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1. QCD and Color Confinement
The strong force is one of the four fundamental interactions of nature (along
with gravity, electromagnetism and the weak nuclear force). It is the force that
holds together protons and neutrons in the atomic nucleus. The strong interaction
is described by Quantum Chromodynamics (QCD), a quantum field theory with
local gauge symmetry, given by the SU(3) group.

A unique feature of the strong force is that the particles that feel it directly
(quarks and gluons) are completely hidden from us, i.e. they are never observed
as free particles. This property is known as color confinement and makes QCD
much harder to handle than the theories describing the weak and electromagnetic
forces. Indeed, it is not possible to study QCD analytically in the limit of small
energies, or large spatial separations, which corresponds to several processes of
interest, including the mechanism of color confinement. To gain insight into these
issues, physicists must rely on numerical simulations performed on supercomput-
ers. These studies are carried out using the lattice formulation of QCD. Similar
studies are done also for other non-Abelian SU(N) gauge theories.

2. Confinement in Landau gauge
A propagator of a field is a two-point function, i.e. a correlation function be-
tween values of the field at two different points in space-time. In quantum me-
chanics, the propagator determines the evolution of the wave function of a system
and, for a particle, it gives the probability amplitude of propagating from a point
in space-time to another. More generally, Green’s functions (i.e. n-point func-
tions) carry all the information about the physical and mathematical structure of
a quantum field theory. Thus, the study of the long-range —or infrared (IR)—
behavior of propagators and vertices is an important step in our understanding of
QCD. In particular, the confinement mechanism for color charges could manifest
itself in the IR behavior of (some of) these Green’s functions.

For gauge theories, such as QCD, the local gauge invariance implies that Green’s
functions are usually gauge-dependent quantities and can be evaluated only after
a specific gauge condition is imposed. Among the possible choices, the so-called
Landau (or Lorenz) gauge condition is particularly interesting, since it preserves
the relativistic covariance of the theory.

3. The Faddeev-Popov matrix
On the lattice, the (minimal) Landau gauge condition is usually implemented by (numerically) finding local minima of a functional. As a consequence, in this gauge,
the path integral over gauge-field configurations is restricted to the set of transverse configurations for which the so-called Landau-gauge Faddeev-Popov matrix
(FP) is semi-positive-definite. Thus, this matrix should encode all the relevant (non-perturbative) aspects of the theory, related to the color-confinement mechanism.
In particular, the inverse of the FP matrix enters the evaluation of several fundamental Green’s functions of the theory, such as the ghost propagator, the ghost-gluon
vertex, the Bose-ghost propagator, etc. These functions can be computed through Monte Carlo simulations using the lattice formulation of gauge theories. However,
the numerical inversion of the FP matrix is rather time consuming, since it is a huge (sparse) matrix with an extremely small (positive) eigenvalue, thus requiring the
use of a parallel preconditioned conjugate-gradient (CG) algorithm. Moreover, for each lattice configuration, this inversion has to be done for hundreds of different
kinematic combinations. One should also stress that, in a lattice simulation, one cannot study momenta smaller than 2π/L, where L is the lattice side. Thus, numerical
studies of Green’s functions in the IR limit (small momenta) require very large lattice volumes and a careful extrapolation of the data to the infinite-volume limit. In
fact, inversion of the FP matrix is the performance bottleneck for these numerical studies.

For a given (thermalized and gauge-fixed) lattice configuration Uµ(x) ∈ SU(N), with µ = 0,1,2,3, the FP matrix MU in minimal Landau gauge is defined as

(MU γ)
b
(x) = ∑

µ
Γ

bc
µ (x) [γc(x) − γ

c(x+ eµ) ] + Γ
bc
µ (x− eµ) [γ

c(x) − γ
c(x− eµ) ] + f bdc

[
Ad
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c(x+ eµ) − Ad
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]
. (1)

Here, f bcd are the (anti-symmetric) structure constants of the SU(N) gauge group, Ad
µ(x) are the gauge fields [related to Uµ(x)] and Γbc

µ (x) =

Tr
({

λb,λc
}[

Uµ(x)+U†
µ (x)

])
/8. In the SU(2) case, one finds Γbc

µ (x) = δbc TrUµ(x)/2 and f bcd =εbcd , where εbcd is the completely anti-symmetric tensor.

4. Conjugate-Gradient Inversion
In this study we considered several preconditioned conjugate-gradient algorithms. In particular, for the preconditioner matrix P we used: i) the diagonal elements
(with respect to color and space-time indices) of the FP matrix, ii) the diagonal elements (with respect to space-time indices only) of the FP matrix, iii) the usual lattice
Laplacian [note that the FP matrix becomes the lattice Laplacian if Γbc

µ (x) = δbc and Ad
µ(x) = 0], iv) the FP matrix with Ad

µ(x) = 0. While in the former two cases the
inversion of P can be done exactly and it does not require inter-GPU communication, for the latter two choices we employed a (non-preconditioned) CG algorithm.
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Figure 1 (left): weak scaling using lattice volumes 164 and 324 with 1 and 16 Tesla GPUs, respectively. The six lines
correspond to the CG algorithm: without preconditioning (red line), with preconditioning i (green line), iii (blue line), i in
single precision (magenta line), iii in single precision (cyan line) and iv in single precision (yellow line). Figure 2 (right):
strong scaling using lattice volume 324 with, respectively, 1,2,4,8,16 Tesla GPUs and 1,2,4 Kepler GPUs. The six lines
correspond to the CG algorithm: with preconditioning i (red and green lines), with preconditioning iv (blue and magenta
lines) and with preconditioning iii in single precision (cyan and yellow lines).

We tested the above choices for the preconditioning
step using double and single precision. For the last
two cases (choices iii and iv) we also considered two
different stopping criteria for the CG algorithm used
to invert the preconditioner matrix P . The code has
been written using CUDA and MPI and tested on mul-
tiple GPUs (Tesla S1070 and Kepler K20) intercon-
nected by InfiniBand.

Our results can be seen in the two plots in Fig. 1.
We show the processing time for one CG iteration as
a function of the lattice side for a fixed lattice vol-
ume/number of GPUs ratio (weak scaling, left plot)
and as a function of the number of GPUs at a fixed
lattice size (strong scaling, right plot).

Our data show a large overhead due to inter-GPU
communication, especially for the last two precon-
ditioners. This overhead is visibly reduced by using
single precision.


