

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

BERGISCHE UNIVERSITÄT WUPPERTAL

Prospects of GPGPU in the Auger Offline Software Framework

Marvin Gottowik, Julian Rautenberg and <u>Tobias Winchen</u>, for the Pierre Auger Collaboration

> GPU Computing in High Energy Physics Pisa, September 2014

winchen@uni-wuppertal.de

Cosmic Ray Energy Spectrum

Cosmic Ray Induced Air Showers

- Particle Cascade
 - ~ 10¹⁰ particles 10¹⁹ eV
 - Extend over km scale
- Electrons excite air molecules which emit fluorescence light
- Shower geometry and particle content allows conclusions on energy, direction and nature of primary particles

The Pierre Auger Observatory

EZRA

Surface Detector 1660 Water Cherenkov stations 1.5 km spacing 3000 km² covered area

Fluorescence Detector

27 telescopes at 4 sites with 180° view

Radio Emission from Cosmic Ray Air Showers

GPGPU in the Auger Offline Software Framework Tobias Winchen for the Pierre Auger Collaboration

Auger Engineering Radio Array (AERA)

6

Super Hybrid Events

Fluorescence Detector

Radio Detector

7

The Auger Offline Framework

Radio Integration in Offline

Reconstruction of Radio Events

GPGPU in the Auger Offline Software Framework Tobias Winchen for the Pierre Auger Collaboration

Profiling

Tools

Google-perftools + kCachegrind Valgrind + kCachegrind Intel VTune Linux kernel profiler (perf)

Notes

Free, Slow Proprietary Free

No difference in conclusions in this application

→ Minimum invasive Approach: Move individual Hotspots on GPU

GPGPU in the Auger Offline Software Framework Tobias Winchen for the Pierre Auger Collaboration

$\textbf{FFTW} \rightarrow \textbf{CuFFT}$

Offline FFT Data Container:

- Stores data in time and frequency domain
- Lazy evaluation of FFT to update time (frequency) after modification of frequency (time)

Hilbert Envelope

Hilbert Envelope

Envelope is squared sum of signal and its Hilbert Transform

$$E(t) = \sqrt{x^2(t) + H^2(x(t))}$$

Hilbert Transform is - (+) 90 degree phase shift for first (second) half of spectrum

$$H(\omega) = -i \operatorname{sgn}(\omega - \omega_{\operatorname{mid}}) x(\omega)$$

GPGPU in the Auger Offline Software Framework Tobias Winchen for the Pierre Auger Collaboration

Successively Launch Kernels operating on the same data

=> Time spend in

FFT negligible in Cuda - Version

Interpolation of Antenna Patterns

Get Efield from Voltage Traces: $U = \vec{H} \cdot \vec{E}$

$$\mathcal{E}_{\theta}(\omega) = \frac{\mathcal{V}_{1}(\omega)\mathcal{H}_{2,\phi}(\omega) - \mathcal{V}_{2}(\omega)\mathcal{H}_{1,\phi}(\omega)}{\mathcal{H}_{1,\theta}(\omega)\mathcal{H}_{2,\phi}(\omega) - \mathcal{H}_{1,\phi}(\omega)\mathcal{H}_{2,\theta}(\omega)}$$

$$\mathcal{E}_{\phi}(\omega) = \frac{\mathcal{V}_{2}(\omega) - \mathcal{H}_{2,\theta}(\omega)\mathcal{E}_{\theta}(\omega)}{\mathcal{H}_{2,\phi}(\omega)} ,$$

Interpolation of Antenna Patterns

- Few (~6) independent Patterns
- 2 Channels / Pattern
 - ~ 80 frequencies, 180 x 90 angles
- Theta / Phi Component Complex Numbers
- Linear interpolation
- Bind Antenna Patterns as textures on GPU
- Use texture interpolation
- > 100x Speedup

Test Systems

Cluster

- · 24x Intel Xeon X5650, 2.67GHz
- · 48 GB Ram
- · 4x Tesla M2090
- · Debian GNU/Linux (stable)
- · Cuda 4.2

Desktop

•

- 1x AMD A8-6600K, 3.9 GHz
- · 8 GB Ram
- · 1x GeForce 750 Ti
- · Debian GNU/Linux (stable)
- · Cuda 6.0

Performance Overview

Total Speedup

p ~ 1.5x on Cluster with Intel Xeon X5650 @ 2.7 GHz / Tesla M2090, Cuda 4.2
 ~ 1.9x on Desktop with AMD A8-6600K / GeForce 750 Ti, Cuda 6.0

Top hotspots have been eliminated

Conclusions on GPGPU in Auger Offline

- Implementation of GPU versions for selected bottlenecks in parallel to existing CPU version with minimum modifications of the code possible:
 - Replacement of FFTW with CuFFT
 - Interpolation of Antenna patterns as textures
- Implementation not optimal, but minimum invasive
- GPU implementations eliminate two main hotspots:
 Speedup ~ 1.9x on Desktop PC
- High benefit from GPU on Desktop with entry level GPU