

The GAP Project: GPU for Online Processing in Low-Level Trigger

Massimiliano Fiorini (Università di Ferrara and INFN Ferrara)

On behalf of the GAP Collaboration

GPU in High Energy Physics Pisa, 10-12 September 2014

GAP Project

GAP (GPU Application Project) for real-time in HEP and medical imaging is a 3 years project funded by the Italian Ministry of research, started in 2013

- Collaboration between INFN Sezione di Pisa, University of Ferrara and University of Roma "La Sapienza"
- Demonstrate the feasibility of using off-the-shelf computer commodities to accelerate real-time scientific computations
- Application in different fields:
 - High Energy Physics (low and high level triggers)
 - Medical Imaging (NMR, CT and PET)

GAP Project

SAV

- $K^+ \rightarrow \pi^+ \upsilon \upsilon$ decay (BR~8×10⁻¹¹)
- Huge background from kaon decays

Trigger and DAQ

GAP

INFN Istituto Nazionale di Fisica Nucleare

The RICH detector

- 17 m focal length, ~4 m in diameter, filled with Ne at 1 atm
- Pion/muon separation in the range 15-35 GeV/c

- 10 MHz events rate in the RICH (~20 hits/track)
 - Main contribution from kaon decays (~1 MHz from halo muons and pion decays)

The goal: GPU in L0 RICH

- 2024 TDC chanels 4 TEL62
 - This is not the
 L0 trigger
 baseline
 version for the
 NA62 RICH
 detector

- 4 TEL62 for RICH detector
 - □ 8×1Gb/s links for data r/o
 - □ 4×1Gb/s trigger primitives
 - □ 4×1Gb/s GPU trigger
- Events rate: 10 MHz
- L0 trigger rate: 1 MHz
- Max Latency: 1 ms

GAI

 \mathcal{R}]

Two main issues to be solved:

Latency

- Is the GPU latency per event small enough to cope with the tiny latency of low level triggers?
- Is the latency stable enough for usage in synchronous trigger systems?

Computing power

 Is the GPU fast enough to take a trigger decision at tens of MHz events rate?

GPU Processing

GPU in HEP '14

GAP

INFN

R1

Massimiliano Fiorini (Ferrara)

GPU Processing

GAP

INFN Istituto Nazionale di Fisica Nucleare

R1

GPU Processing

- Latency due to data transfer from the detector to the system is bigger than the latency due to GPU computing
- It scales almost linearly (apart from the overheads) with the data size while the latency due to computing can be hidden exploiting the huge resources
- Communication latency fluctuations quite big

μs

INFN

16

First solution: NANET

NANET is an FPGA-based NIC that has GPUDirect RDMA capabilities

R. Ammendola et al., JINST 9 C02023, 2014

INFN NANET is an FPGA-based NIC

First solution: NANET

Physical Link

Coding

TSE

MAC

RB10B

10G

BASE-R

 PFRING DNA (Direct NIC Access) is a way to map NIC memory to userland so that there is no additional packet copy besides the DMA transfer done by the NIC

Results: PFRING

- Latency reduced and negligible fluctuations
- The total latency is given as a function of the number of events to buffer before the start of GPU computation
- For real application the "working point" depends on the events rate and event dimension

- Requirements for an on-line RICH reconstruction algorithm:
- Trackless
 - No information from the tracker
 - Difficult to merge information from many detectors at L0
- Multi-rings
 - □ Many-body decay in the RICH acceptance

Fast

- Non-iterative procedure
- □ Events rate at a level of ~10 MHz
- Low latency
 - Online (synchronous) trigger

Accurate

New algorithm (Almagest) based on Ptolemy's theorem: "A quadrilater is cyclic (the vertex lie on a circle) if and only if is valid the relation: AD*BC+AB*DC=AC*BD "

Design a procedure for parallel implementation

Almagest: example

GAP

INFN

Istituto Nazionale di Fisica Nucleare

ŔТ

GAP

INFN

lstituto Nazionale di Fisica Nucleare

 \mathcal{R} 1

Almagest: example

GAT

INFN

Almagest: example

GAT

INFN

Almagest: example

A more complicated example

GAP

INFN (IStituto Nazionale di Fisica Nucleare

RT

- Very high parallelism
 - □ Huge number of computing cores (>2000)
 - Huge memory bandwidth

GPU in HEP '14

Massimiliano Fiorini (Ferrara)

- **Almagest:** implementation
- Tests on NVIDIA Tesla K20 GPU
- Total computing time order a few µs per event (on single GPU)
- Good efficiency (using 8 triplets)
 - Room for improvement
- Further tests ongoing to study noise immunity, bias, efficiency a function of the number of hits, etc...

- Receive the TTC stream (timing and trigger) from the experiment
 - TTC interface board with HSMC connector
- Integration in the NA62 Trigger and DAQ system
 - □ First test during dry run in August
 - □ Parasitic test during NA62 experimental run in October

Conclusions

- The use of GPUs in HEP trigger systems could give several advantages, but processing performances and latencies should be carefully studied
 - Data transfer is the dominant contribution
- Construction of a demonstrator L0 processor for the NA62 RICH is under way
 - Cherenkov rings pattern recognition within the total L0 latency of 1 ms seems possible
- Integration with the NA62 Trigger and DAQ system
 - First tests during dry run in August 2014
 - Parasitic data taking during NA62 experimental run starting October 2014

SPARES

- Events simulated in TEL62
- Grouped in MTP
- Start signal rises with the first event in the MTP
- First stop: packet arrival
- Buffering in the PC RAM: GMTP depth can be changed
- Second stop: after execution on GPU (single ring reconstruction kernel)
- The precision of the method has been evaluated as better than 1 μs

- Dual processor PC:
 - □ XEON E5-2620 2Ghz
 - I350T2 Gigabit card
 - □ 32 GB
 - GPU K20c (2496 cores) PCIe
 v2 x16

GPU in HEP '14

rlo data, 🔹 🗐

Processing time

- Using Monte Carlo data, the algorithms are compared on Tesla C1060
- For packets of >1000 events, the MATH algorithm processing time is around 50 ns per event
- The performance on DOMH (the most resource-dependent algorithm) is compared on several GPUs

Single ring algorithms

30

- Crowford method ("math"):
 - Translate in the center of mass
 - Least square minimization → linear
- Taubin method:
 - More efficient: minimize the bias introduced by the Kasa related methods (minimization of simple algebraic distance)
 - Resolution slightly better (on identified rings)
- The difference of computing time on the GPU is at the level of 10 ns per event

Algorithm execution time on Tesla K20c

N(=hits) triplets

- Number of triplets equal to the number of hits.
- Relatively high efficiency.
- Computing time depends on number of rings (different number of GPU cores per events)
- Results on TESLA C1060 (240 cores, less than 1 Tflops)
- Room for optimization

100

4 selected triplets

RICH event featuring a π^+ and an e⁺

Only 4 triplets per

event are used: left,

right, up and down

too close hits

Further cuts to avoid

4 selected triplets

- Stability with small noise (studies are ongoing)
- Inefficiency due to the order in choosing the rings.
- Dependence on the cuts to define the triplets.

