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Introduction to the N-Body problem

General Definition
The study of the motion of N point-like particles interacting through 
their mutual force that can be expressed according to a specific 
physical law

 6𝑁 first-order scalar equations in 6𝑁 unknowns  Cauchy’s problem
 No (useful) explicit solution for 𝑁 > 2  Qiu-Dong Wang, 1991, CMDA 50, 73-88

 We need a numerical approach to obtain a solution

N
G

C
6

38
8

, H
S

T

Gravitational N-Body problem
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Introduction to the N-Body problem

Numerical methods

Direct summation: the force acting on the particle i is 
computed as the complete sum of the contribution due to all 
the other N − 1 particles in the system

Approximation schemes:the direct sum of inter-particle 
forces is replaced by an other mathematical expression 
lighter in terms of computational complexity

Grid methods: codes that are based on the solution of 
the Poisson’s equation on a grid, leading to a discrete 
force field



Introduction to the N-Body problem

𝑟𝑖𝑗 → 0 𝐹𝑖𝑗 → ∞ UV Divergence

𝐹𝑖𝑗 ≠ 0 ∀ 𝑟𝑖𝑗 IR Divergence O N2 operations (𝑟𝑖𝑗)

Very small time steps
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Approx. methods and/or Softening parameter

O N2 Complex operations

Simplifications

Numerical solution = Challenge… why?

2-body interaction potential



Introduction to the N-Body problem

Intel Xeon E7-8890 v2, 15core @3.40 GHz (turbo)

Theoretical Performance (32bit) 16 flops/clock cycle * 3.40 * 15 ~ 800 GFlops

N-Body system particle number 3 ⋅ 105

Flops per cycle in N-Body integrators (F) ~50𝑁2

Fixed time step ∆𝑡 = 10−3𝑡𝑐

Total integration time (T) Relaxation: 𝑡𝑅 ≃ 3000𝑡𝑐

Number of steps to complete (S) 𝑇/Δ𝑡~𝟑 ∙ 𝟏𝟎𝟔

Flops to execute 𝑆 ∗ 𝐹 ≃ 𝟏𝟎𝟏𝟗

Computational time ~ 5 months

Time to evolve a Globular Cluster using a very powerful CPU

~4 yrs ago the needed computing time was ~7 years !!



Why do we use Graphics Processing Units ?



Why do we use Graphics Processing Units ?

 Up to 5700 GFlops (32bit)

 Up to 2700 GFlops (64bit) 

GPU internal arch

Single core
(< 1 GHz)

Number of cores
(up to 3000)

CPU internal arch

Single core 
(up to 4 GHz)

Number of cores
(< 15)

Videogames   Science



The direct N-Body code HiGPUs

 HiGPUs : Hermite integrator on GPUs
Capuzzo-Dolcetta, Spera, Punzo, JCP 236, March 2013 p. 580-593
- http://astrowww.phys.uniroma1.it/dolcetta/HPCcodes/HiGPUs.html
- AMUSE Package http://amusecode.org/

 Hermite 6th order integrator (PEC schemes)
 Block Time Steps ( IR divergence : 𝑂(𝑁2) → 𝑂(𝑚𝑁) )
 C and C++
 CUDA + MPI + OpenMP (to fully exploit hybrid supercomputers)

 OpenCL

 High precision 
Very good relative energy conservation (mixture of single and double precision)

 High performance 
Scientific results in short times

 Highly parallel 
It can run efficiently on the most modern supercomputers in the world

 Very easy to use

http://astrowww.phys.uniroma1.it/dolcetta/HPCcodes/HiGPUs.html
http://amusecode.org/


HiGPUs: The Hermite 6th order time 
integration scheme
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HiGPUs: Block Time Steps

Higher parallelization
efficiency

It ensures exact time 
synchronization among
particles

It takes into account the 
different time scales
involved in an N-Body system

Image taken from Konstantinidis, S. and Kokkotas, K. D., A&A 522 A70, 22pp. 

Computational complexity 
per time step : 𝑶(𝒎𝑵)



HiGPUs: speed up forces evaluation kernel

HiGPUs uses 64bit just for 
positions and accelerations

HiGPUs uses shared memory
(much faster than global memory)

HiGPUs performs intermediate 
operations in 32bit to speed up the 
forces evaluation

64 bit used only to reduce round-off 
errors in evaluating mutual distances



HiGPUs: speed up forces evaluation kernel

Block Time Steps  we need to update 𝑚 (𝑚 ≤ 𝑁) particles
per time step

1:1 approach  We execute 𝑚 GPU threads  They cannot be
enough to fully load the GPU

Bfactor variable: split 
further the work among the 
gpu threads (inside a 
single GPU) until the 
number of running threads
is greater than the 
maximum number of parallel
threads that the GPU can 
execute in parallel

(Up to 5 ⋅ 104 threads in parallel for a common GPU)



Test HiGPUs on a GPU supercomputer

Speedup : 𝑆𝑛 =
∆𝑇1

∆𝑇𝑛

𝑬𝒏~






Testing HiGPUs on single, different GPUs



Introduction to the N-Body problem
(again)
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Regularization methods

Algorithmic (Chain) Regularization (Seppo Mikkola):

 Time transformation + Regular algorithm (symplectic leapfrog)
 Chain spatial coordinates

Strategies:
 coordinate transformation 
 regular algorithm
 combination of previous points

Difficulties :
 Implementation
 Hardware acceleration
 Integration

Not widely used

Burdet-Heggie
Kustaanheimo-Stiefel

General Definition
Methods that try to remove the UV divergence of the 2-body interaction
potential obtaining a «regular» expression for the pair-wise force



Test regularization schemes

2body problem


𝑚1

𝑚2
≃ 105

≃ 104 revolutions
 𝑒 ≃ 0.9999

∆𝐸
𝐸 𝐻𝑒𝑟𝑚𝑖𝑡𝑒

∆𝐸
𝐸 𝐴𝑅

≃ 1013 ‼!



Implementing a regularization scheme in 
the framework of a GPU code: HiGPUs-R

The GPU kernel is 
asynchronous

The GPU can work in 
background while the CPU 
performs the 
regularization process 
in parallel by means of 
OpenMP



Some applications



Conclusions

 GPUs can accelerate the numerical integration of 
N-Body systems

 The direct N-Body code HiGPUs shows very good scalability
on GPU clusters and exhibits very good performance on 
single, different GPUs

 Regularization methods for the N-Body problem can take 
advantage from the GPU asynchronous kernel execution

 The growth of scientific applications that can run on 
GPUs is exponential


