
Using GPUs to Solve the N-Body
Problem in Astrophysics

Mario Spera (mario.spera@oapd.inaf.it)
Postdoctoral researcher at INAF – OAPD
Workshop: GPU computing in High Energy Physics
Pisa, September 10-12

Outline

 Theoretical Introduction

 Numerical Introduction

 Why do we use GPUs ?

 The direct N-Body code HiGPUs

 Regularization methods

 Conclusions

Introduction to the N-Body problem

General Definition
The study of the motion of N point-like particles interacting through
their mutual force that can be expressed according to a specific
physical law

 6𝑁 first-order scalar equations in 6𝑁 unknowns Cauchy’s problem
 No (useful) explicit solution for 𝑁 > 2 Qiu-Dong Wang, 1991, CMDA 50, 73-88

 We need a numerical approach to obtain a solution

N
G

C
6

38
8

, H
S

T

Gravitational N-Body problem

 𝒓𝑖 =
𝑗=1
𝑗≠𝑖

𝑁

𝐺
𝑚𝑗

𝑟𝑖𝑗
3 𝒓𝑗 − 𝒓𝑖

𝒓𝑖(𝑡0) = 𝒓𝑖0
 𝒓𝑖 𝑡0 = 𝒓𝑖0

Introduction to the N-Body problem

Numerical methods

Direct summation: the force acting on the particle i is
computed as the complete sum of the contribution due to all
the other N − 1 particles in the system

Approximation schemes:the direct sum of inter-particle
forces is replaced by an other mathematical expression
lighter in terms of computational complexity

Grid methods: codes that are based on the solution of
the Poisson’s equation on a grid, leading to a discrete
force field

Introduction to the N-Body problem

𝑟𝑖𝑗 → 0 𝐹𝑖𝑗 → ∞ UV Divergence

𝐹𝑖𝑗 ≠ 0 ∀ 𝑟𝑖𝑗 IR Divergence O N2 operations (𝑟𝑖𝑗)

Very small time steps

𝑭𝑖𝑗 = 𝐺
𝑚𝑖𝑚𝑗

𝑟𝑖𝑗3
𝒓𝑗 − 𝒓𝑖𝑈𝑖𝑗 = 𝐺

𝑚𝑗

𝑟𝑖𝑗

𝑟𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗
2
+ 𝑦𝑖 − 𝑦𝑗

2
+ 𝑧𝑖 − 𝑧𝑗

2

𝑈𝑖𝑗 = 𝐺
𝑚𝑗

𝑟𝑖𝑗
2 + 𝜺2

Approx. methods and/or Softening parameter

O N2 Complex operations

Simplifications

Numerical solution = Challenge… why?

2-body interaction potential

Introduction to the N-Body problem

Intel Xeon E7-8890 v2, 15core @3.40 GHz (turbo)

Theoretical Performance (32bit) 16 flops/clock cycle * 3.40 * 15 ~ 800 GFlops

N-Body system particle number 3 ⋅ 105

Flops per cycle in N-Body integrators (F) ~50𝑁2

Fixed time step ∆𝑡 = 10−3𝑡𝑐

Total integration time (T) Relaxation: 𝑡𝑅 ≃ 3000𝑡𝑐

Number of steps to complete (S) 𝑇/Δ𝑡~𝟑 ∙ 𝟏𝟎𝟔

Flops to execute 𝑆 ∗ 𝐹 ≃ 𝟏𝟎𝟏𝟗

Computational time ~ 5 months

Time to evolve a Globular Cluster using a very powerful CPU

~4 yrs ago the needed computing time was ~7 years !!

Why do we use Graphics Processing Units ?

Why do we use Graphics Processing Units ?

 Up to 5700 GFlops (32bit)

 Up to 2700 GFlops (64bit)

GPU internal arch

Single core
(< 1 GHz)

Number of cores
(up to 3000)

CPU internal arch

Single core
(up to 4 GHz)

Number of cores
(< 15)

Videogames Science

The direct N-Body code HiGPUs

 HiGPUs : Hermite integrator on GPUs
Capuzzo-Dolcetta, Spera, Punzo, JCP 236, March 2013 p. 580-593
- http://astrowww.phys.uniroma1.it/dolcetta/HPCcodes/HiGPUs.html
- AMUSE Package http://amusecode.org/

 Hermite 6th order integrator (PEC schemes)
 Block Time Steps (IR divergence : 𝑂(𝑁2) → 𝑂(𝑚𝑁))
 C and C++
 CUDA + MPI + OpenMP (to fully exploit hybrid supercomputers)

 OpenCL

 High precision
Very good relative energy conservation (mixture of single and double precision)

 High performance
Scientific results in short times

 Highly parallel
It can run efficiently on the most modern supercomputers in the world

 Very easy to use

http://astrowww.phys.uniroma1.it/dolcetta/HPCcodes/HiGPUs.html
http://amusecode.org/

HiGPUs: The Hermite 6th order time
integration scheme

𝒓𝑖,𝑝 = 𝒓𝑖,0 + 𝒗𝒊,𝟎∆𝑡𝑖,0 +
1

2
𝒂𝑖,0∆𝑡𝑖,0

2 +
1

6
𝒋𝑖,0∆𝑡𝑖,0

3 +
1

24
𝒔𝑖,0∆𝑡𝑖,0

4 +
1

120
𝒄𝑖,0∆𝑡𝑖,0

5 + 𝑂 ∆𝑡𝑖,0
6

𝒗𝑖,𝑝 = 𝒗𝑖,0 + 𝒂𝒊,𝟎∆𝑡𝑖,0 +
1

2
𝒋𝑖,0∆𝑡𝑖,0

2 +
1

6
𝒔𝑖,0∆𝑡𝑖,0

3 +
1

24
𝒄𝑖,0∆𝑡𝑖,0

4 + 𝑂 ∆𝑡𝑖,0
5

𝒂𝑖,𝑝 = 𝒂𝑖,0 + 𝒋𝒊,𝟎∆𝑡𝑖,0 +
1

2
𝒔𝑖,0∆𝑡𝑖,0

2 +
1

6
𝒄𝑖,0∆𝑡𝑖,0

3 + 𝑂 ∆𝑡𝑖,0
4

𝒂𝑖𝑗,1 = 𝑚𝑗

𝒓𝒊𝒋

𝑟𝑖𝑗
3 𝒋𝑖𝑗,1 = 𝑚𝑗

𝒗𝒊𝒋

𝑟𝑖𝑗
3 − 3α𝒂𝑖𝑗,1 𝒔𝑖𝑗,1 = 𝑚𝑗

𝒂𝒊𝒋

𝑟𝑖𝑗
3 − 6𝛼𝒋𝑖𝑗,1 − 3𝛽𝒂𝑖𝑗,1

𝒗𝑖,𝑐 = 𝒗𝑖,0 +
∆𝑡𝑖,0
2

𝒂𝑖,1 + 𝒂𝑖,0 −
∆𝑡𝑖,0

2

10
𝒋𝑖,1 − 𝒋𝑖,0 +

∆𝑡𝑖,0
3

120
𝒔𝑖,1 + 𝒔𝑖,0

𝒓𝑖,𝑐 = 𝒓𝑖,0 +
∆𝑡𝑖,0
2

𝒗𝑖,1 + 𝒗𝑖,0 −
∆𝑡𝑖,0

2

10
𝒂𝑖,1 − 𝒂𝑖,0 +

∆𝑡𝑖,0
3

120
𝒋𝑖,1 + 𝒋𝑖,0

CORRECTOR

EVALUATION

PREDICTOR

Just one evaluation of accelerations per time step

HiGPUs: Block Time Steps

Higher parallelization
efficiency

It ensures exact time
synchronization among
particles

It takes into account the
different time scales
involved in an N-Body system

Image taken from Konstantinidis, S. and Kokkotas, K. D., A&A 522 A70, 22pp.

Computational complexity
per time step : 𝑶(𝒎𝑵)

HiGPUs: speed up forces evaluation kernel

HiGPUs uses 64bit just for
positions and accelerations

HiGPUs uses shared memory
(much faster than global memory)

HiGPUs performs intermediate
operations in 32bit to speed up the
forces evaluation

64 bit used only to reduce round-off
errors in evaluating mutual distances

HiGPUs: speed up forces evaluation kernel

Block Time Steps we need to update 𝑚 (𝑚 ≤ 𝑁) particles
per time step

1:1 approach We execute 𝑚 GPU threads They cannot be
enough to fully load the GPU

Bfactor variable: split
further the work among the
gpu threads (inside a
single GPU) until the
number of running threads
is greater than the
maximum number of parallel
threads that the GPU can
execute in parallel

(Up to 5 ⋅ 104 threads in parallel for a common GPU)

Test HiGPUs on a GPU supercomputer

Speedup : 𝑆𝑛 =
∆𝑇1

∆𝑇𝑛

𝑬𝒏~

Testing HiGPUs on single, different GPUs

Introduction to the N-Body problem
(again)

𝑟𝑖𝑗 → 0 𝐹𝑖𝑗 → ∞ UV Divergence

𝐹𝑖𝑗 ≠ 0 ∀ 𝑟𝑖𝑗 IR Divergence O N2 operations (𝑟𝑖𝑗)

Very small time steps

𝑭𝑖𝑗 = 𝐺
𝑚𝑖𝑚𝑗

𝑟𝑖𝑗3
𝒓𝑗 − 𝒓𝑖𝑈𝑖𝑗 = 𝐺

𝑚𝑗

𝑟𝑖𝑗

𝑟𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗
2
+ 𝑦𝑖 − 𝑦𝑗

2
+ 𝑧𝑖 − 𝑧𝑗

2

𝑈𝑖𝑗 = 𝐺
𝑚𝑗

𝑟𝑖𝑗
2 + 𝜺2

Approx. methods and/or Softening parameter

O N2 Complex operations

Simplifications

Numerical solution = Challenge… why?

2-body interaction potential

Regularization methods

Algorithmic (Chain) Regularization (Seppo Mikkola):

 Time transformation + Regular algorithm (symplectic leapfrog)
 Chain spatial coordinates

Strategies:
 coordinate transformation
 regular algorithm
 combination of previous points

Difficulties :
 Implementation
 Hardware acceleration
 Integration

Not widely used

Burdet-Heggie
Kustaanheimo-Stiefel

General Definition
Methods that try to remove the UV divergence of the 2-body interaction
potential obtaining a «regular» expression for the pair-wise force

Test regularization schemes

2body problem

𝑚1

𝑚2
≃ 105

≃ 104 revolutions
 𝑒 ≃ 0.9999

∆𝐸
𝐸 𝐻𝑒𝑟𝑚𝑖𝑡𝑒

∆𝐸
𝐸 𝐴𝑅

≃ 1013 ‼!

Implementing a regularization scheme in
the framework of a GPU code: HiGPUs-R

The GPU kernel is
asynchronous

The GPU can work in
background while the CPU
performs the
regularization process
in parallel by means of
OpenMP

Some applications

Conclusions

 GPUs can accelerate the numerical integration of
N-Body systems

 The direct N-Body code HiGPUs shows very good scalability
on GPU clusters and exhibits very good performance on
single, different GPUs

 Regularization methods for the N-Body problem can take
advantage from the GPU asynchronous kernel execution

 The growth of scientific applications that can run on
GPUs is exponential

