Discovering matter-antimatter asymmetries with GPUs

Stefanie Reichert

The University of Manchester on behalf of the LHCb collaboration

GPU Computing in High Energy Physics 2014

12th September 2014

The University of Manchester

Outline

> Introduction and motivation

> Energy test for $D^0 \to \pi^+ \pi^- \pi^0$ using CUDA and Thrust libraries

- > Time-dependent amplitude analysis of $D^0 \to K_S^0 \pi^+ \pi^-$ with GooFit
- > Summary

Introduction: Neutral meson mixing

> Mass eigenstates of neutral charm meson system $|D_{1,2}\rangle$ have mass $m_{1,2}$ and width $\Gamma_{1,2}$

 $|D_{1,2}\rangle$ are linear combination of flavour eigenstates $|D^0\rangle$ and $|\overline{D}^0\rangle$ $|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle$

with $q, p \in \mathbb{C}$ satisfying $|q|^2 + |p|^2 = 1$

 $> |D^0\rangle$ and $|\overline{D}^0\rangle$ subject to matter-antimatter transitions (mixing)

$$D^{0} \qquad \overrightarrow{u} \qquad W^{+} \qquad \overrightarrow{u} \qquad \overrightarrow{d}, \ \overrightarrow{s}, \ \overrightarrow{b} \qquad \overrightarrow{D}^{0} \qquad \overrightarrow{u} \qquad W^{-} \qquad \overrightarrow{c} \qquad \overrightarrow{c}$$

Introduction: Neutral meson mixing

$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle$$

- > Mass difference $\Delta m \equiv m_2 m_1$
- > Width difference $\Delta \Gamma \equiv \Gamma_2 \Gamma_1$
- > Mixing parameters $x \equiv \Delta m / \Gamma$ and $y \equiv \Delta \Gamma / (2\Gamma)$

> Charm sector: Mass and width differences small ⇒ mixing small

Plots taken from: Brief review of charm physics, M. Gersabeck, arXiv: 1207.2195 [hep-ex] 12.09.2014

Introduction: Neutral meson mixing

- > Charm mixing parameters small ~ O(10⁻³)
 → Full oscillation takes around 1000 lifetimes
 → Large datasets required
 - ← Large datasets required
- > Datasets covering 1000 lifetimes e¹⁰⁰⁰ events
- > LHCb datasets for mixing and CPV analyses typically around 10⁶ - 10⁷ events
 - sufficient to determine mixing parameters

Introduction: CP violation

$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle$$

 $>|D_{1,2}\rangle$ are CP eigenstates if $\mathcal{CP}|D_{1,2}\rangle = \pm |D_{1,2}\rangle$

> If q ≠ ±p, mass eigenstates are not CP eigenstates
 → CP violation in mixing (indirect CPV)

- > If amplitudes for $D^0 \to f$ and charge-conjugate $\overline{D}^0 \to \overline{f}$ differ \hookrightarrow CP violation in decay (direct CPV)
- > Interference of CPV in mixing and decay possible
- > No evidence for CP violation in charm sector¹.

¹Averages of b-hadron, c-hadron, and tau-lepton properties as of early 2012, Y. Amhis et al., arXiv:1207.1158 and online update at <u>http://www.slac.stanford.edu/xorg/hfag/</u>

12.09.2014

- > Searches for CPV in charm can be CPU-expensive and are performed on large datasets
 - Energy test relies on evaluation of distances between events
 - Time-dependent amplitude analysis uses minimisation of negative loglikelihood function
- > Computation is the same for each event out of millions of events

↔ Parallelisable

Massive parallelisation on GPUs renders analysis feasible

The analyses presented here use Nvidia GPUs at Ohio Supercomputer Centre and at Manchester University.

12.09.2014

Energy test for $D^0 \to \pi^+ \pi^- \pi^0$ using CUDA and Thrust libraries

Energy test: Method

- > Unbinned model-independent statistical method to search for time-integrated CPV in $D^0 \rightarrow \pi^+\pi^-\pi^0$ decays¹
- > Sensitive to local CP asymmetries across phase-space
- > Comparsion of D^0, \overline{D}^0 samples of size n, \overline{n}
- > Flavour samples are obtained by determining charge of soft pion π_s^+ of a $D^{*+} \rightarrow D^0 \pi_s^+$ decay with $D^0 \rightarrow \pi^+ \pi^- \pi^0$

dependent 🗧 3 - Tuchankarian -

LHCb-PAPER-2014-054

¹Observing CP Violation in Many-Body Decays, M. Williams, Phys. Rev. D84, 054015 (2011) 12.09.2014

n * +

Energy test: Method

> Test statistic for two flavour samples of size n, \bar{n} defined as

in D^0 sample in \overline{D}^0 sample

average distance average distance average distance in mixed sample

 $\psi(\Delta \vec{x}_{ij}) = e^{-\Delta \vec{x}_{ij}^2/2\sigma^2}$ - Gaussian metric function, σ tunable

 $\Delta \vec{x}_{ij} = |\vec{x}_i - \vec{x}_j|$ - distance between two events i, j

> T-value increases in case of large CP asymmetries

Energy test: Method

- > Obtain distribution of T-values from permutation samples
- > p-value for no CPV hypothesis is fraction of permutation T-values greater than measured T-value

Energy test: Implementation

$$T \approx \sum_{i=1}^{n} \sum_{j>i}^{n} \frac{\psi\left(\Delta \vec{x}_{ij}\right)}{n^2 - n} + \sum_{i=1}^{\bar{n}} \sum_{j>i}^{\bar{n}} \frac{\psi\left(\Delta \vec{x}_{ij}\right)}{\bar{n}^2 - \bar{n}} - \sum_{i=1}^{n} \sum_{j=1}^{\bar{n}} \frac{\psi\left(\Delta \vec{x}_{ij}\right)}{n\bar{n}}$$

> Definition of unary function to compute Gaussian distance functor

$$\psi\left(\Delta \vec{x}_{ij}\right) = e^{-\Delta \vec{x}_{ij}^2/2\sigma^2}$$
 where $\Delta \vec{x}_{ij} = |\vec{x}_i - \vec{x}_j|$

initialised with position of event *i*

- > Sum over all events i of D^0 sample of size n:
 - For each event *i* compute

$$\sum_{j>i}^{n} rac{\psi\left(\Delta ec{x}_{ij}
ight)}{n-1}$$
 and $\sum_{j}^{ar{n}} rac{\psi\left(\Delta ec{x}_{ij}
ight)}{ar{n}}$ via thrus

via thrust::transform_reduce

Energy test: Implementation

$$T \approx \sum_{i=1}^{n} \sum_{j>i}^{n} \frac{\psi\left(\Delta \vec{x}_{ij}\right)}{n^2 - n} + \sum_{i=1}^{\bar{n}} \sum_{j>i}^{\bar{n}} \frac{\psi\left(\Delta \vec{x}_{ij}\right)}{\bar{n}^2 - \bar{n}} - \sum_{i=1}^{n} \sum_{j=1}^{\bar{n}} \frac{\psi\left(\Delta \vec{x}_{ij}\right)}{n\bar{n}}$$

- > Sum over all events *i* of \overline{D}^0 sample of size \overline{n} :
 - For each event *i* compute

$$\sum_{j>i}^{\bar{n}} \frac{\psi\left(\Delta \vec{x}_{ij}\right)}{\bar{n}-1}$$

via thrust::transform_reduce(dev_data_d0bar->begin(), dev_data_d0bar->end(), gd, (double) 0., plus<double>())

Energy test: Performance

> Energy test over a sample of 700,000 events with a single permutation: ~10 hours of CPU time

> Energy test over a sample of 700,000 events with a single permutation: ~11 minutes on a GPU

↔ 1000 permutations not a problem on a GPU!

Energy test: Analysis

- > Data set of $\mathcal{L}_{int} = 2 \, \text{fb}^{-1}$ recorded with the LHCb detector in 2012 at $\sqrt{s} = 8 \, \text{TeV}$
- $> D^0 \rightarrow \pi^+ \pi^- \pi^0$ sample
 - 663k candidates
 - Purity ~ 85%

Dalitz plot for $D^0 \rightarrow \pi^+\pi^-\pi^0$ samples taken from LHCb-PAPER-2014-054

Energy test: Preliminary results

Data found to be consistent with a no CPV hypothesis at a probability of (2.6 \pm 0.5) % (LHCb-PAPER-2014-054) Visualisation of local asymmetry significances for $\sigma = 0.3$ from LHCb-PAPER-2014-054

Time-dependent amplitude analysis of $D^0 \to K^0_S \pi^+ \pi^$ with GooFit

Amplitude analysis: Method

- > Time-dependent amplitude-analysis of $D^0 \to K^0_S \pi^+ \pi^-$
 - direct access to mixing parameters x, y
 - search for indirect CPV by measuring $|q/p|, \varphi = arg(q,p)$

> D^0 flavour determined by muon of a $B^- \to D^0 \mu^- \bar{\nu}_{\mu}$ decay

- > 3-body decay $D^0 \rightarrow a \, b \, c$ treated as 2-body decay $D^0 \rightarrow R \, c$ through an intermediate resonance $R \rightarrow a \, b$
- > Model-dependence through choice of resonances and line-shapes
 - $R \to K_S^0 \pi^{\pm} : K^*(892)^{\pm}, K_0^*(1430)^{\pm}, K_2^*(1430)^{\pm}, \dots$
 - $R \to \pi^+ \pi^- : \rho(770), \, \omega(782), \, f_0(980), \, \dots$
 - Line-shapes, e.g. Gounaris-Sakurai, relativistic Breit-Wigner

- > Parallel fitting framework GooFit¹ implemented in CUDA and using Thrust libraries (see talk by M. Sokoloff on 12/09/2014)
- > A few resonance models available in GooFit::ResonancePdf
 - Relativistic Breit-Wigner
 - Gounaris-Sakurai
 - LASS-like parametrisation
 - Implementation of K-matrix ongoing
- > Framework for time-dependent amplitude analysis available in GooFit::TddpPdf

> TddpPdf requires the following input variables

- m^2_{ab} , e.g. $m^2_{K^0_S\pi^+}$
- m^2_{ac} , e.g $m^2_{K^0_S\pi^-}$
- D^0 decay time t
- D^0 decay time error σ_t
- Event number
- > Amplitude model and fit parameters configurable in steering file

> Features of the fit

- background components
- efficiency (parametrisation or histogram) and resolution
- veto regions in phase-space
- blinding of results

```
DecayInfo* dtop0pp = new DecayInfo();
dtop0pp->motherMass = 1.86486;
dtop0pp->daug1Mass = 0.497614;
                                                        Decay info
dtop0pp->daug2Mass = 0.13957018;
dtop0pp->daug3Mass = 0.13957018;
dtop0pp->meson_radius = 1.5;
dtop0pp->_tau = new Variable("tau", 0.4101, 0.001, 0.300, 0.500);
dtop0pp->_xmixing = new Variable("xmixing", 0.005, 0.0001, 0, 0);
dtop0pp->_ymixing = new Variable("ymixing", 0.005, 0.0001, 0, 0);
ptr_to_xmix = dtop0pp->_xmixing;
ptr_to_ymix = dtop0pp->_ymixing;
                                                Mixing parameters
ptr_to_dtau = dtop0pp->_tau;
ptr_to_xmix->fixed = false;
ptr_to_ymix->fixed = false;
// Amplitudes and phases relative to rho(770)
ResonancePdf* rho_770;
                                                 Resonance model
ResonancePdf* f0_980;
ResonancePdf* f0_1370;
```

```
// Resolution
                                                        Resolution
TruthResolution* res = new TruthResolution();
// Efficiency
vector<Variable*> off;
off.push_back(Zero); off.push_back(Zero);
vector<Variable*> obs;
                                                        Efficiency
obs.push_back(m12); obs.push_back(m13);
vector<Variable*> coeff;
coeff.push_back(One); coeff.push_back(One);
GooPdf *eff = new PolynomialPdf("constantEff", obs, coeff, off, 0);
// TddpPdf
TddpPdf* signal = new TddpPdf("signal", dtime, sigma, m12, m13,
                              eventNumber, dtop0pp, res, eff, wBkg);
signal->setDataSize(data->getNumEvents());
signal->setData(data);
                                                               Fit
FitManager datapdf(signal);
// Fit
datapdf.fit();
```

Amplitude analysis: Toy fit with efficiency

Projection of the time-dependent fit of a $D^0 \to K_S^0 \pi^+ \pi^-$ sample including an efficiency parametrisation $\varepsilon(m^2(K_S^0\pi^+), m^2(K_S^0\pi^-))$

12.09.2014

- > Measurements of mixing and search for CP violation in charm sector on large data sets benefit from usage of GPUs
- > Implementation of energy test in CUDA with Thrust libraries renders analysis feasible
- > GooFit provides everything for time-dependent and modeldependent amplitude-analysis with significant speed-up

Thank you.

Backup

The LHCb experiment: Detector

The LHCb detector at the LHC, The LHCb collaboration, J. Instrum. 3 S08005 (2008)

$> K_S^0$ -meson decays

- inside Vertex Locator: long tracks $\rightarrow K_S^0$ (LL)
- outside Vertex Locator: downstream track $\rightarrow K_S^0$ (DD)

12.09.2014

Introduction: CP violation

- > No evidence for CP violation in charm sector.
- > CP violation (CPV) occurs if $\lambda_f \neq 1$, λ_f being defined as

$$\lambda_f \equiv \frac{q\bar{A}_{\bar{f}}}{p\bar{A}_f} = -\left|\frac{q}{p}\right| \left|\frac{\bar{A}_{\bar{f}}}{\bar{A}_f}\right| e^{i\phi}$$

- $\begin{array}{l} A_f\left(\bar{A}_{\bar{f}}\right) \text{ amplitude of a } D^0\left(\overline{D}^0\right) \text{decaying into a final state} f\left(\bar{f}\right), \\ \phi & \text{ CP violating relative phase} \end{array}$
- > CP violation
 - in decay if $|\bar{A}_{\bar{f}}/A_f| \neq 1$ (direct CPV)
 - in mixing if $|q/p| \neq 1$ (indirect CPV)
 - in interference between decay and mixing if $\phi \neq 0$

Energy test: Selection

> Pre-selection

- Resolved π^0 : $|m_{\gamma\gamma} m_{\pi^0}^{\text{PDG}}| < 15 \,\text{MeV}$
- Particle identification requirements on π^{\pm} (reduce mis-identification rate)
- $|m_{\pi^-\pi^+\pi^0} m_{D^0}^{PDG}| < 40 \, (60) \, \text{MeV}$ for the resolved (merged) sample
- Decay chain of D^{*+} refitted where $\chi^2 < 35$. Refit requires D^{*+} from primary vertex π^0 and D^0 masses correspond to nominal masses
- > Boosted Decision Tree (BDT) trained separately for merged and resolved samples with highly discriminating variables, e.g.
 - $p_T(\pi_s), p_T(D^0), p_T(\pi^0)$ for resolved sample
 - $p_T(\pi_s), p_T(D^0), \chi^2_{IP}(D^0)$ for merged sample
 - Cut on BDT output and on $|\Delta m 145.4| < 1.8 \,\mathrm{MeV}$

LHCb-PAPER-2014-054

Energy test: Efficiency

Energy test: p-value fit function

- In case of large CP violating effects, the nominal T-value might lie outside the range of the T-value distribution obtained from the permutation samples
- > Fit T-value distribution with a generalised extreme value function

$$f(x;\mu,\sigma,\xi) = N\left[1+\xi\left(\frac{x-\mu}{\sigma}\right)\right]^{(-1/\xi)-1} \exp\left\{-\left[1+\xi\left(\frac{x-\mu}{\sigma}\right)\right]^{-1/\xi}\right\}$$

with N-normalisation, μ - location, σ - scale, ξ - shape parameter

- > p-value defined as fraction of the integral of $f(x; \mu, \sigma, \xi)$ above the nominal T-value
- > Uncertainty on p-value obtained through propagation of uncertainties on fit parameters

Amplitude analysis: Method

> Isobar model as coherent sum of matrix elements¹

- $R \to K_S^0 \pi^+ : K^*(892)^+, K_0^*(1430)^+, K_2^*(1430)^+$
- $R \to K_S^0 \pi^- : K^*(892)^-, K_0^*(1430)^-, K_2^*(1430)^-, K^*(1680)^-$
- $R \to \pi^+ \pi^-$: $\rho(770), \, \omega(782), \, f_0(980), \, f_0(1370), \, f_2(1270), \, \sigma_1, \, \sigma_2$
- non-resonant $D^0 \to K^0_S \pi^+ \pi^-$
- relativistic Breit-Wigner (BW) except Gounaris-Sakurai (GS) for $\rho(770)$

> Alternative model¹

- $R \to K_S^0 \pi^{\pm}$ S-wave: LASS-like parametrisation
- $R \to K_S^0 \pi^+ : K^*(892)^+, K_2^*(1430)^+$ (BW)
- $R \to K_S^0 \pi^- : K^*(892)^-, K_2^*(1430)^-, K^*(1680)^-$ (BW)
- $R \rightarrow \pi^+ \pi^-$ S-wave: K-matrix
- $R \to \pi^+\pi^-:
 ho(770), \, \omega(782), \, f_2(1270)$ (BW except GS for ho(770))

¹Measurement of $D^0 - \overline{D}^0$ mixing parameters using $D^0 \to K_S^0 \pi^+ \pi^-$ and $D^0 \to K_S^0 K^+ K^-$ decays, The Babar collaboration, Phys. Rev. Lett.105 (2010)

12.09.2014