

A FPGA-based Network Interface Card with GPUDirect enabling real-time GPU computing in HEP experiments.

Alessandro Lonardo (INFN Roma1) On behalf of the NaNet collaboration

GPU Computing in High Energy Physics Pisa 10-12 September 2014

1

GPUs in HEP Low Level Triggers

- Hard real-time constraints, system has to respond strictly within a given time budget to avoid data loss.
- System Throughput: have GPUs enough computing power to take trigger decision at tens of MHz events rate?

Yes. (Choosing the appropriate algorithm and number of GPUs in the system...)

System Latency:

□ Is GPUs processing latency small and stable enough?

Yes. (Once data are available in their own internal memories...)

Is the latency of data communication from read-out systems to GPUs memories small and stable enough?

In our experience this is the most critical task in terms of latency fluctuations of whole system.

Using GPUs in the NA62 L0 Trigger

L0 trigger:

- FPGA custom-design
- 10 MHz to 1 MHz
- Max latency 1 ms

Replace custom hardware with a GPU-based system performing the same task but:

- Programmable
- >Upgradable
- Scalable
- Cost effective
- >Exploit GPUs computing power to implement more selective trigger algorithms.

Using GPUs in the NA62 L0 Trigger: the RICH Detector Case Study

partial circular hit patterns.

GPU in HIGH ENERGY PHYSICS - Pisa 10/12 SEP 2014 - Alessandro Lonardo (INFN Roma 1)

NA62 RICH L0 Trigger Processor Requirements

- □ Network Protocol: UDP on GbE channels (4).
- System Throughput: 10 M events/s
 - Network bandwidth < 500 MB/s
- □ System response latency < 1 ms
 - determined by the size of Readout Board memory buffer storing event data to be passed to higher trigger levels.

NA62 GPU-Based RICH Level 0 TP System Latency Estimation

System Latency Estimation Processing Latency

Communication Latency Standard GbE NIC / SW Stack

lat_{comm}: time needed to receive input event data from GbE NIC to GPU memory.

Standard GbE NIC / SW Stack Communication Latency Fluctuations

- Challenge:
 - Lower data communication task latency and its fluctuations.
- How?
 - 1. Injecting directly data from the NIC into the GPU memory **without intermediate buffering.**
 - 2. **Offloading** the CPU from network stack protocol management, eliminating possible OS jitter effects.

NaNet design:

- Re-use the part of the APEnet+ design, implementing a PCIe interface with GPUDirect P2P/RDMA capability.
- Support **multiple link** technologies and network protocols.
- Provide a network stack protocol management unit (e.g. UDP Offloading Engine).
- Use FPGA resources to perform processing on data stream (e.g. reformat data on-the-fly in a GPU-friendly fashion).

APEnet+: a 3D NIC for HPC with GPUdirect P2P/RDMA capability

X+

Х-

Y+ Y-

APEnet+ Card

- FPGA based (ALTERA EP4SGX290)
- PCI Express x16 slot, x8 gen2 signaling
- Fully bidir 3D torus links, 34 Gbps/channel

APEnet+ Logic:

- Network Interface
 - NIOS II 32 bit uP
 - **RDMA** engine
 - Virtual Memory Management support
 - GPU I/O accelerator.

GPUDirect P2P (and RDMA)

- PCIe P2P protocol between Nvidia Fermi/ Kepler devices and APEnet+
- GPUDirect P2P allows direct data exchange on the PCIe bus with no CPU involvement

 \rightarrow Latency reduction for small messages

NaNet Design – I/O Interface

- Physical Link Coding
 - Standard: 1GbE (1000Base-T), 10GbE (10Base-R).
 - Custom: APElink (20 Gb/s QSFP), KM3link Det. Lat. (2.5 Gb/s optical).
- Protocol Manager
 - Data/Network/Transport layers offloader module.
 - UDP, Time Division Multiplexing.
- Data Processing
 - Application dependent processing on data stream.
 - NA62 Decompressor: re-format event data (data size and alignment).
- APEnet Protocol Encoder
 - protocol adaptation between onboard and off-board protocol.
 - In RX path generates CPU/GPU destination memory addresses for incoming pkts.

NaNet Design – Router

- 5 ports full crossbar switch
 - Router: dynamically interconnects ports.
 - Arbitration: resolve contention on ports requests (static, round robin).
 - □ 2.8 GB/s data streams.

NaNet Design – Network Interface

- In TX gathers data from PCIe interface and forwards them to destination port.
- In RX provides support for RDMA receive operation managing Virtual to Physical address translation.
 - CPU/GPU receive buffers addresses virtual to physical mapping.
 - Translation Lookaside Buffer (associative cache).
 - □ Microcontroller in case of miss.
- GPU I/O accelerator (P2P protocol)
- TX/RX Block
 - DMA engines, PCIe transactions.
- Altera NIOS II microcontroller.
- External memory controller
- Custom Logic (application specific)
- PLDA based PCIe X8 Gen2 Core

NaNet-1 Implementation

- Implemented on Altera Stratix IV dev board (EP4SGX230KF40C2)
- GbE PHY Marvell 88E1111
- Supports additional 3 APElink channels (20 Gb/s each) with-HSMC daughtercard

NaNet-1 Test & Benchmark Setup

- Supermicro SuperServer 6016GT-TF
 - X8DTG-DF motherboard (Intel Tylersburg chipset)
 - dual Intel Xeon E5620
 - □ Intel 82576 Gigabit Network Connection
 - □ Nvidia Fermi M2070 and Kepler K20Xm
 - kernel 2.6.32-358.6.2.el6.x86_64, CUDA
 4.2, Nvidia driver 325.15.
- NaNet-1 board in x16 PCIe 2.0 slot
- NaNet-1 GbE interface directly connected to one host GbE interface
- Common time reference between sender and receiver (they are on the same host).
- Ease data integrity tests.

NaNet-1 Communication Latency

Communication Latency

GPU in HIGH ENERGY PHYSICS - Pisa 10/12 SEP 2014 - Alessandro Lonardo (INFN Roma 1)

17

Total latency of the GPU-Based RICH L0-TP using NaNet-1 (Fermi M2070)

Communication + Kernel Latencies (M2070)

Total latency of the GPU-Based RICH L0-TP using NaNet-1 (Kepler K20X)

Communication + Kernel Latencies (K20Xm)

NaNet-1 1 GbE Bandwidth & Throughput

NaNet-1 GbE Performance

GPU in HIGH ENERGY PHYSICS - Pisa 10/12 SEP 2014 - Alessandro Lonardo (INFN Roma 1)

Total latency of the GPU-Based RICH L0-TP using NaNet-1 (APElink)

NaNet-1 APElink Bandwidth & Throughput

NaNet-1 APElink Performance

Total latency of the GPU-Based RICH L0-TP using NaNet-1 - Comments

- Note:
 - we performed latency measures in worst case conditions...
 - communication and processing tasks were serialized
 - while, in normal operation, data communication and GPU processing are overlapped
 - Circular list of receive buffers: when one of the buffers is full, the GPU kernel is launched, data arriving from the network are accumulated in the next buffer in the circular list concurrently with processing.
- Summary:
 - A RICH detector Level 0 Trigger Processor GPU-based system using NaNet-1 (1 GbE link) performing the simple MATH processing is able to sustain a throughput of ~1.6M events/s with real-time behaviour.
 - Using a single APElink channel instead of the GbE one, the system shows a throughput of ~10M events/s

---> good scaling with link bandwidth.

- First integration and tests activities during August technical run.
- Parasitic operation of GPU-based L0 trigger using NaNet-1 scheduled for October (with reduced event rate).

NaNet-1 Integration in NA62 DAQ & Trigger System

- TTC daughtercard with HSMC connector (Ferrara)
- NaNet receives TTC stream with timing (40 MHz clock, SOB, EOB) and trigger signals from the experiment.
- Allows synchronous operation (accurate latency measurements)

NaNet-10 and last generation FPGAs (Stratix V)

QSFP+ to 4 SFP+ cable

Implemented on the Altera Stratix V dev board but porting on cheaper board (Terasic TR5-F40W) is possible

- PCIe gen2 x8 developing PCIe Gen3 (8 GB/s)
- Faster embedded Altera transceivers (up to 14.1 Gbps)
- hardened 10GBASE-R PCS features to support 10 Gbps

KM3Net-IT Experiment

KM3Net-IT: an European deep-sea research infrastructure, hosting a neutrino telescope with a volume of cubic kilometer at the bottom of the Mediterranean Sea.

- Current read-out system design employs a large number of NO stateof-the-art components
 - 2.5 Gb/s optical link per 800Mb/s payload
 - 2 twinned (on and off-shore) FCM boards per floor (14 floors per tower)
 - □ Many PCs for HW read-out hosting
- When scaling to Km³ many cost/size/ power/reliability issues.

Why NaNet³?

NaNet³ specifications for enhanced read-out system:

- 4 channels/PCle board
 - i.e. less PCs, less read-out boards,...
- Link speed up to 10Gb/s
 - Further reduction of a factor 4 in number of channel is made possible
- GPUDirect P2P/RDMA capability
 - to support future GPU-based trigger developments (see B. Bouhadef's Talk)
- Deterministic latency link
 - "Fixed Latency" clock distribution for underwater events time-stamping

Implemented on Terasic DE5-NET board

- Altera Stratix V based dev board
- PCIe Gen2 x8 (developing Gen3)
- 4 independent SFP+ ports (up to 10Gb/s)
- Deterministic Latency mode for transceiver

Deterministic latency link inter-operability

- Testbed: FCM vs Terasic DE5-Net
 - Custom hw mode for FCM • Transceivers (Xilinx)
 - Latency deterministic mode for Stratix V Transceiver
 - 2mt copper and 2 mt long fiber
- Test:
 - 12 hours of periodic (~s) Tx clock reset to verify pll locking and rx word alignment

10/125214 - Alessandro Lonardo (INFN Roma 1)

NaNet³ development status

- NaNet³ link (currently 1 out of 4):
 - Physical Layer: Altera Deterministic Latency Transceivers (8B10B encoding scheme)
 - Data Layer: Time Division Multiplexing (TDM) data transmission protocol.
 - RX path: payload of different off-shore devices, multiplexed on continuous data stream at fixed time slot
 - (PCIe DMA transaction to CPU/GPU memory)
 - TX path: limited data rate per FCM for slow control devices messages
 - (PCIe TARGET transaction from CPU/ GPU memory)
- NaNet Ctrl:
 - protocol translation: encapsulates TDM data stream in APElink packet protocol.
 - Destination Virtual Address generation
- PCle X8 Gen2
 - CPU/GPU Memory Write Bandwidth ~ 2.5 GB/s

NaNet³ software stack

- Linux Kernel Driver
 - Status/Configuration registers.
 - TX registers interface.
- NIOS II Firmware
 - New BSP for NaNet³ board.
 - Initialization of NaNet³ channels.
 - Management of 4
 concurrent data streams
- Application Library
 - nan3_t nan3_open(int card_id); int nan3_close(nan3_t nan);
 - int nan3_register_clop(nan3_t nan, nan3_chan_id_t chan, u32 pkts, u32 items, u8 is_gpu);
 - int nan3_wait_event(nan3_t nan, nan3_event_recv_t* event);
 - u32 nan3_write_slow_data(nan3_t nan, u8 channel, u8 deviceId, u32 data);

- NaNet design has proved to be effective in two different experimental contexts thanks to its modularity and high performance/low latency (RDMA, GPUDirect, network protocol offloading) features:
 - NA62 GPU-based Low Level Trigger
 - Demonstrated real-time data communication between the NA62 RICH read-out system and the GPU-based L0 trigger processor over a single GbE link.
 - Demonstrated scalability of the design up to multiple 10GbE read-out channels
 - KM3Net-IT on-shore read-out system:
 - Demonstrated different vendors, high-end FPGAs serial links inter-operability (with Deterministic Latency).
 - Compliant with Real-time constraints of TDM processing.
 - Ready for future enhancements (on-shore link aggregation, GPU-bases trigger...)
- Work in progress
 - 10 GbE support on multiple platforms (Terasic DE5-Net, Altera Stratix V dev. Kit,...)
 - Adoption of last generation FPGA devices for PCIe Gen3 integration and faster transceivers (→ higher I/O bandwidth)
 - NaNet³ full-fledged (4 links) design for KM3Net-IT
- NaNet³ design will be completed and tested on final site before the end of 2014.
- NaNet-10 will be completed during 1Q2015.

F. Ameli^(a), R. Ammendola^(b),
A. Biagioni^(a), A. Cotta Ramusino^(c),
M. Fiorini^(c), O. Frezza^(a),
G. Lamanna^(d), F. Lo Cicero^(a),
A. Lonardo^(a), M. Martinelli^(a),
I. Neri^(c), P. S. Paolucci^(a),
E. Pastorelli^(a), L. Pontisso^(f),
D. Rossetti^(e), F. Simeone^(a),
F. Simula^(a), M. Sozzi^(f),

L. Tosoratto^(a), <u>P. Vicini^(a)</u>

(a) INFN Sezione di Roma

- (b) INFN Sezione di Roma Tor Vergata
- (c) Università di Ferrara e INFN Sezione di Ferrara
- (d) INFN LNF and CERN
- (e) NVIDIA Corporation, USA
- (f) INFN Sezione di Pisa and CERN

NaNet-1: architectural details

NiosII UDP Offload :

- Objective: offloading the UDP protocol management from the Nios II microcontroller.
- collects of data coming from the Avalon Streaming Interface of the Altera Triple-Speed Ethernet Megacore (TSE MAC) and redirects UDP packets into an hardware processing data path.
- Current implementation provides a single 32-bit width channel @6.4 gbps (six times greater than the GbE Specs)

NaNet Controller:

- encapsulation of GbE packets in the APEnet+ protocol (and viceversa for output stream)
 - 32-bit data words coming from the Nios II subsystem into 128-bit APEnet + data words.
 - Addition of Header/Footer words and redirect in corresponding FIFO

Might a Real-Time kernel come to our rescue?

Main features of such kernels:

- predictability in response times
- reduced jitters
- microsecond accuracy
- improved time granularity

...but not a panacea...

vanilla kernel: 2.6.33

kernel 2.6.33.9-rt31-EL6RT

To avoid other possible sources for latency, the CPUSPEED and IRQBALANCE services has been stopped. The INTERRUPT moderation was disabled either.

GPU Memory Write (RX)

- GPU/CPU independent
- 2.5 GB/s
- The plateau is due to APElink channel

GPU Memory Read (TX)

NANET3 architecture and dataflow

- NaNet3 link phy:
 - Altera Deterministic Latency
 Transceivers
 - 8B10B encoding scheme
 - Time Division Multiplexing (TDM) data transmission protocol
 - payload of different off-shore devices, multiplexed on continuous data stream at fixed time slot

- Preliminary test of:
 - Xilinx Altera transceivers interoperability
 - Interoperable link with Fixed
 (Deterministic) Latency

NaNet-1 Latency Benchmark

In a single host process:

- Allocate and register (pin) N GPU receive buffers of size P x sizeof(16 events) in a circular list.
- In the main loop:
 - Read TSC Register (cycles_bs)
 - Send P UDP packet containing 16 events over the host GbE intf
 - Wait for a received buffer event
 - Read TSC Register (cycles_ar)
 - Launch the GPU kernel on next buffer in circular list.
 - Synch Streams
 - □ Read (cycles_ak)
 - Record latency_cycles_comm = cycles_ar cycles_bs
 - Record latency_cycles_calc = cycles_ak cycles_ar
- Results in good agreement with oscilloscope measures (TEL62).

GPU Ring Search Algorithms

- Events can produce multiple ring hits patterns on PMs.
- □ 95% of generated hits patterns produce a single ring.
- Single ring search algorithms are used by multi-ring search algorithms.
- Let's focus on single ring pattern search algorithms.

DOMH/POMH: Each PM (1000) is considered as the center of a circle. For each center an histogram is constructed with the distances btw center and hits.

GPU Ring Search Algorithms (2)

 HOUGH: Each hit is the center of a test circle with a given radius. The ring center is the best matching point of the test circles. Voting procedure in a 3D parameters space.

MATH: Translation of the ring to centroid. In this system a least square method can be used. The circle condition can be reduced to a linear system, analitically solvable, without any iterative procedure.

KM3Net-IT experiment: read-out

- Current **read-out system** design employs a huge number, NO state-of-the-art components
 - □ 2.5 Gb/s optical link
 - □ 2 twinned FCM boards per floor
 - Many PCs for HW read-out hosting

When scaling to KM3 many cost/size/power/reliability issues!!!