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Outlook 

A massive parallel approach based on GPGPU can be relevant for 

Tracking in High Energy Physics 

 

 

 

 

 

 

 

 

  Fast tracking is suitable for realtime data selection 

 

In this contribution we will show a track finding algorithm based on the 

Hough Transform 
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Tracking in HEP experiments 

 

Model based on a typical central track detector: 

• Multi-layer cylindrical shape, with axis on the beamline and centered on the 
nominal interaction point 

• Uniform magnetic field with field lines parallel to the beamline 

• Charged particles will have helix trajectories (circles in the transverse plane 
wrt z-axis) 

 

Several approaches used to extract track parameters from experimental data 
(fitting, associative memories, etc.)  

 

Hough Transform (HT) is yet another method 

 

HT is a pattern recognition technique (60’s) for feature extraction in image 
processing 

 

The advantage: very massive parallelisation could be applied 
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The Hough Transform 
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In real space there are ∞ circles 

passing for each hit (xH,yH) and (0,0): 

 

 

 

The point of coordinates (A,B)  

is the center of the circle 

In the A-B parameter space (Hough 

space), for each hit, all the ∞ circles 

are represented with straight lines:   



The Hough Transform 
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First step: discretize the Hough space with a NA×NB Hough Matrix (or Vote 

Matrix)  

 

For each hit, all the matrix elements satisfying  

 

are incremented by one unity (or weighted value). 

 

Accumulation points with high vote will correspond to real tracks 
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B 
Accumulation 
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Hits lying on a circle  the 

corresponding lines in the 

Hough Space meet in a 

(accumulation) point  



The Hough Transform 
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Second step: find local maxima of the Hough Matrix (each maximum 

corresponding to a real track) 

10 hits, 1 track 

Very simple case 

100 hits, 8 tracks, a little bit complex 

(some cuts needed) 

Red=accumulation 

point 



Test description 

• Stand-alone testbed, not (yet) interfaced to any 
experiment framework 

• Model based on a cylindrical 12-layer Si detector 

– 100 simulated events (pp collisions @ LHC 
energy, Minimum Bias sample with low p_T 
tracks) 

– Each event contains up to 5000 hits and O(100) 
tracks 

–  Known quantities: x,y,z coord’s of the hits 

–  Hough-space divided in 4 iper-dimensions:  

 the  A and B parameters and the transverse (f) 
 and longitudinal (q) planes  

– 4x16x1024x1024 MH(f,q,A,B) Hough-matrix 

10/09/14 
L. Rinaldi - GPGPU for track finding and 

triggering in High Energy Physics  
6 



Computing resources 
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Device 

specification 

NVIDIA  

GeForce 

GTX770 

NVIDIA  

Tesla K20m 

(2x) 

NVIDIA 

Tesla K40m 

(2x) 

Performance (Gflops) 3213 3524 4291 

Mem. Bandwidth 

(GB/s) 

224.3 208 288 

Connection PCIe3 PCIe3 PCIe3 

Mem. Size (MB) 2048 5120 12228 

Number of Cores 1536 2496 2880 

Clock Speed (MHz) 1046 706 745 

INFN-CNAF HPC-Cluster Local resources 



HT algorithm performance 
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Number of tracks 

Number of reconstructed 

tracks strongly dependent on 

algorithm parameters: 

• Hough Matrix Dimension 

• Vote threshold 

 

Reconstruction slightly 

overestimated: 

 

A solution could be to add 

more constraints from other 

event features 



HT vs c2 fit 
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j = arctan B A( )

r = A2 + B2

Track radius r spectrum Track center angle j 

r resolution j resolution 

sr 11% sj  0.5% 



CUDA 6.0 coding 

• 1D grid over hits  

  ( grid dimension = number of hits) 

• At a given (f, q), threadblock over A . 

 For each A, a corresponding B is evaluated 

• The MH(f, q, A, B) Hough-Matrix element is incremented by 

a unity with CUDA atomicAdd()  

• Matrix initialization once at first iteration with 

cudaMallocHost (pinned memory) and initialized on device 

with cudaMemset 
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Hough Matrix filling (Vote): 

 



CUDA 6.0 coding 
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• 2D-grid over (f, q)  

Grid dimension: Nf×(Nq*NA*NB/maxThreadsPerBlock) 

• 2D-threadblock, with dimXBlock= NA,  dimYBlock=maxThreadsPerBlock/NA 

• Each thread compares the MH(f, q, A, B) element to neighbours, the bigger is 
stored in the GPU shared memory and eventually transferred back. 

• I/O demanding – several kernel may access matrix together 

  

Local Maxima search 



OpenCL 1.1 coding 
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• Translation from CUDA to OpenCL had to be done carefully: 

 No direct pinning memory API for vote and relative maxima 

 matrices: 

– The OpenCL workaround: mapping a device buffer to an 

already memalloc’ed host buffer 

– Ad hoc kernels used for initializing the matrices in the 

device memory 

• Such kernels’ execution times go into initialization time 

• Memory buffers H2D allocation performed concurrently and 

asynchronously in OpenCL, saving overall transferring time 

• Respect to CUDA, working principle of the kernels is 

unchanged, except for block/thread settings 

 

 



OpenCL 1.1 coding 
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• The block/thread counting OpenCL APIs made such arrangement more 
useful and easy-to-manage 

– Local and global thread (work-items in OpenCL) numbers are 
considered instead of thread and blocks (work-group in OpenCL) 

• Indexes have been managed so to have coalesced memory kernels I/O 
access thus speeding up overall execution 

– Useful both in OpenCL and CUDA versions 



Total execution time vs CPU 
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GPU%CPU speed up over 15x 

 

CPU timing scales with number of hits 

 

GPU timing almost independent on number of hits 

GPUs vs CPU GPUs only 

C++ 

CUDA 

OpenCL 

 



CUDA vs OpenCL 
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Best performance of our code on 

GTX770, CUDA-coded 

 

For large numbers hits, CUDA performs 

better on all devices 

Total execution time 

CUDA 

OpenCL 

 



Kernel: Hough Matrix Filling 
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Up to GPU%CPU 200x speedup 

 

Linear dependence on number of 

hits 

Good performace of Tesla’s 

 

OpenCL code better optimized on 

nested loop  

GPUs vs CPU 

GPUs only 

C++ 

CUDA 

OpenCL 

 



Kernel: Relative Maxima 
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GPUs vs CPU 

 

Up to GPU%CPU 60x speedup 

 

Linear dependence on number of 

hits 

Good perfomance on Tesla k40m 

 

CUDA and OpenCL comparable 

when processing large numbers of 

hits 

GPUs only 

C++ 

CUDA 

OpenCL 

 



Host  Device throughput 
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The bottleneck 

 

CPU I/O much faster than GPUs 

 

 

Our code transfers data faster 

on the GeForce GTX770 

 

 

CUDA access to memory faster than 

OpenCL  

 

C++ 

CUDA 

OpenCL 

 



Multi-GPU configuration 
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Physical motivation:  

• split the transverse plane in 

sectors (at detector-readout 

level). 

•  Each sector processed 

separately (data independent 

across sectors) 

 

A single Hough Transform executed 

for each sector (assigned to a single 

GPU) 

 

Results merged when each GPU 

finishes its own process 

Benefit: 

• HT execution per sector 

overlapped 

• Lightweight Hough Matrices and 

output structures per sector 



Multi-GPU configuration  
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Similar workload 

schema with 4 

Hough Matrixes 

MH(q,A,B)   

 

4x(16x1024x1024) 

 

CUDA 

implementtion only    



Multi-GPU results 
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GPUCPU throughput Relative Max Search 

Total execution time Hough Matrix filling 

Test performed separtely with 2 

Tesla k20m and 2 k40m (using 

CUDA) 

 

 

Multi-GPU faster than single-GPU 

but not elevate gain 

 

2x Speedup observed on kernels 

execution (MH filling for large 

number of hits) 

 

 

CUDA unified memory NOT used 

(specified instruction for memory 

access needed on multiple 

devices) 

Single GPU 

Double GPU 

 



Summary and lesson learned 

• Use of GPGPU can dramatically reduce track 

reconstruction time 

– A pattern recognition algorithm based on the Hough 

Transform has successfully implemented on CUDA 

and OpenCL, also using multiple devices 

 

• Good performance obtained  on pure computational 

algorithms 

• GPUCPU transfers still conditioning total execution 

time 

• Many handles for optimizing performance  Dependent 

on the GPU board specifications 
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Next steps 

• Hough Transform method studied on a stand-

alone simulation 

– Interface to a HEP experiment framework 

(both software and hardware) 

– Test with other accelerators/coprocessors 

– Introduce parallel reduction algorithm into 

RelMax kernel 
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backup 
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CUDA && OpenCL 
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• CUDA code ported to OpenCL1.1 (included in CUDA drivers) 

• Each language has its own advantages, not necessarily unique: 

– CUDA and OpenCL rather than CUDA or OpenCL 

 

• Advantages (non-exhaustive list) of OCL can be drawn from 

– Kernel just-in-time (JIT) compilation, allowing to optimize the kernel 
execution for the actual employed device 

– Easy-to-set asynchronous behavior, thus allowing to fully exploit 
resources 

• Asynchrony can go all the way with GPUs allowing to I/O while computing kernels 
(not in this talk) 

– Etc… 

• Disadvantages 

– Harder learning curve than CUDA 

– JIT compilation increases debug time 

– Not all the HW features may be taken into account 

– Etc… 

 

 


