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Introduction

* The use of commercial General Purpose Graphic Processing Units
(GPGPUs) and other many-core architectures (MIC, ...) opens up
possibilities for new complex triggers

 GPGPUs can be used for realtime selection, and may offer a
solution for reducing the cost of the High Level Trigger (HLT) farm
for the 2020 LHCb upgrade

* Track finding algorithms are usually well suited for parallelization

* ALICE already integrated GPU gaming cards for tracking in the
HLT (Ilce”UIGr AU|'0mCI|'0n" Cllgorii'hm) [IEEE Transactions On Nuclear Science, 58, 4, 2011]




Many-core in LHCb

* In LHCb we have a small event size (O(100 kB)) and a relatively
short processing time

= A huge speed-up could be obtained by processing many
events in parallel

* Several activities started in LHCb aiming to use many-core

architectures in the HLT
(see Daniel’s talk “Manycore feasability studies at the LHCb trigger”)

* In this talk, | will focus on the study of tracking algorithms on
GPU for the current VErtex LOcator detector (VELO)



The LHCb detector
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 LHCb is a single-arm forward spectrometer at the LHC aiming at precision
beauty and charm physics:

» CP violation, rare decays, heavy flavour production

* An highly efficient trigger is required for selecting pure data samples for rare

decays
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The LHCb trigger system

[ 40 MHz bunch crossing rate }

(15 MHz visible interactions)
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® LO reduces the rate to below 1.1 MHz:

»Input from the calorimeter and muon

LO trigger systems
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'5 kHz to offline storage * HLT2 fully reconstructs the event:
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\ » Performance close to offline reconstruction

»The available resources in the today Event Filter Farm limited the
time per event in the HLT to =30 ms
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The VELO detector
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The VELO detector is a silicon micro-strip detector situated close to the
interaction region

* R-¢ layout, 21 stations with 2R and 2¢ sensors each (+ 4 pile-up sensors)

It provides precise and fast tracking information which was employed in the

HLT during Run1 (2011-2012) 6



VELO pattern recognition

* “FastVelo” is the algorithm developed by LHCb for pattern
recognition in the VELO

* It ran online in the HLT farm during Run1:

» Written to be fast and highly efficient to cope with high rate and hit
occupancy

» Several conditions and checks introduced throughout the code to speed
up the execution

* The VELO track reconstruction is done in two steps:

1. RZ tracking: only hits on R sensors are used. Find tracks in the R-Z plane.

2. Space tracking: add the information of ¢ sensors to each to build the full
tracks



FastVelo on GPU (1)

* The goal of this work is to:

» Evaluate the performances of FastVelo (running in HLT1) on
GPU wrt the original code (optimized for CPU)

»Timing and tracking efficiencies (e.g. clone and ghost rates,
efficiency for long tracks)

» Test GPU tracking algorithms in a parasitic mode in the HLT
during the Run2 starting in 2015

Useful definitions:

reconstructed & reconstructible particles & no electrons

o efficiency:

Nreconstructible particles & no electron

* ghost track: reconstructed track not matched to any true particle

* clone tracks: tracks associated to the same true particle

* long track: track reconstructed in VELO and in tracking stations (“T-stations”)
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FastVelo on GPU (2)

o Strateqgy:

* Parallelize on the events (obvious...)

* Parallelize the algorithm:

» Process each RZ track concurrently:

» In the original algorithm hits already used in a track are marked and not
further considered in the following iterations (“hit tagging”)

» To avoid race-conditions, hit tagging must be removed in the GPU
algorithm (clones and ghosts tracks diverge!)

* For the rest... try to keep the GPU version as closest as possible to the
original one (code written in CUDA)
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FastVelo on GPU (4)

* RZ tracking:

* Only R-sensors are used

* The algorithm looks for quadruplets of hits in four contiguous
R-sensors (seed) on both halves.

» Each thread works on a set of four contiguous R-sensors and find all
quadruplets.

* Then each quadruplet is extended in parallel as much as
possible adding the remaining R-sensors
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FastVelo on GPU (5)

* Space tracking:

e Add hits on ¢-sensors

® Each RZ track is processed concurrently by assigning a space-
tracking algorithm to each thread:

* Search for a triplet of hits: for each hit in the first two ¢-sensors, the
candidate hit in the third sensor is the one most compatible with predicted
position (best x?)

* The track is extended and its parameters are found by minimizing Zpcints X?
(linear system solved by substitution)

* This part is almost a re-writing in CUDA of the original space-tracking code
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FastVelo on GPU (6)

* Without tagging on used hits, we end up with a large amount of
cones and ghosts

e Solution:

o “Clone killer” algorithms are needed throughout the GPU code to
reduce clones and the number of tracks

e All pairs of tracks are checked in parallel:

»Each thread of the clone killer algorithm takes a track and computes the
number of hits in common with the others; if two tracks have more than 70%
of hits in common, the one with worst x? is discarded
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Performance evaluation

GPU: NVICIICI Titan (14 SM, 192 CUDA cores/SM, 6GB of memory)

CPU: a single core (Intel i7, 3.40 GHz) in the same PC hosting the
GPU & a multicore CPU (Intel Xeon E5-2600, 24 cores w/ Hyper
Threading, @CNAF)

Used data samples:

»  Bs—dd MC events and MinBias data

> b-inclusive MC events (simulated with 2015 data taking conditions)

We use standard LHCb tools to get track efficiencies and
resolutions

Tracking time only! (data transfer not incduded!)

13



* Tracking efficiencies comparison:

* FastVelo running in HLT1

* Evaluated on a sample of Bs = ¢ MC events

Track category FastVeloon GPU | FastVelo on CPU
Efficiency | Clones | Efficiency | Clones
VELQ, all long 86.67% 0.2% 88.8% 0.5%
VELOQ, long, p > 5 GeV 89.5% 0.1% 91.5% 0.4%
VELO, all long B daughters 872% | 01% | 894% | 0.7%
VELO, long B daughters, p >5GeV | 89.3% | 01% | 91.8% | 0.6%
VELO, ghosts 7.8% 7.3%
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Results (2)

Tracking efficiency vs P(true) Impact parameter resolution vs 1/Pr(true)
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Tracking performances close to the optimized CPU code
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Results (3)

e Execution time as a function of the number of events
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* GPU performances increases with the number of events: GPU
resources are more efficiently used as the number of events increases

(more threads running at the same time)
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Results (4)

b-inclusive MC events simulated with expected 2015 conditions
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Results (5)

® Execution times

FastVelo su CPU, MOORE v20r3 FastVeloGPU

Track cleaning Track cleaning

® findQuadruplets
® Findquadruplets

m makeSpaceTracks

® MakeSpaceTracks

delSpaceClones

mergeSpaceClones

m delRZTracks+delQuadruplets
Clones

* The time spent by FastVeloGPU to kill clones and ghosts is
=40% of whole algorithm (wrt =3% of the original code)
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* GPU performances compared to a multicore CPU (24 cores w/ HT)

» An instance of FastVelo sent to each core at the same time, with each job
processing the same number of events (1000 events/job)
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* Rate of processed events:

=5000 evts/sec (CPU) vs £2600 evts/sec (GPU)
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Conclusions

* Preliminary results on VELO tracking on GPU have been
shown

* Tracking performances of the GPU version close to the
original CPU code

* A better performance estimator is the rate of processed
events normalized to the cost of the hardware!

» The GPU gaming-card cost less than a CPU used in a node of the HLT
farm, so also a moderate speed-up (e.g. 2x) compared to e.g. Intel Xeon
could bring a real saving to the experiment

20



Outlook (1)

* Improve VELO tracking performances (improve memory
coalescing, try new algorithms, ...)

* Add hits on the T-stations. Two approaches are on-going:

» Porting of the original algorithm which extends VELO tracks to the
forward direction by adding T-hits (“Forward tracking”)

» Find tracks on T-stations using Cellular Automata and matching

with VELO tracks

» Other algorithms (Kalman filter, ...)
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Outlook (2)

Tracklets between layers of T-stations
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e Test HLT1 (HLT22) tracking algorithms on GPUs in a
parasitic mode during the Run2 starting in 2015

» Setup one or more PC with GPUs in the HLT farm
» Setup SW framework (GPUManager)

» Measure latency
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