
GPGPU

for track finding

in High Energy Physics

L. Rinaldi, M. Belgiovine, R. Di Sipio, A. Gabrielli, M. Villa

(Bologna University and INFN)

M. Negrini, F. Semeria, A. Sidoti

(INFN Bologna)

S. A. Tupputi

(INFN CNAF)

GPU Computing in High Energy Physics

Pisa, 10-12/9/2014

Outlook

A massive parallel approach based on GPGPU can be relevant for

Tracking in High Energy Physics

 Fast tracking is suitable for realtime data selection

In this contribution we will show a track finding algorithm based on the

Hough Transform

 10/09/14 L. Rinaldi - GPGPU for track finding and triggering in High Energy Physics 1

Tracking in HEP experiments

Model based on a typical central track detector:

• Multi-layer cylindrical shape, with axis on the beamline and centered on the
nominal interaction point

• Uniform magnetic field with field lines parallel to the beamline

• Charged particles will have helix trajectories (circles in the transverse plane
wrt z-axis)

Several approaches used to extract track parameters from experimental data
(fitting, associative memories, etc.)

Hough Transform (HT) is yet another method

HT is a pattern recognition technique (60’s) for feature extraction in image
processing

The advantage: very massive parallelisation could be applied

10/09/14
L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
2

The Hough Transform

10/09/14
L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
3

A

B

B =
xH

2 + yH

2 - 2AxH

2yH

xH

2 + yH

2 -2AxH -2ByH = 0

x

y

(xH,yH)

(0,0)



In real space there are ∞ circles

passing for each hit (xH,yH) and (0,0):

The point of coordinates (A,B)

is the center of the circle

In the A-B parameter space (Hough

space), for each hit, all the ∞ circles

are represented with straight lines:

The Hough Transform

10/09/14
L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
4 10/09/14

L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
4

x

y

(x1,y1)

(0,0)

(x2,y2)


 

(x3,y3)


(x4,y4)

First step: discretize the Hough space with a NA×NB Hough Matrix (or Vote

Matrix)

For each hit, all the matrix elements satisfying

are incremented by one unity (or weighted value).

Accumulation points with high vote will correspond to real tracks

A

B
Accumulation

point

B =
xH

2 + yH

2 - 2AxH

2yH

Hits lying on a circle  the

corresponding lines in the

Hough Space meet in a

(accumulation) point

The Hough Transform

10/09/14
L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
5 10/09/14

L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
5

Second step: find local maxima of the Hough Matrix (each maximum

corresponding to a real track)

10 hits, 1 track

Very simple case

100 hits, 8 tracks, a little bit complex

(some cuts needed)

Red=accumulation

point

Test description

• Stand-alone testbed, not (yet) interfaced to any
experiment framework

• Model based on a cylindrical 12-layer Si detector

– 100 simulated events (pp collisions @ LHC
energy, Minimum Bias sample with low p_T
tracks)

– Each event contains up to 5000 hits and O(100)
tracks

– Known quantities: x,y,z coord’s of the hits

– Hough-space divided in 4 iper-dimensions:

 the A and B parameters and the transverse (f)
 and longitudinal (q) planes

– 4x16x1024x1024 MH(f,q,A,B) Hough-matrix

10/09/14
L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
6

Computing resources

10/09/14
L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
7

Device

specification

NVIDIA

GeForce

GTX770

NVIDIA

Tesla K20m

(2x)

NVIDIA

Tesla K40m

(2x)

Performance (Gflops) 3213 3524 4291

Mem. Bandwidth

(GB/s)

224.3 208 288

Connection PCIe3 PCIe3 PCIe3

Mem. Size (MB) 2048 5120 12228

Number of Cores 1536 2496 2880

Clock Speed (MHz) 1046 706 745

INFN-CNAF HPC-Cluster Local resources

HT algorithm performance

10/09/14
L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
8

Generated

R
e
c
o
n
s
tr

u
c
te

d

Number of tracks

Number of reconstructed

tracks strongly dependent on

algorithm parameters:

• Hough Matrix Dimension

• Vote threshold

Reconstruction slightly

overestimated:

A solution could be to add

more constraints from other

event features

HT vs c2 fit

10/09/14
L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
9

rHT - r
c 2

r
c 2

jHT -j
c 2

j
c 2

j = arctan B A()

r = A2 + B2

Track radius r spectrum Track center angle j

r resolution j resolution

sr 11% sj 0.5%

CUDA 6.0 coding

• 1D grid over hits

 (grid dimension = number of hits)

• At a given (f, q), threadblock over A .

 For each A, a corresponding B is evaluated

• The MH(f, q, A, B) Hough-Matrix element is incremented by

a unity with CUDA atomicAdd()

• Matrix initialization once at first iteration with

cudaMallocHost (pinned memory) and initialized on device

with cudaMemset

10/09/14

L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
10

Hough Matrix filling (Vote):

CUDA 6.0 coding

10/09/14
L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
11

• 2D-grid over (f, q)

Grid dimension: Nf×(Nq*NA*NB/maxThreadsPerBlock)

• 2D-threadblock, with dimXBlock= NA, dimYBlock=maxThreadsPerBlock/NA

• Each thread compares the MH(f, q, A, B) element to neighbours, the bigger is
stored in the GPU shared memory and eventually transferred back.

• I/O demanding – several kernel may access matrix together

Local Maxima search

OpenCL 1.1 coding

10/09/14
L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
12

• Translation from CUDA to OpenCL had to be done carefully:

 No direct pinning memory API for vote and relative maxima

 matrices:

– The OpenCL workaround: mapping a device buffer to an

already memalloc’ed host buffer

– Ad hoc kernels used for initializing the matrices in the

device memory

• Such kernels’ execution times go into initialization time

• Memory buffers H2D allocation performed concurrently and

asynchronously in OpenCL, saving overall transferring time

• Respect to CUDA, working principle of the kernels is

unchanged, except for block/thread settings

OpenCL 1.1 coding

10/09/14
L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
13

• The block/thread counting OpenCL APIs made such arrangement more
useful and easy-to-manage

– Local and global thread (work-items in OpenCL) numbers are
considered instead of thread and blocks (work-group in OpenCL)

• Indexes have been managed so to have coalesced memory kernels I/O
access thus speeding up overall execution

– Useful both in OpenCL and CUDA versions

Total execution time vs CPU

10/09/14
L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
14

GPU%CPU speed up over 15x

CPU timing scales with number of hits

GPU timing almost independent on number of hits

GPUs vs CPU GPUs only

C++

CUDA

OpenCL

CUDA vs OpenCL

10/09/14
L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
15

Best performance of our code on

GTX770, CUDA-coded

For large numbers hits, CUDA performs

better on all devices

Total execution time

CUDA

OpenCL

Kernel: Hough Matrix Filling

10/09/14
L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
16

Up to GPU%CPU 200x speedup

Linear dependence on number of

hits

Good performace of Tesla’s

OpenCL code better optimized on

nested loop

GPUs vs CPU

GPUs only

C++

CUDA

OpenCL

Kernel: Relative Maxima

10/09/14
L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
17

GPUs vs CPU

Up to GPU%CPU 60x speedup

Linear dependence on number of

hits

Good perfomance on Tesla k40m

CUDA and OpenCL comparable

when processing large numbers of

hits

GPUs only

C++

CUDA

OpenCL

Host  Device throughput

10/09/14
L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
18

The bottleneck

CPU I/O much faster than GPUs

Our code transfers data faster

on the GeForce GTX770

CUDA access to memory faster than

OpenCL

C++

CUDA

OpenCL

Multi-GPU configuration

10/09/14
L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
19

Physical motivation:

• split the transverse plane in

sectors (at detector-readout

level).

• Each sector processed

separately (data independent

across sectors)

A single Hough Transform executed

for each sector (assigned to a single

GPU)

Results merged when each GPU

finishes its own process

Benefit:

• HT execution per sector

overlapped

• Lightweight Hough Matrices and

output structures per sector

Multi-GPU configuration

10/09/14
L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
20

Similar workload

schema with 4

Hough Matrixes

MH(q,A,B)

4x(16x1024x1024)

CUDA

implementtion only

Multi-GPU results

10/09/14
L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
21

GPUCPU throughput Relative Max Search

Total execution time Hough Matrix filling

Test performed separtely with 2

Tesla k20m and 2 k40m (using

CUDA)

Multi-GPU faster than single-GPU

but not elevate gain

2x Speedup observed on kernels

execution (MH filling for large

number of hits)

CUDA unified memory NOT used

(specified instruction for memory

access needed on multiple

devices)

Single GPU

Double GPU

Summary and lesson learned

• Use of GPGPU can dramatically reduce track

reconstruction time

– A pattern recognition algorithm based on the Hough

Transform has successfully implemented on CUDA

and OpenCL, also using multiple devices

• Good performance obtained on pure computational

algorithms

• GPUCPU transfers still conditioning total execution

time

• Many handles for optimizing performance  Dependent

on the GPU board specifications

10/09/14
L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
22

Next steps

• Hough Transform method studied on a stand-

alone simulation

– Interface to a HEP experiment framework

(both software and hardware)

– Test with other accelerators/coprocessors

– Introduce parallel reduction algorithm into

RelMax kernel

10/09/14
L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
23

backup

10/09/14
L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
24

CUDA && OpenCL

10/09/14
L. Rinaldi - GPGPU for track finding and

triggering in High Energy Physics
25

• CUDA code ported to OpenCL1.1 (included in CUDA drivers)

• Each language has its own advantages, not necessarily unique:

– CUDA and OpenCL rather than CUDA or OpenCL

• Advantages (non-exhaustive list) of OCL can be drawn from

– Kernel just-in-time (JIT) compilation, allowing to optimize the kernel
execution for the actual employed device

– Easy-to-set asynchronous behavior, thus allowing to fully exploit
resources

• Asynchrony can go all the way with GPUs allowing to I/O while computing kernels
(not in this talk)

– Etc…

• Disadvantages

– Harder learning curve than CUDA

– JIT compilation increases debug time

– Not all the HW features may be taken into account

– Etc…

