Fast event generation on GPU

Junichi Kanzaki (KEK) GPU Computing in High Energy Physics Sep. 10, 2014, Univ. of Pisa, Italy

Contents

- Introduction
- Computation of Cross Sections on GPU
- VEGAS and BASES / SPRING
- Integration to MG5
- Summary & Prospects

Introduction

Motivation

- The mount of LHC data is increasing.
 - -5fb⁻¹ in 2011 -> 22fb⁻¹ in 2012
- High statistics data
 - -> Reduction of systematic errors becomes essential for precise physics measurements.
- Better understandings of backgrounds from QCD multi-jet productions
 - -> Fast event generation by changing model parameters

Overview

- Since the beginning of 2008, we have been working on the development of the code to compute amplitude/cross sections of physics processes on GPU.
- Making use of high level parallelism of GPU, we intend to improve the performance of the amplitude/cross section computations.
- We converted the FORTRAN HELAS code into the CUDA code (HEGET) which can be executed on the NVIDIA's GPU.
- Basic test of results and performance of the GPU computation was done with the QED (n-photon) and QCD (n-jet) production processes at the LHC energy.

Overview (cont'd)

- GPU versions of Monte-Carlo integration and event generation packages, BASES/SPRING (VEGAS), were developed and their performances were tested by SM processes using HEGET.
- We converted the FORTRAN HELAS code into the CUDA code (HEGET) which can be executed on the NVIDIA's GPU.
- Test of fast simulation code, PGS, was done on GPU.
- Integration to MG5: HEGET -> ALOHA generated code. Preparing interface for the SM processes.

Bibliography

- QED: K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater and T. Stelzer, Eur. Phys. J. C66 (2010) 477, e-print <u>arXiv:0908.4403</u>.
- QCD: K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater and T. Stelzer, Eur. Phys. J. C70 (2010) 513, e-print <u>arXiv:0909.5257</u>.
- MC integration (BASES & VEGAS): J. Kanzaki, Eur. Phys. J. C71 (2011) 1559, e-print <u>arXiv:1010.2107</u>.
- SM: K. Hagiwara, J. Kanzaki, Q. Li, N. Okamura, T. Stelzer, Eur.Phys.J. C73 (2013) 2608 (2013), e-print <u>arXiv:1305.0708v2</u>.
- Event generation (SPRING): in preparation

Our Computing Environment

	C2075	GTX580	GTX285	GTX280	9800GTX
Streaming Processors	448	512	240	←	128
Global Memory	5.4GB	I.5GB	2GB	IGB	500MB
Constant Memory	64KB	64KB	64KB	Ŧ	64KB
Shared Memory/block	48KB	48KB	I6KB	+	I6KB
Registers/block	32768	32768	16384	↓	8192
Warp Size	32	32	32	Ļ	32
Clock Rate	I.I5GHz	I.54GHz	I.30GHz	Ļ	I.67GHz

- NVDIA GPUs + CUDA (v4 and earlier)
- C2075: 1.03 TFLops (single), 515 GFlops (double)
- All CPU programs compared with GPU run with single core.

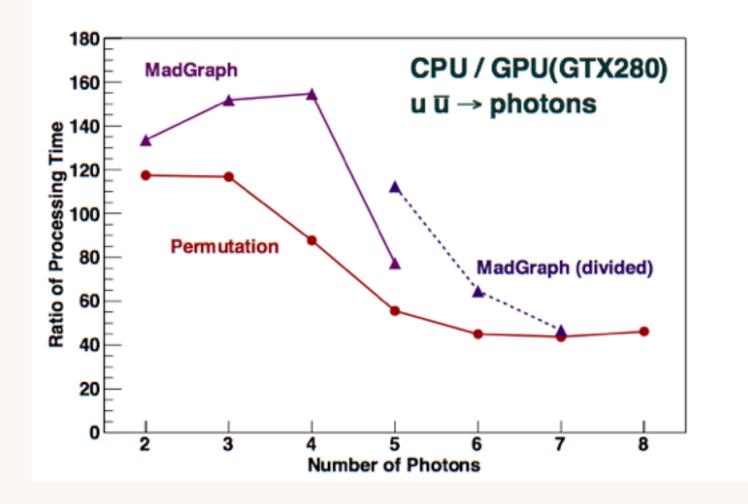
Computation of Cross Sections on GPU

Test with QED and QCD process

- Test with simple final states:
 - -n-photon production (QED)
 - -n-jet production (QCD)
- Development of basic components to calculate cross sections on GPU (CUDA)
 - -Amplitude calculation: Heget (based on HELAS in FORTRAN)
 - -Phase space generation
 - -Random number generation

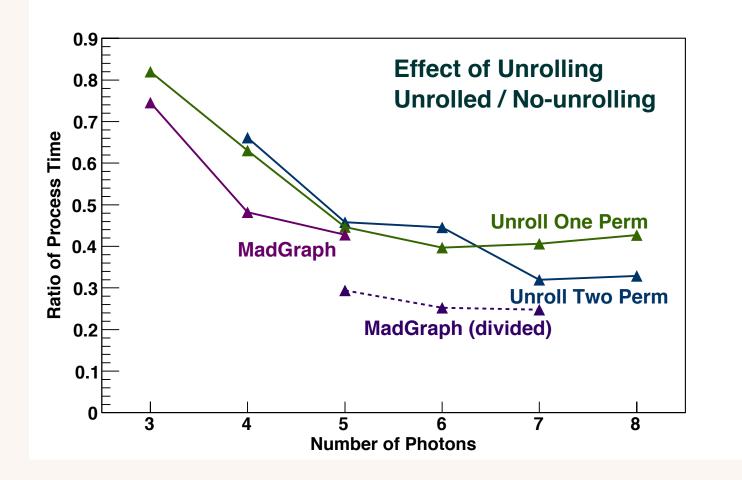
*Simple event loop program to calculated cross sections

Test with QED and QCD process

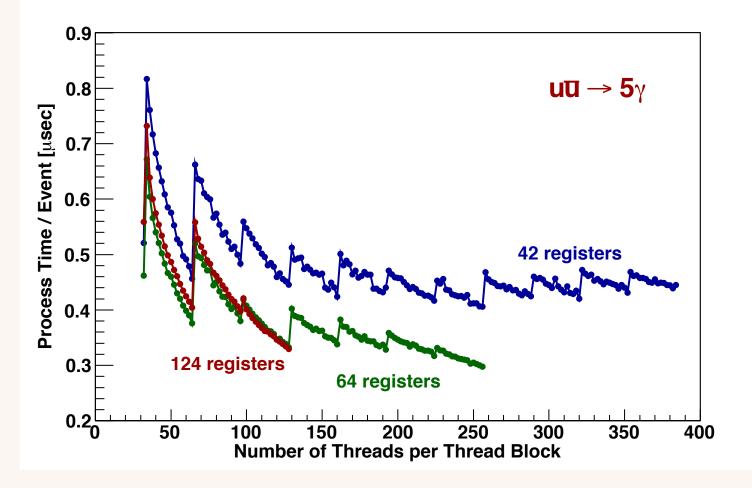

- Calculated cross sections are checked by MadGraph.
- Compare process time / loop between CPU and GPU.
- Learned and experienced "GPU computation":
 - -double/single performance ratio
 - -parameter dependence of performance: register allocation, no.of threads/block
 - -loop unrolling

QED Processes

- uu~ -> n-photons
- Test with two kinds of amplitude:
 - -MadGraph amplitude in FORTRAN -> C/CUDA
 - -Amplitude written by a loop with permutations of photons (short)
- Divide a long amplitude program into smaller pieces
 -> successive kernel calls


# photons	# diagrams = (# photons)!		
2	2		
3	6		
4	24		
5	120		
6	720		
7	5040		
8	40320		

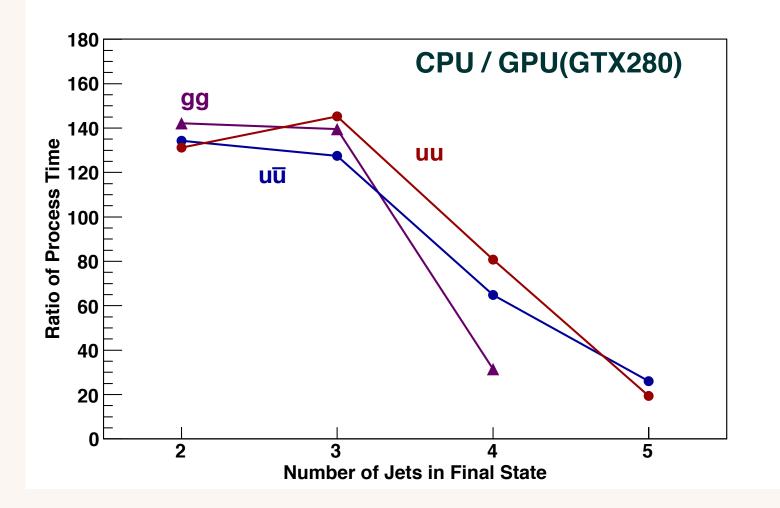
Event process time ratio (QED)


 Large reduction of process time / event loop from CPU to GPU (single precision)

Effect of Unrolling Loops

The loop amplitude program with permutations
Process time ratio to the no-unrolling program

Registers and thread block (GTX280)


- 5-photon amplitude by MG4
- Performance depends on register allocation and thread block size (multiples of 32)

J. Kanzaki: GPU in HEP, Sep. 10, 2014, Univ. of Pisa, Italy

- •gg>5g: the program cannot be executed on GPU.
- uu~>n-gluons, gg>n-gluons, uu>uu+gluons

QCD Processes						
# final	gg		uu~		uu	
jets	#diagram	#color	#diagram	#color	#diagram	#color

Ratio of Process Time (QCD)

• Performance is degraded due to the size of amplitude and color factor multiplications.

BASES / SPRING and VEGAS

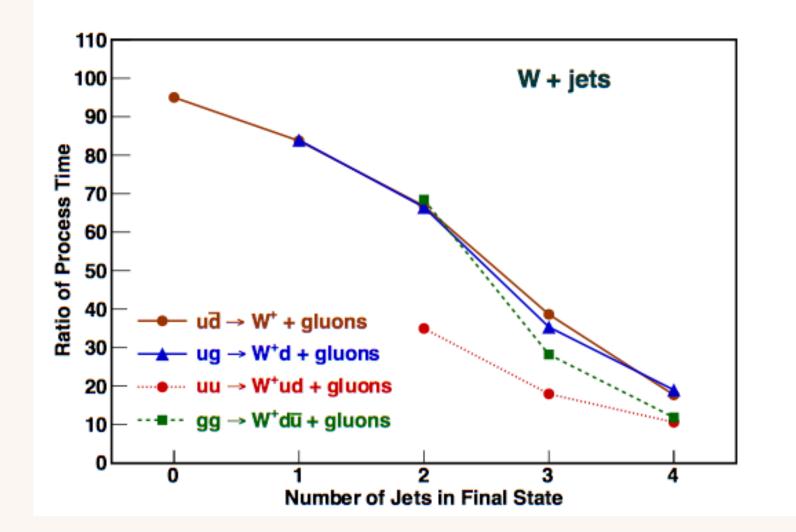
Monte Carlo integration on GPU

- For the practical event generation on GPU
 -> GPU versions of BASES/SPRING
- Application of GPU to MC integration: each GPU thread evaluates function value at one space point.
- Test of BASES programs using SM processes with decaying massive particles.

• Compare total process time of original FORTRAN on CPU and CUDA on GPU, and cross sections between MG5 and BASES (CPU and GPU).

Test with SM Processes

- We started more practical tests with SM processes using BASES.
- Includes decay of all massive particles:
 W>l(e, μ)v, Z->ll (e, μ), t->W(lv)b, H->ττ
- Automatic conversion of MadGraph amplitude matrix.f -> CUDA functions (MG2CUDA)
 - -> conversion program is now written in Python.
- We fixed kernel parameters: no. of register=64 and thread block size=256
- Double precision computations

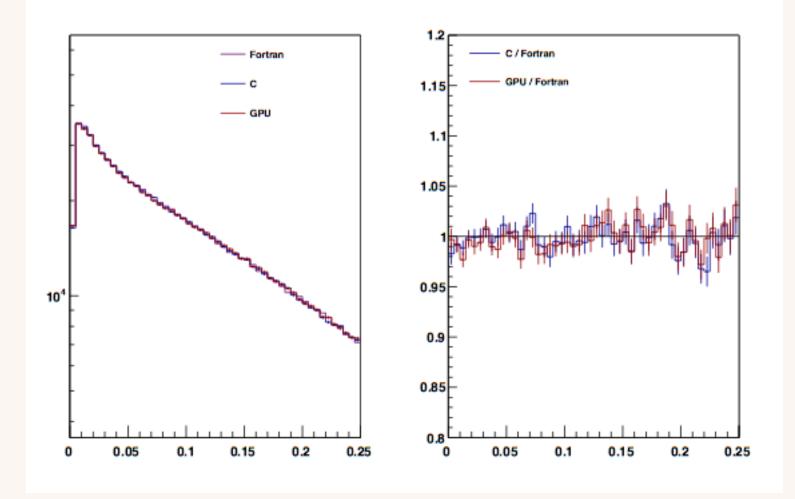

Test with SM Processes (cont'd)

- •W, Z + up to 4jets:
 - $-ud \gg W^+$, $ug \gg W^+d$, $uu \gg W^+ud$, $gg \gg W^+du \gg$
 - -uu~>Z, ug>Zu, uu>Zuu, gg>Zuu~
- •WW, WZ, WW + up to 3jets:
 - -uu~>W⁺W⁻, ug>W⁺W⁻u, uu>W⁺W⁻uu, uu>W⁺W⁺dd, gg->W⁺W⁻uu~
 - $-ud \gg W^{T}Z, ug \gg W^{T}Zd, uu \gg W^{T}Zud, gg \gg W^{T}Zdu^{T}Zud$
 - -uu~>ZZ, ug>ZZd, uu->ZZuu, gg>WWuu~
- tt~+up to 3jets: uu~>tt~, ug>tt~u, uu>tt~uu, gg>tt~

Test with SM Processes (cont'd)

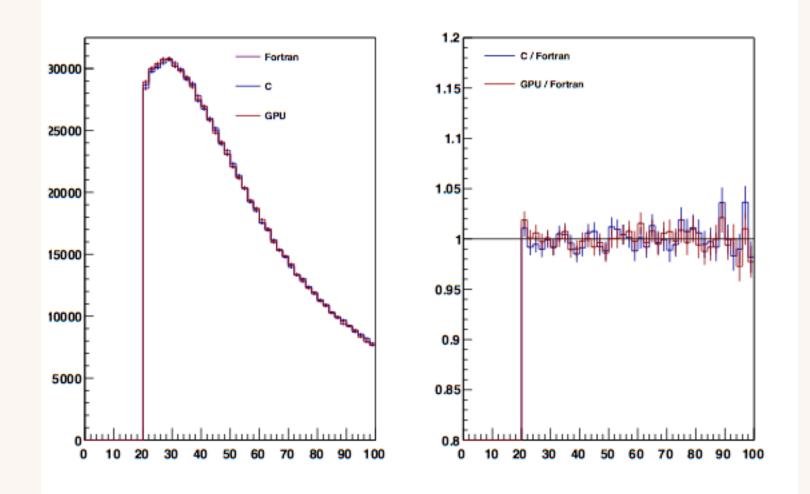
- HW, HZ+up to 3jets:
 - $-ud \rightarrow HW^{+}$, $ug \rightarrow HW^{+}d$, $uu \rightarrow HW^{+}ud$, $gg \rightarrow HW^{+}du \rightarrow HW^{+}du$
 - -uu~>HZ, ug>HZu, uu>HZuu, gg>HZuu~
- Httx+2jets: uu~>Htt~, ug>Htt~u, uu>Htt~uu, gg>Htt~
- H(WBF)+2jets: ud>Hud, uu>Huu, ug>Hudd~, gg>Huu~dd~
- HH+up to 3jets: ud->HHud, uu->HHuu
- HHH+up to 2jets: ud->HHHud, uu->HHHuu

Ratio of Total Integration Time

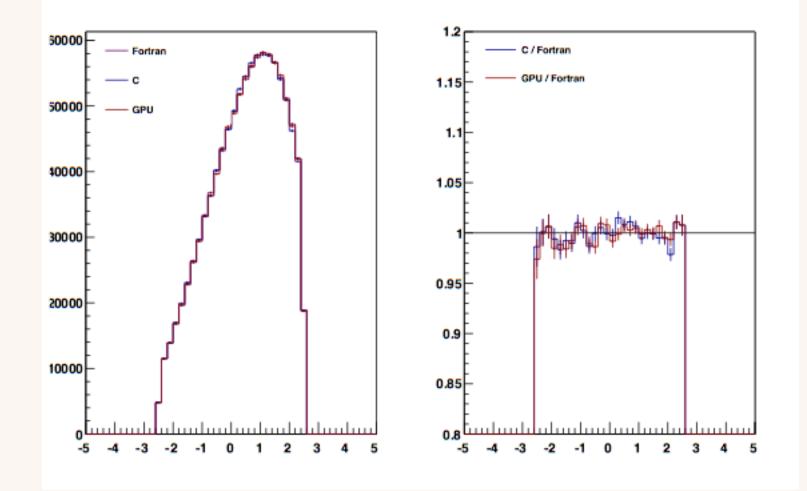


Comparison of total execution time in double precision.

Event Generation by SPRING


- Generate unweighted events based on BASES results
- •One thread generates one event in a certain hyper-cell of multi-dimension space (acceptance-rejection):
 - -> the most inefficient hyper-cell determines the total process time
- Iterative reuse of threads: threads that have finished event generation can be assigned to inefficient hyper-cell at the next iteration
 - -> improves total performance

Generated distributions ud~ -> W⁺ (->mu⁺ vm) + 3-gluons (10⁶ events). x1 (energy fraction of u):

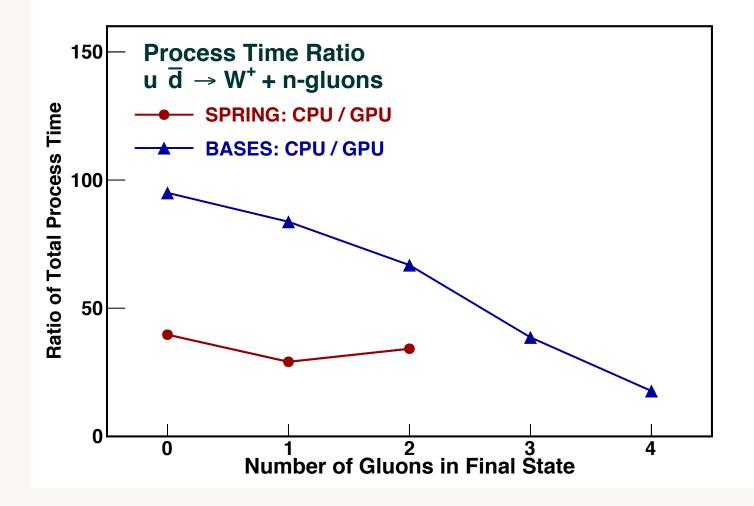

Generated distributions

• p_T (mu⁺):

Generated distributions

• eta (mu⁺):

SPRING performance


• Total execution time [sec]: generation of unweighted 10⁶ events. Double precision results.

No. of gluons	FORTRAN	C2075	CPU/GPU
0	9.72	0.245	40
I	43.2	I.487	29
2	4224.8	123.6	34

More studies are necessary for processes with larger number of gluons.

Ratio of process time (C2075)

• Very preliminary results on C2075 in double precision.

Integration to MG5

HEGET for MG5

- Heget was developed on the bases of HELAS in FORTRAN.
- New "HEGET" package on GPU is based on C++ codes automatically generated by "ALOHA".
 At present a few modifications are necessary.
 -> feedback for the GPU version of "ALOHA"
 - -> Install to official "ALOHA" until the end of this year.
- •Now preparing online interface for the generation of SM background processes.

MG5 on GPU

- Necessary parts for event generation on GPU are ready for use. But, still more works are necessary to provide an integrated system.
- Goal:
 - -start from SM processes with arbitrary cuts on final states for background event generations.
 - -provide interface like "Wjjjj".
 - -provide generation of downloadable code generation and hopefully online event generations.

Summary & Prospects

Summary & Prospect

 Program components of cross section computation and event generation based on MadGraph system can be executed on GPU with high performance:

-GPU version of VEGAS and BASES/SPRING

- Improvement factor of performance can become between 10~100 for total execution time of BASES integration.
- Improvement of SPRING performance for mutijets processes can be expected.

Summary & Prospect

- Integration to MG5 is now in progress.
 - -will provide GPU codes for the generation of SM processes
- Hardware is improving and more applications of GPU to HEP software should be useful.
- Our products have been hosted with "<u>madgraph.kek.jp</u>". We lost the host due to hardware troubles, and now are trying to recover the site as soon as possible.