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Introduction

Describing propagation of a large number of photons in a transparent medium is a computational
problem of a highly parallel nature. All of the simulated photons go through the same stages: they are
emitted, they may scatter a few times, and they get absorbed. These steps, when performed in parallel
on a large number of photons, can be done very efficiently on a GPU. The IceCube collaboration uses
parallelized code that runs on both GPUs and CPUs to simulate photon propagation in a variety of
settings, with significant gains in precision and, in many cases, speed of the simulation compared to
the table lookup-based code. The same code is also used for the detector medium calibration and
as a part of an event reconstruction tool. I will describe the code and discuss some if its applications
within our collaboration.

50 m

1450 m

2450 m 

2820 m

IceCube Array
 86 strings including 8 DeepCore strings 
5160 optical sensors

DeepCore 
8 strings-spacing optimized for lower energies
480 optical sensors

Eiffel Tower

324 m 

IceCube Lab

IceTop
81 Stations
324 optical sensors

Bedrock

Amanda II Array
(precursor to IceCube)

be(400 nm) [ m-1 ] vs. depth [ m ]

5710142025335070100

0.01 0.02 0.03 0.05 0.1 0.2

SPICE31450

1650

1850

2050

2250

2450

IceCube is a cubic-kilometer-scale high-energy neutrino observatory built at the geographic South Pole. Ice-
Cube uses the 2.8 km thick glacial ice sheet as a medium for producing Cherenkov light emitted by charged
particles created when neutrinos interact in the ice or nearby rock. Ice transparency in the active volume of
the detector is highly variable: plot on the right shows the effective scattering length, varying from 8 to 80 m.

Simulation with Direct Photon Propagation

Typical simulation scenarios: photons emitted by the detector are tracked as part of the calibration procedure
(left). Cerenkov photons emitted by a passing muon and cascades along its track are tracked to simulate the
typical IceCube events (right).

Direct Photon Propagation: implementation details
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Parallel nature of the photon propagation simulation: tracking of photons entails the computationally iden-
tical steps: propagation to the next scatter, calculation of the new direction after scatter, and evaluation of
intersection points of the photon track segment with the detector array. These same steps are computed
simultaneously for thousands of photons.

C++ Assembly GTX 295 GPU
flasher 1.00 1.25 147
muon 1.00 1.37 157

Speedup factor of different implementations of Photon Propagation Code (PPC) compared to the C++ version.
The GPU used in this comparison was either of the two in the NVIDIA GTX 295 video card.

Concurrent execution on CPU and GPU sides. Two possible solutions are shown: the first (top) requires
running at least two ppc threads was eventually replaced with the solution (bottom) that is enabled in a single
thread.

Faulty cards (CUDA)

Unfortunately we experienced problems with some of the GPUs (jobs exiting with errors, GPUs or even
entire computer locking up and requiring rebooting). With a small bit of in-line assembly we found that
only threads running on specific hardware multiprocessors (MPs) on each of the faulty GPUs are
affected (producing NANs). By checking within threads during execution whether they are running on
the faulty MP and immediately stopping those threads it was possible to significantly prolong the use
the faulty GPUs albeit at sligtly reduced capacity.

Only with Direct Photon Propagation
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Geometry of IceCube when viewed from above. Effects that are only
taken into account with simulation described here are:

• ice layer tilt: a change in ice layer (layer of approximately the same
transparency) elevation

• ice anisotropy: effective scattering is 8% smaller in one preferred di-
rection, and up to 4% greater in other directions

Power usage by the GPU cluster (about 90 gpu nodes) while fitting ice
properties to in-situ light calibration data.

Ice Layer Tilt
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Extension of ice layers along the average gradient direction. The y-axis
shows the layer shift (relief) from its position at the location of a refer-
ence string at the distance shown on the x-axis from this string along
the average gradient direction (225 degrees SW). The relief shown is
amplified by a factor of 3 for visual clarity of the ice layer tilt.

Ice Anisotropy
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Improvement in the ratio of simulation to data from before accounting for
ice anisotropy (left) to after (right).

Relative performance of GPU cards

AMD 7990 (new_zealand)
AMD 7970 (tahiti)
AMD 7950 (tahiti)
AMD 7870 (pitcairn)
AMD 7850 (pitcairn)
AMD 7770 (cape_verde)
AMD 7750 (cape_verde)
AMD s10000 (tahiti)
AMD s9000 (tahiti)
AMD s7000 (pitcairn)
Nvidia 690 (gk104)
Nvidia 680 (gk104)
Nvidia 670 (gk104)
Nvidia 660_ti (gk104)
Nvidia 660 (gk106)
Nvidia 650_ti (gk106)
Nvidia 650 (gk107)
Nvidia 640 (gk107)
Nvidia k20x (gk110)
Nvidia k20 (gk110)
Nvidia k10 (gk104)
Nvidia m2090 (gf110)
Nvidia m2070 (gf100)
Nvidia m2050 (gf100)

T
D

P 
(6

4 
- 

37
5 

W
)

Relative performance of tested GPU cards: longer bars indicated better
performance. Also shown in color is the TDP (manufacturer specified
maximum power consumption).
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