GPGPU for track finding in High Energy Physics

L Rinaldi¹, M Belgiovine¹, R Di Sipio¹, A Gabrielli¹, M Negrini², F Semeria², A Sidoti², S A Tupputi³, M Villa¹

¹Bologna University and INFN, via Irnerio 46, 40127 Bologna, Italy
²INFN-Bologna, v.le Berti Pichat 6/2, 40127 Bologna, Italy
³INFN-CNAF, v.le Berti Pichat 6/2, 40127 Bologna, Italy

DOI: will be assigned

The LHC experiments are designed to detect large amount of physics events produced with a very high rate. Considering the future upgrades, the data acquisition rate will become even higher and new computing paradigms must be adopted for fast data-processing: General Purpose Graphical Processing Units (GPGPU) can be used in a novel approach based on massive parallel computing. The intense computation power provided by GPGPU is expected to reduce the computation time and speed-up fast decision taking and low-latency applications. In particular, this approach could be hence used for high-level triggering in very complex environments, like the typical inner track detectors of the LHC experiments, where a large amount of pile-up events overlaying the interesting physics processes are expected with the luminosity upgrade. In this contribution we discuss a track pattern recognition algorithm based on the Hough Transform, where a parallel approach is expected to reduce dramatically the execution time.

1 Introduction

High Energy Physics (HEP) experiments are designed to detect large amount of data with very high rate. In addition weak signatures of new physics must be searched in complex background condition. In order to reach these achievements, new computing paradigms must be adopted. A novel approach is based on the use of high parallel computing devices, like General Purpose Computing on Graphical Processing Units (GPGPU) [?], which delivers such high performance solutions to be used in HEP. In particular, a massive parallel computation could dramatically speed up the algorithms for charged particle tracking and fitting, allowing their use for fast decision taking and triggering. In this paper we describe a tracking recognition algorithm based on the Hough Transform [?, ?, ?] and its implementation on GPGPU devices.

2 Tracking with the Hough Transform

The Hough Transform (HT) is a pattern recognition technique for features extraction in image processing, and in our case we will use a HT based algorithm to extract the tracks parameters from the hits left by charged particles on the detector. A preliminary result on this study has been already presented in [?]. Our model is based on a cylindrical multi-layer silicon detector installed around the interaction point of a particle collider, with the detector axis on the beam-g
The algorithm works in two serial steps. In the first part, for each hit having coordinates (x, y, z) the algorithm computes all the circles in the $x-y$ transverse plane passing through that hit and the interaction point, where the circle equation is $x^2 + y^2 - 2Ax - 2By = 0$, and A and B are the two parameters corresponding to the coordinates of the circle centre. The circle detection is performed taking into account also the longitudinal (θ) and polar (ϕ) angles. For each θ, ϕ, A, B, satisfying the circle equation, the $M_H(A,B,\theta,\phi)$ Hough Matrix (or Vote Matrix) element is incremented by one. All the M_H elements above a given threshold would correspond to real tracks. Thus, the second step is a local maxima search among the M_H elements.

In our test, we used a dataset of 100 simulated events (pp collisions at LHC energy, Minimum Bias sample with low p_T tracks), each event containing up to 5000 particles hits on a cylindrical 12-layer silicon detector centred on the nominal collision point. The Hough space has been divided in four $4 \times 16 \times 1024 \times 1024$ hyper-dimensions along the A, B, θ, ϕ parameters.

The algorithm performance compared to a χ^2 fit method is shown in Fig. 1: $\rho = \sqrt{A^2 + B^2}$ and $\phi = \tan^{-1}(B/A)$ are shown together the corresponding resolutions.

Figure 1: Hough Transform algorithm compared to χ^2 fit. (a) ρ distribution; (b) ϕ distribution; (c) ρ resolution; (d) ϕ resolution.

3 GPGPU implementation

The HT tracking algorithm has been implemented in GPGPU splitting the code in two kernels, for Hough Matrix filling and searching local maxima on it. Implementation has been performed both in CUDA [?] and OpenCL [?]. GPGPU implementation schema is shown in Fig. 2.

Concerning the CUDA implementation, for the M_H filling kernel, we set a 1-D grid over all the hits, the grid size being equal to the number of hits of the event. Fixed the (θ, ϕ) values, a thread-block has been assigned to the A values, and for each A, the corresponding B is evaluated. The $M_H(A,B,\theta,\phi)$ matrix element is then incremented by a unity with an atomicAdd operation. The M_H initialisation is done once at first iteration with cudaMallocHost (pinned memory) and initialised on device with cudaMemcpy. In the second kernel, the local maxima search is carried out using a 2-D grid over the θ, ϕ parameters, the grid dimension being the product of all the parameters number over the maximum number of threads per...
block \((N_\phi \times N_\theta \times N_A \times N_B)/\text{maxThreadsPerBlock}\), and 2-D threadblocks, with \(\text{dimXBlock}=N_A\) and \(\text{dimYBlock}=\text{MaxThreadPerBlock}/N_A\). Each thread compares the \(M_H(A, B, \theta, \phi)\) element to neighbours and the bigger is stored in the GPU shared memory and eventually transferred back. With such big arrays the actual challenge lies in optimizing array allocation and access and indeed for this kernel a significant speed up has been achieved by tuning matrix access in a coalesced fashion, thus allowing to gain a crucial computational speed-up. The OpenCL implementation has been done using a similar structure used for CUDA. Since in OpenCL there is no direct pinning memory, a device buffer is mapped to an already existing \textit{memallocated} host buffer (\texttt{clEnqueueMapBuffer}) and dedicated kernels are used for matrices initialisation in the device memory. The memory host-to-device buffer allocation is performed concurrently and asynchronously, saving overall transferring time.

3.1 GPGPU results

<table>
<thead>
<tr>
<th>Device specification</th>
<th>NVIDIA GeForce GTX770</th>
<th>NVIDIA Tesla K20m</th>
<th>NVIDIA Tesla K40m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance (Gflops)</td>
<td>3213</td>
<td>3542</td>
<td>4291</td>
</tr>
<tr>
<td>Mem. Bandwidth (GB/s)</td>
<td>224.2</td>
<td>208</td>
<td>288</td>
</tr>
<tr>
<td>Bus Connection</td>
<td>PCIe3</td>
<td>PCIe3</td>
<td>PCIe3</td>
</tr>
<tr>
<td>Mem. Size (MB)</td>
<td>2048</td>
<td>5120</td>
<td>12228</td>
</tr>
<tr>
<td>Number of Cores</td>
<td>1536</td>
<td>2496</td>
<td>2880</td>
</tr>
<tr>
<td>Clock Speed (MHz)</td>
<td>1046</td>
<td>706</td>
<td>1502</td>
</tr>
</tbody>
</table>

Table 1: Computing resources setup.
The test has been performed using the NVIDIA [?] GPU boards listed in table ???. The GTX770 board is mounted locally on a desktop PC, the Tesla K20 and K40 are installed in the INFN-CNAF HPC cluster.

Figure 3: Execution timing as a function of the number of analysed hits. (a) Total execution time for all devices; (b) Total execution time for GPU devices only; (c) M_H filling time for all devices; (d) M_H filling timing for GPU devices only; (e) local maxima search timing for all devices; (f) local maxima search timing for GPU devices only; (g) device-to-host transfer time (GPUS) and I/O time (CPU).

The measurement of the execution time of all the algorithm components has been carried out as a function of the number of hits to be processed, and averaging the results over 100 independent runs. The result of the test is summarised in Fig. ???. The total time execution comparison between GPUs and CPU is shown Fig. ??a, while in Fig. ??b the details among GPUs results are shown. Compared to CPU, the GPU time execution is up to 15 times faster, and the result is enhanced for the CUDA algorithm version on the GTX770 device. Also, the GPUs timing are less dependent on the number of the hits with respect to CPU timing.

Instead the kernels execution is even faster, with two orders of magnitude GPU-CPU speed up, as shown in Figs. ??c and ??e. When comparing the kernel execution amongst GPUs (Figs. ??d and ??f), CUDA is observed to perform slightly better. Figure ??g shows the GPU-to-CPU data transfer timings for all devices together with the CPU I/O timing, giving a
clear idea of the dominant part of the execution time.

4 MULTI-GPU implementation

Assuming that the detector model we considered could have multiple readout boards working independently, it is interesting to split the workload on multiple GPUs. We have done this by splitting the transverse plane in four sectors to be processed separately and assuming the data across sectors are independent. Hence, a single HT is executed for each sector, assigned to a single GPU, and eventually the results are merged when each GPU finishes its own process. The main advantage is to handle lightweight Hough Matrices and output structures per sector. Only CUDA implementation has been tested, using the same workload schema discussed in Sec. 3, but using four $M_H(A, B, \theta)$, each matrix processing the data of a single ϕ sector.

![Figure 4: Execution timing as a function of the number of the hits for multi-GPU configuration.](image)

(a) Total execution time; (b) M_H filling timing; (c) local maxima search timing; (d) device-to-host transfer time.

4.1 MULTI-GPGPU results

The multi-GPU results are shown in Fig. ???. The test has been carried out in double configuration, separately, with two NVIDIA Tesla K20 and two NVIDIA Tesla K40. The overall
execution time is faster with double GPUs in both cases, even if timing does not scale with the number of GPUs. An approximate half timing is instead observed when comparing kernels execution times. On the other hand, the transferring time is almost independent on the number of GPUs, this leading the overall time execution.

5 Conclusions

A pattern recognition algorithm based on the Hough Transform has been successfully implemented on CUDA and OpenCL, also using multiple devices. The results presented in this paper show that the employment of GPUs in situations where time is critical for HEP, like triggering at hadron colliders, can lead to significant and encouraging speed-up. Indeed the problem by itself offers wide room for a parallel approach to computation: this is reflected in the results shown where the speed-up is around 15 times better than what achieved with a normal CPU. There are still many handles for optimising the performance, also taking into account the GPU board specifications and the used architecture. Next steps of this work go towards an interface to actual experimental frameworks, including the management of the experimental data structures and testing with more graphic accelerators and coprocessor.

References