Track-pattern recognition on
GPGPUs in the LHCb experiment

S. Gallorini
on behalf of the GPU@LHCbTrigger team
University & INFN Padova
GPU Computing in HEP - Pisa - September 11t 2014

Introduction

* The use of commercial General Purpose Graphic Processing Units
(GPGPUs) and other many-core architectures (MIC, ...) opens up
possibilities for new complex triggers

 GPGPUs can be used for realtime selection, and may offer a
solution for reducing the cost of the High Level Trigger (HLT) farm
for the 2020 LHCb upgrade

* Track finding algorithms are usually well suited for parallelization

* ALICE already integrated GPU gaming cards for tracking in the
HLT (Ilce”UIGr AU|'0mCI|'0n" Cllgorii'hm) [IEEE Transactions On Nuclear Science, 58, 4, 2011]

Many-core in LHCb

* In LHCb we have a small event size (O(100 kB)) and a relatively
short processing time

= A huge speed-up could be obtained by processing many
events in parallel

* Several activities started in LHCb aiming to use many-core

architectures in the HLT
(see Daniel’s talk “Manycore feasability studies at the LHCb trigger”)

* In this talk, | will focus on the study of tracking algorithms on
GPU for the current VErtex LOcator detector (VELO)

The LHCb detector

Magnet.—/ r J J L B 5 |
IT & OT K
RICH2 ECAL HCAL MUON

 LHCb is a single-arm forward spectrometer at the LHC aiming at precision
beauty and charm physics:

» CP violation, rare decays, heavy flavour production

* An highly efficient trigger is required for selecting pure data samples for rare

decays
4

The LHCb trigger system

[40 MHz bunch crossing rate }

(15 MHz visible interactions)

7

® LO reduces the rate to below 1.1 MHz:

»Input from the calorimeter and muon

LO trigger systems
High pr/Er signatures: p,e, h, - Rardware » Read-out decision in 4ps
1 MHz detector readout
U Y ® HLT1 reconstructs:
'HLT 1 i)
D]sp'aced high.pl. tracks >TqukS IN the Vertex deteCtor (VELO)
;70 kHz output rate : Shmiar » Primary vertices
HLT2 _ 29k CPUcores.) Forward tracks to tracking detectors
Full event reconstruction d ¢ th ¢
Exclusive and inclusive lines) ownsiream the magne
'5 kHz to offline storage * HLT2 fully reconstructs the event:
' 2kHz incl, 2kHz excl, 1kHz muon . .
\ » Performance close to offline reconstruction

»The available resources in the today Event Filter Farm limited the
time per event in the HLT to =30 ms

5

The VELO detector

R-measuring sensor

. zo.'n’::.a;mu 40 pm inner pich 92pm outer pitch
¢ sensor . e A N
- | 384 \"pai™/ 384 |
\ | | strips N 7 stnps |
"’ j2
\ /
R sensor | R sensor |\ Sips Ships
/ , 256 strips 256 strips /"
_ 14'\,\ /4
- N\
L 8
total 2048 Y
strips T — -3
" ot 9' L]
s 37pm inner pitch to
2 e I W g ’
1 VIR degoees)
' \‘:preaA’ _!/
o 682 inner str i
inner strips /
nsor \
¢ sensor |\
;)) 40um pich /
| 14\‘ ‘/4
N . \ 1366 outer strips /
=~ 8.4 cm N A
total 2048 \1‘:\\\ /\.-’s/
strips — 7 98um outer pitch
1‘—-‘9.'.—6
Pile-up sensors ¢-measuring sensor
o

The VELO detector is a silicon micro-strip detector situated close to the
interaction region

* R-¢ layout, 21 stations with 2R and 2¢ sensors each (+ 4 pile-up sensors)

It provides precise and fast tracking information which was employed in the

HLT during Run1 (2011-2012) 6

VELO pattern recognition

* “FastVelo” is the algorithm developed by LHCb for pattern
recognition in the VELO

* It ran online in the HLT farm during Run1:

» Written to be fast and highly efficient to cope with high rate and hit
occupancy

» Several conditions and checks introduced throughout the code to speed
up the execution

* The VELO track reconstruction is done in two steps:

1. RZ tracking: only hits on R sensors are used. Find tracks in the R-Z plane.

2. Space tracking: add the information of ¢ sensors to each to build the full
tracks

FastVelo on GPU (1)

* The goal of this work is to:

» Evaluate the performances of FastVelo (running in HLT1) on
GPU wrt the original code (optimized for CPU)

»Timing and tracking efficiencies (e.g. clone and ghost rates,
efficiency for long tracks)

» Test GPU tracking algorithms in a parasitic mode in the HLT
during the Run2 starting in 2015

Useful definitions:

reconstructed & reconstructible particles & no electrons

o efficiency:

Nreconstructible particles & no electron

* ghost track: reconstructed track not matched to any true particle

* clone tracks: tracks associated to the same true particle

* long track: track reconstructed in VELO and in tracking stations (“T-stations”)
8

FastVelo on GPU (2)

o Strateqgy:

* Parallelize on the events (obvious...)

* Parallelize the algorithm:

» Process each RZ track concurrently:

» In the original algorithm hits already used in a track are marked and not
further considered in the following iterations (“hit tagging”)

» To avoid race-conditions, hit tagging must be removed in the GPU
algorithm (clones and ghosts tracks diverge!)

* For the rest... try to keep the GPU version as closest as possible to the
original one (code written in CUDA)

9

FastVelo on GPU (4)

* RZ tracking:

* Only R-sensors are used

* The algorithm looks for quadruplets of hits in four contiguous
R-sensors (seed) on both halves.

» Each thread works on a set of four contiguous R-sensors and find all
quadruplets.

* Then each quadruplet is extended in parallel as much as
possible adding the remaining R-sensors

10

Track seed (quadruplet)

S3 S2 S1 SO
Left

‘ ‘ ‘ ‘ ‘ @ight R-sensors

——
Z

FastVelo on GPU (5)

* Space tracking:

e Add hits on ¢-sensors

® Each RZ track is processed concurrently by assigning a space-
tracking algorithm to each thread:

* Search for a triplet of hits: for each hit in the first two ¢-sensors, the
candidate hit in the third sensor is the one most compatible with predicted
position (best x?)

* The track is extended and its parameters are found by minimizing Zpcints X?
(linear system solved by substitution)

* This part is almost a re-writing in CUDA of the original space-tracking code

11

FastVelo on GPU (6)

* Without tagging on used hits, we end up with a large amount of
cones and ghosts

e Solution:

o “Clone killer” algorithms are needed throughout the GPU code to
reduce clones and the number of tracks

e All pairs of tracks are checked in parallel:

»Each thread of the clone killer algorithm takes a track and computes the
number of hits in common with the others; if two tracks have more than 70%
of hits in common, the one with worst x? is discarded

12

Performance evaluation

GPU: NVICIICI Titan (14 SM, 192 CUDA cores/SM, 6GB of memory)

CPU: a single core (Intel i7, 3.40 GHz) in the same PC hosting the
GPU & a multicore CPU (Intel Xeon E5-2600, 24 cores w/ Hyper
Threading, @CNAF)

Used data samples:

» Bs—dd MC events and MinBias data

> b-inclusive MC events (simulated with 2015 data taking conditions)

We use standard LHCb tools to get track efficiencies and
resolutions

Tracking time only! (data transfer not incduded!)

13

* Tracking efficiencies comparison:

* FastVelo running in HLT1

* Evaluated on a sample of Bs = ¢ MC events

Track category FastVeloon GPU | FastVelo on CPU
Efficiency | Clones | Efficiency | Clones
VELQ, all long 86.67% 0.2% 88.8% 0.5%
VELOQ, long, p > 5 GeV 89.5% 0.1% 91.5% 0.4%
VELO, all long B daughters 872% | 01% | 894% | 0.7%
VELO, long B daughters, p >5GeV | 89.3% | 01% | 91.8% | 0.6%
VELO, ghosts 7.8% 7.3%

14

Results (2)

Tracking efficiency vs P(true) Impact parameter resolution vs 1/Pr(true)

h 1_ E L I | 1T T 1 | 1T T 1 | 1T T 1 | 1T T 1 | I I
g F = [i
a3 g 1401 mCPU ,r
% 09F I!ililllilgi 5 | "
: ! * @ 120__ x«GPU A N

- Q B

0.85 =T A -
- = . A i
0-35— 100 A —
0.75 1 i A]
A 80| ¥ -
0.7 B A i
0,65 sol A b
06E- + FastVelo on GPU i . = 1
- — ® Evaluated on a sample of 40} A * Evaluated on a sample of s
0555 FastVelo B, —» bd MC2012 events ey B, & dbdb MC2012 events _
: | | | | | |] | | | |] | | | | | |] |] | | | | | | B]]]] |]]]] |]]]] |]]]] |]]]] |]]] | B
05 10 20 30 40 50 0 0.5 1 15 2 2.5 3
p(true)[GeVic] 1/P_(true), GeV"

Tracking performances close to the optimized CPU code

15

Results (3)

e Execution time as a function of the number of events

B ¥ dd MC events NoBias data
o & 34—
E 3 ’_ = gt ~~
= s 2 Speed-up s ee du H ~ a . 2: & speedup [| 1400.§
v L : o C
a B Fastvelo on CPU p p |l 1000% i - B Fastvelo on CPU o
‘ 25 A FastVelo on GPU § ¥ 18 - A FastVelo on GPU o | 1200§
I B 2.8 £
- rE - 10005
i g 26— £
— N =
< 1600 i= 241 1800 o
: ? i 4
B 2 2.21- 1600 S
E A 1400 S E -
1.5 . Y m 2
I ,. e S 11400
A e
i A GPU 1200 -
i 16— 11200
1— E
i 1 l 1 l 1 | 1 1 l | 1 1 1-4:—_ 1 1 1 I | 1 1 1 I 1 I
200 400 600 800 1000 200 400 600 800 1000
Number of events processed Number of events processed

* GPU performances increases with the number of events: GPU
resources are more efficiently used as the number of events increases

(more threads running at the same time)
16

Results (4)

b-inclusive MC events simulated with expected 2015 conditions

o)
3 22—
T L @ speetup a —-zsoog
¢ |
‘% 2— I Fastvelo on CPU §
E —& Fastvelo on GPU 12000 ﬁ
1.8'_ = g
16 | | R0 £
L : =
L e -
i A L1000 8
E A 8
C ks W
12— K
- -11500
-
L L | 1 l 1 | L l 1 1 1 l | l 1 l 1 1 1 l |
200 400 600 800 1000

Number of events processed

17

Results (5)

® Execution times

FastVelo su CPU, MOORE v20r3 FastVeloGPU

Track cleaning Track cleaning

® findQuadruplets
® Findquadruplets

m makeSpaceTracks

® MakeSpaceTracks

delSpaceClones

mergeSpaceClones

m delRZTracks+delQuadruplets
Clones

* The time spent by FastVeloGPU to kill clones and ghosts is
=40% of whole algorithm (wrt =3% of the original code)

18

* GPU performances compared to a multicore CPU (24 cores w/ HT)

» An instance of FastVelo sent to each core at the same time, with each job
processing the same number of events (1000 events/job)

Evts/sec FastVelo HLT1

5000_ ... ‘ .. —
- 1 ®The throughput of a single core
4000__ __ de‘re"ses iF more inSfCInceS are
i 1 running in parallel
3000 __ __
i Hyper éThreadingj regime i
12701010 SRS AR q _
1000__ ... , ... _, __
O_ | | | | | | | | | | | | | | | | | | A
0 5 10 15 20 25

* Rate of processed events:

=5000 evts/sec (CPU) vs £2600 evts/sec (GPU)
19

Number of instances

Conclusions

* Preliminary results on VELO tracking on GPU have been
shown

* Tracking performances of the GPU version close to the
original CPU code

* A better performance estimator is the rate of processed
events normalized to the cost of the hardware!

» The GPU gaming-card cost less than a CPU used in a node of the HLT
farm, so also a moderate speed-up (e.g. 2x) compared to e.g. Intel Xeon
could bring a real saving to the experiment

20

Outlook (1)

* Improve VELO tracking performances (improve memory
coalescing, try new algorithms, ...)

* Add hits on the T-stations. Two approaches are on-going:

» Porting of the original algorithm which extends VELO tracks to the
forward direction by adding T-hits (“Forward tracking”)

» Find tracks on T-stations using Cellular Automata and matching

with VELO tracks

» Other algorithms (Kalman filter, ...)

2]

Outlook (2)

Tracklets between layers of T-stations

mm

- 3000
Cellular Automata g7

‘ 2000 s

X-axis

, 1000}
< Eevaluation

“direction

1000

® Hit — Tracklet detector layers

2000}

-3000—

PSRRI (N T ST VN N VT SN W NN (Y WY T WY U SN N
7500 8000 8500 9000 9500
Z-axis, mm

e Test HLT1 (HLT22) tracking algorithms on GPUs in a
parasitic mode during the Run2 starting in 2015

» Setup one or more PC with GPUs in the HLT farm
» Setup SW framework (GPUManager)

» Measure latency

} eeoe 22

Backup slides

