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The ATLAS Experiment
• One of two general-purpose particle 

detectors at the Large Hadron 
Collider (LHC) 

• Played an important role in the 2012 
discovery of a particle consistent 
with the Standard Model Higgs 
boson 

• Contains an assortment of trackers, 
calorimeters, and muon detectors - 
all nested in an onion-like fashion 

• Will commence second run of 
operation in early 2015 at higher 
energy and luminosity
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The Inner Tracker
• Innermost component of the detector is 

a silicon-based tracker designed to 
map the trajectories of particles 
emanating from collisions 

• Consists of nested layers of silicon 
detectors 

• Innermost layers are pixel detectors 

• Outermost layers are strip detectors 
(SCT) 

• Sits inside a solenoid magnet, causing 
the tracks of charged particles to 
curve inversely proportional to their 
momentum
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The Pixel Detector
• Comparable to a gigantic digital camera 

(operating at 40 MHz!) 

• Composed of 1,744 modules in concentric 
layers and end-caps 

• Each module contains approximately 46,000 
pixels - over 80,000,000 pixels! 

• As charged particles fly though, they ionize the 
silicon and create a detectable charge 
distribution 

• A single particle may activate several adjacent 
pixels 

• Innermost layer only 5 cm from the beam axis 

• Present upgrade will add layer of 14 million 
pixels 3.2 cm from the beam axis
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The SCT Detector
• Similar in purpose to the pixel detector, 

but farther from the beam axis 

• Lower resolution requirements allow for 
a savings in readout bandwidth and 
manufacturing cost 

• Composed of 8,176 modules in 
concentric layers and end-caps 

• Each module consists of two layers of 
strips, with the layers at a small relative 
angle 

• Charged particles will activate both 
layers of strips, and the angle between 
them can determine the position, with 
some ambiguity
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The ATLAS Trigger
• Far too much data generated to store permanently or analyze 

• Run I used a cascading three-tier trigger system to select events 

!

!

!

!

!

• Software tiers will be merged in Run II, with an input rate of ~100 
kHz and processing time of ~250 ms
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Level Type Analysis Input 
Rate

Output 
Rate

Execution 
Time

1 Hardware Calorimeter and muon data 20 MHz 70 kHz 2.5 μs

2 Software Incorporate inner detector, 
use fast custom algorithms 70 kHz 6.5 kHz 90 ms

Event 
Filter Software Near-offline reconstruction 6.5 kHz 600 Hz 1 s
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ATLAS Trigger Algorithms
• Trigger analysis in software triggers requires reconstruction 

of particle tracks 

• The reconstruction is seeded by solid angle Regions of 
Interests identified by the Level 1 trigger 

• Particle hits in pixel and SCT modules are encoded in a 
compact bytestream format and stored in Readout Buffers 

• Reconstruction is a four-step process: 

!

• Each of these steps requires significant processing time
8

Bytestream)
Decoding)

Hit)
Clustering)

Track)
Forma8on)

Clone)
Removal)

Further 
Analysis…
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Bytestream Decoding

Readout BufferReadout Buffer

Module 1 Header
Module 1 - Hit 1

…
Module 1 - Hit M
Module 1 Trailer

…
Module N Header
Module N - Hit 1

…
Module N - Hit M
Module N Trailer

Readout Buffer

• Bytestream data is first retrieved by requesting it from the Readout Buffers 
via a network connection 

• The bytestream consists of 32-bit/16-bit words for the pixel/SCT detectors 

• The structure of the bytestream and context of its constituent words 
encode module identifiers and the hits belonging to them
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Hit Clustering
• Multiple silicon cells activated by a single particle must be clustered together 

• For pixel modules, this is done by checking hits for adjacency with known clusters, and 
merging clusters which are adjacent to the same hit 

• For SCT modules, clustering is trivial since adjacency need only be determined in one 
dimension 

• Clusters are then converted to spacepoints by translating/rotating to match the 
physical module position/orientation
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Pixel Clustering SCT Clustering



Jacob Howard - University of Oxford11 September 2014

Track Formation and Clone Removal
• Track seeds are first formed by combining points in inner silicon 

layers 

• Seeds are extended to include points in outer silicon layers 

!

!

!

!

• Multiple clone tracks may be identified with the same outer hits 
and different seeds - they must be identified and then merged/
removed
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Track seed formation Track seed extension
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Motivation for Using GPUs
• Data preparation and tracking are some 

of the most computationally intensive 
trigger steps (50-70% of processing time) 

• An increase in the instantaneous 
luminosity of LHC proton beams will lead 
to a proportional increase in events per 
proton-proton bunch crossing, increasing 
hit occupancy 

• Combinatorial nature of the track 
reconstruction will lead to a large 
increase in serial processing time 

• GPUs offer massive parallelization 
potential over CPUs 

• Chose CUDA due to maturity, support, 
and ease of development

12
Image courtesy of CERN and the ATLAS Experiment

Year Peak Instantaneous Lumionsity
2010 2.1 × 1032 cm-2s-1

2011 3.65 × 1033 cm-2s-1

2012 7.73 × 1033 cm-2s-1

2015 1.6 × 1034 cm-2s-1

HL-LHC 5-7 × 1034 cm-2s-1
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Parallel Bytestream Decoding
• Bytestream fragments from 

different Readout Buffers 
are mapped to different 
thread blocks/streaming 
multiprocessors 

• Within fragments, each 
word in the bytestream is 
mapped to a single thread 

• Each thread performs two 
operations: 

• Context detection 

• Value decoding 

• Threads handle multiple 
words depending on 
largest thread block size

13

Readout BufferReadout BufferReadout Buffer

…



Jacob Howard - University of Oxford11 September 2014

Parallel Hit Clustering
• A cellular automaton is 

used to iteratively 
combine hits into groups 

• All hits are assigned an 
initial tag 

• Each evolution sets the 
tag to the highest of 
those adjacent to it 

• Clustering is complete 
when the automaton 
stops evolving

14
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Tilei!

Loop Over Layers!

3x32 
Thread 

Block!

Local Buffer!

Local Buffer!

Global Seed Array! Tilej!

Global Triplet Array! Tilei! Tilei+1!

1D Thread Block!

Global Track Candidates Array!

Thread (i,j)!

Space!
points!

Track!
Seeds!

Triplets!

Parallel Track Formation
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Global Seed Array!

Track seeds are first identified 
by a 2-dimensional thread block

Track seeds are extended to 
outer layers and merged into 

track candidates
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Parallel Clone Removal
• Difficult due to number of track pairs: N × (N - 1) / 2 

• Separate into two steps: 

• Identification/merging of clones - same extension spacepoints, 
different seeds 
 
 

• Removal of fake tracks 

• Each GPU thread handles a range of tracks 

• Stored in global memory, slow, but gain due to high number of 
track candidates 

16

S1 S2 S4 S5! S3

S1 S3 S4 S5! S3

S2 S3 S4 S5! S3

Seed Layer
Sk - k-th spacepoint

Logical layer
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Data Preparation Results

17

Bytestream decoding and clustering show a 26x speed-up 
on NVIDIA C2050 GPU vs single-threaded Intel E5620 CPU
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Tracking Results

18

Track formation and clone removal show a 12x speed-up on 
NVIDIA C2050 GPU vs single-threaded Intel E5620 CPU
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CUDA Device Performance Comparison

19

Device Architecture Cores Core Speed Processing 
Time

Processing 
Rate

C1060 Tesla 240 1300 MHz 26.8 ms 37.3 Hz

GT 630M Fermi 96 800 MHz 18.3 ms 54.5 Hz

GT 650M Kepler 384 835 MHz 17.2 ms 58.2 Hz

C2050 Fermi 448 1150 MHz 9.87 ms 101 Hz

K20 Kepler 2496 706 MHz 7.83 ms 128 Hz

K40 Kepler 2880 745 MHz 6.39 ms 156 Hz
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Porting Complexities

20

Problem Solution

Existing implementations serial

2 years development, 50% time
Complex spaghetti code structure

Minimal documentation/comments

Complex C++ inheritance structure

Large, complex hardware maps Special global hash tables developed 
for in-memory lookup

Custom build system for trigger, 
difficult to integrate CUDA Developed client-server architecture 

for shared GPU operationMultiple trigger instances usually run 
on each node
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Client-Server Architecture
• Client-server architecture allows GPU resources to be shared amongst multiple 

trigger instances 

• Data transfer is done over shared memory segment 

• Also used as CUDA host buffer 

• Minimizes integration surface in trigger software - only POSIX required 

• Allows for GPU memory resources (e.g. hardware maps) to be shared

21

Algorithm*
Algorithm*

AthenaComputeSvc*

Athena 0, Core 0 

Send Data 

ComputeServer* GPU 

CPU Proc. per Core 

Kernel 2 

Kernel 1 
Request for Track Finding on GPU 

Athena 1, Core 1 

Send Data 

Receive Tracks 
Receive Tracks 

Request Tracks 
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Client-Server Performance
• Client-server architecture 

appears feasible 

• Performance does seem to 
saturate with number of 
trigger jobs 

• Likely due to a limited 
number of streaming 
multiprocessors 

• In practice, other 
requirements of trigger 
software impose more 
immediate limitations on 
trigger instance count

22
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OpenCL Studies
• The CUDA implementation has been ported to OpenCL 

• Initial performance comparisons show encouraging results on GPU, 
~15% performance loss on the C2050 

• Disparate results on heterogeneous hardware

23

Operation NVIDIA C2050 
(CUDA)

NVIDIA C2050 
(OpenCL)

AMD FirePro 
GPU 

(OpenCL)

Dual 16-Core 
AMD 6276 CPU 

(OpenCL)

Pixel 
Processing 3.2 ms 3.9 ms 8.3 ms 19.0 ms

SCT Processing 3.6 ms 4.0 ms 7.7 ms 12.1 ms

Total 
Processing 6.8 ms 7.9 ms 16 ms 31.1 ms
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Conclusion and Outlook
• GPUs show enormous promise for optimization of ATLAS 

trigger algorithms 

• No free lunch - GPU porting is non-trivial and suitable 
replacement algorithms non-obvious 

• GPU programming requires a significant amount of per-
device optimization for maximal performance 

• Code will be expanded to include muon and calorimeter 
data, as well as jet reconstruction 

• Main obstacles to deployment: cooling, code-base 
integration and portability, heterogeneous hardware
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