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Online Tracking with GPUs at PANDA

PANDA Experiment

AntiProton Annihilation at Darmstadt
⚫Fixed proton target
⚫1.5–15 GeV/c  antiproton beam

Conclusions & OutlookTest system response

Test system with CUDA and FairMQ
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GpuSender to Receiver
GpuSender to GpuReceiver
GpuSender to Receiver, over Network
GpuSender to GpuReceiver, over Network

⚫Triplet Finder algorithm 
    on single GPU: 6x106 hits/s
⚫PANDA requirements: 10⁹ hits/s
➔ Online tracking with multiGPU system 
     in a heterogeneous event building stage

FairMQ

⚫First basic test system integrating CUDA GPU code
    and FairMQ

Future developments:

⚫More realistic simulation of PANDA DAQ chain
    - Implement simulated events, tracking algorithms
    - Integration with FPGA pre-processing stage
    - MultiGPU setup

⚫Performance study and optimization

⚫Deeper GPU integration
    - Device access to FairMQ classes
    - GPU-enabled transport libraries (nanomsg API)

⚫Study response of data generation and transmission chain:
    compare transmission rate in the test system as a function 
    of the number of events for different configurations 
⚫Limited transmission rate depends on test system, 
    and available network bandwidth: 
    FairMQ has no maximum throughput limit

⚫Sender/Receiver: create/read message 
    over transport factory
⚫GpuSender: creates message, calls
    Generate on GPU to create test data payload
⚫GpuReceiver: reads message, calls Process
    on GPU to perform operations on test data
    payload
⚫Example GPU code for the test system
    Generate: Random number generator 
    (cuRAND)
    Process: Parallel data manipulation

Cross-compilation of CUDA C and FairRoot C++ using CMake

GpuSender to Receiver

GpuSender to GpuReceiver

__global__ void kernel();
extern cudaWrapper() { kernel();}

extern "C" cudaWrapper();
void cpuCaller() {cudaWrapper();};

CUDA_ADD_LIBRARY(fmqcuda cudaCode.cu)
set(DEPENDENCIES fmqcuda FairMQ)

FairMQMessage* msg = fTransportFactory->CreateMessage(sizeof(Content));
memcpy(msg->GetData(), payload, sizeof(Content));    
fPayloadOutputs->at(0)->Send(msg);

⚫Support for many programming
    languages and hardware architectures
⚫Versatile: capable of inter-thread, inter-
    process or inter-node communication
⚫Scalable to large, complex systems

⚫Data transport layer in FairRoot
    framework, based on message queues
⚫Abstraction front-end for transport
    libraries (ZeroMQ, nanomsg ... )
⚫Message-based system, inherently
    supporting parallel computing models

Incoming data rate: 200 GB/s

⚫No hardware trigger
⚫Online event reconstruction 
    and event selection
 ➔ Online tracking

Offline storage: 3 PB/year

➔ Data reduction factor 1/1000


