supporting parallel computing models

Incoming data rate: 200 GB/s

⚫No hardware trigger
⚫Online event reconstruction
 and event selection
 ➔ Online tracking

Offline storage: 3 PB/year

➔ Data reduction factor 1/1000

