
Track-pattern recognition on
GPGPUs in the LHCb experiment

S. Gallorini
on behalf of the GPU@LHCbTrigger team

University & INFN Padova
 GPU Computing in HEP - Pisa - September 11th 2014

• The use of commercial General Purpose Graphic Processing Units
(GPGPUs) and other many-core architectures (MIC, ...) opens up
possibilities for new complex triggers

• GPGPUs can be used for real-time selection, and may offer a
solution for reducing the cost of the High Level Trigger (HLT) farm
for the 2020 LHCb upgrade

• Track finding algorithms are usually well suited for parallelization

• ALICE already integrated GPU gaming cards for tracking in the
HLT (“Cellular Automaton” algorithm) [IEEE Transactions On Nuclear Science, 58, 4, 2011]

Introduction

2

Many-core in LHCb
• In LHCb we have a small event size (O(100 kB)) and a relatively

short processing time

➡ A huge speed-up could be obtained by processing many
events in parallel

• Several activities started in LHCb aiming to use many-core
architectures in the HLT
(see Daniel’s talk “Manycore feasability studies at the LHCb trigger”)

• In this talk, I will focus on the study of tracking algorithms on
GPU for the current VErtex LOcator detector (VELO)

3

The LHCb detector

4

• LHCb is a single-arm forward spectrometer at the LHC aiming at precision
beauty and charm physics:

‣ CP violation, rare decays, heavy flavour production

• An highly efficient trigger is required for selecting pure data samples for rare
decays

The LHCb trigger system

5

•L0 reduces the rate to below 1.1 MHz:

‣Input from the calorimeter and muon
systems
‣Read-out decision in 4μs

•HLT1 reconstructs:

‣Tracks in the vertex detector (VELO)
‣Primary vertices
‣Forward tracks to tracking detectors
downstream the magnet

•HLT2 fully reconstructs the event:

‣Performance close to offline reconstruction

‣The available resources in the today Event Filter Farm limited the
time per event in the HLT to ≈30 ms

Pile-up sensors

The VELO detector

6

• The VELO detector is a silicon micro-strip detector situated close to the
interaction region

• R-ϕ layout, 21 stations with 2R and 2ϕ sensors each (+ 4 pile-up sensors)

• It provides precise and fast tracking information which was employed in the
HLT during Run1 (2011-2012)

≈ 90 cm

≈ 8.4 cm

ϕ sensor

R sensor

ϕ sensor

R sensor

7

•“FastVelo” is the algorithm developed by LHCb for pattern
recognition in the VELO

•It ran online in the HLT farm during Run1:
‣Written to be fast and highly efficient to cope with high rate and hit
occupancy
‣Several conditions and checks introduced throughout the code to speed
up the execution

•The VELO track reconstruction is done in two steps:

1. RZ tracking: only hits on R sensors are used. Find tracks in the R-Z plane.

2. Space tracking: add the information of ϕ sensors to each to build the full
tracks

VELO pattern recognition

•The goal of this work is to:

‣ Evaluate the performances of FastVelo (running in HLT1) on
GPU wrt the original code (optimized for CPU)

‣Timing and tracking efficiencies (e.g. clone and ghost rates,
efficiency for long tracks)

‣ Test GPU tracking algorithms in a parasitic mode in the HLT
during the Run2 starting in 2015

Useful definitions:
•efficiency:

•ghost track: reconstructed track not matched to any true particle

•clone tracks: tracks associated to the same true particle

•long track: track reconstructed in VELO and in tracking stations (“T-stations”)

FastVelo on GPU (1)

8

•Strategy:

•Parallelize on the events (obvious...)

•Parallelize the algorithm:

‣ Process each RZ track concurrently:

‣ In the original algorithm hits already used in a track are marked and not
further considered in the following iterations (“hit tagging”)

‣ To avoid race-conditions, hit tagging must be removed in the GPU
algorithm (clones and ghosts tracks diverge!)

•For the rest... try to keep the GPU version as closest as possible to the
original one (code written in CUDA)

9

FastVelo on GPU (2)

10

•Only R-sensors are used

•The algorithm looks for quadruplets of hits in four contiguous
R-sensors (seed) on both halves.

‣ Each thread works on a set of four contiguous R-sensors and find all
quadruplets.

•Then each quadruplet is extended in parallel as much as
possible adding the remaining R-sensors

FastVelo on GPU (4)
•RZ tracking:

z

R
Left

Right

S0S2 S1

R-sensors

S3

Track seed (quadruplet)

11

•Add hits on ϕ-sensors

•Each RZ track is processed concurrently by assigning a space-
tracking algorithm to each thread:

•Search for a triplet of hits: for each hit in the first two ϕ-sensors, the
candidate hit in the third sensor is the one most compatible with predicted
position (best χ2)

•The track is extended and its parameters are found by minimizing Σpoints χ2

(linear system solved by substitution)

•This part is almost a re-writing in CUDA of the original space-tracking code

•Space tracking:

FastVelo on GPU (5)

12

•Main issue:

•Without tagging on used hits, we end up with a large amount of
clones and ghosts

•Solution:

•“Clone killer” algorithms are needed throughout the GPU code to
reduce clones and the number of tracks

•All pairs of tracks are checked in parallel:

‣Each thread of the clone killer algorithm takes a track and computes the
number of hits in common with the others; if two tracks have more than 70%
of hits in common, the one with worst χ2 is discarded

FastVelo on GPU (6)

Performance evaluation

13

• GPU: NVidia Titan (14 SM, 192 CUDA cores/SM, 6GB of memory)

• CPU: a single core (Intel i7, 3.40 GHz) in the same PC hosting the
GPU & a multicore CPU (Intel Xeon E5-2600, 24 cores w/ Hyper
Threading, @CNAF)

• Used data samples:

‣ Bs→ϕϕ MC events and MinBias data

‣ b-inclusive MC events (simulated with 2015 data taking conditions)

• We use standard LHCb tools to get track efficiencies and
resolutions

• Tracking time only! (data transfer not included!)

Results (1)

14

•Tracking efficiencies comparison:

•Evaluated on a sample of Bs → ϕϕ MC events

•FastVelo running in HLT1

Results (2)

15

-1(true), GeVT1/P
0 0.5 1 1.5 2 2.5 3

m
µ

IP
 re

so
lu

tio
n,

40

60

80

100

120

140 CPU

GPU

Impact parameter resolution vs 1/PT(true)Tracking efficiency vs P(true)

•Evaluated on a sample of
Bs → ϕϕ MC2012 events

•Evaluated on a sample of
Bs → ϕϕ MC2012 events

Tracking performances close to the optimized CPU code

16

Results (3)
•Execution time as a function of the number of events

Bs →ϕϕ MC events NoBias data

•GPU performances increases with the number of events: GPU
resources are more efficiently used as the number of events increases
(more threads running at the same time)

GPU

CPU
(1 core)

GPU

CPU
(1 core)

Speedup

Results (4)

17

b-inclusive MC events simulated with expected 2015 conditions

Results (5)

18

•The time spent by FastVeloGPU to kill clones and ghosts is
≈40% of whole algorithm (wrt ≈3% of the original code)

•Execution times

Track cleaningTrack cleaning

Number of instances
0 5 10 15 20 25

Ev
ts

/s
ec

 F
as

tV
el

o
H

LT
1

0

1000

2000

3000

4000

5000

Hyper Threading regime

19

Results (6)
•GPU performances compared to a multicore CPU (24 cores w/ HT)

‣ An instance of FastVelo sent to each core at the same time, with each job
processing the same number of events (1000 events/job)

•Rate of processed events:

≈5000 evts/sec (CPU) vs ≈2600 evts/sec (GPU)

•The throughput of a single core
decreases if more instances are
running in parallel

•Preliminary results on VELO tracking on GPU have been
shown

•Tracking performances of the GPU version close to the
original CPU code

•A better performance estimator is the rate of processed
events normalized to the cost of the hardware!

‣ The GPU gaming-card cost less than a CPU used in a node of the HLT
farm, so also a moderate speed-up (e.g. 2x) compared to e.g. Intel Xeon
could bring a real saving to the experiment

20

Conclusions

Outlook (1)

21

• Improve VELO tracking performances (improve memory
coalescing, try new algorithms, ...)

• Add hits on the T-stations. Two approaches are on-going:

‣ Porting of the original algorithm which extends VELO tracks to the
forward direction by adding T-hits (“Forward tracking”)

‣ Find tracks on T-stations using Cellular Automata and matching
with VELO tracks

‣Other algorithms (Kalman filter, ...)

• Test HLT1 (HLT2?) tracking algorithms on GPUs in a
parasitic mode during the Run2 starting in 2015
‣ Setup one or more PC with GPUs in the HLT farm

‣ Setup SW framework (GPUManager)

‣ Measure latency

‣ ... 22

Outlook (2)
Tracklets between layers of T-stations

Cellular Automata

Backup slides

23

