
A GPU-based track reconstruction 

in the core of  high pT jets in 

CMSSW
S. Donato, B. Hegner, V. Innocente, A. Meyer, F. Pantaleo, A. Pfeiffer,          

A. Rizzi, A. Schmidt

felice@cern.ch



Outline

• Physics motivation

• Software and Hardware Threading on GPUs

• Cluster splitting on GPU

• Scheduling

• Conclusion

2



Physics Motivation
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CMS Tracking system
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B-tagging

• Full reconstruction of  3rd

generation-quarks decaying in 

high-pT jets

– Searches of  NP at the Energy 

Frontier

– More important @ 13 TeV

– Tracks become more collimated
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Tracking vs pT

• At the moment, the same generic tracking 

algorithm runs for both low-pT and high-pT jets

– Tracks from B-decays get more and more collimated 

as pT increases (perf degradation ~30% at high pT)

– Fake rate increases
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Cluster splitting
• Tracks leave clusters in the hitted subdetectors

• Collimated tracks in the core of  high-pT jet 

generate very close clusters that could be 

accidentally treated one single cluster

• Need to split the cluster in subclusters

– only hits compatible with the h-f region selected 

by the core of  the jet

– tracks with high pT
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Software and Hardware 

Threading on GPUs
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Hardware vs Software

• From a programmer’s perspective: 

– Blocks 

– Kernel 

– Threads 

– Grid 

• Hardware implementation:

– Streaming multiprocessors (SMX)

– Warps

9



Thread Assignment

• Threads assigned to execution resources on a block-by-
block basis. 

• CUDA runtime automatically reduces number of  blocks 
assigned to each SMX until resource usage is under limit.

• Runtime system: 

– maintains a list of  blocks that need to execute 

– assigns new blocks to SM as they compute previously 
assigned blocks 

Example of  SMX resources:

– threads/block or threads/SMX or blocks/SMX

– number of  threads that can be simultaneously tracked and 
scheduled

– shared memory
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Context switching
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• Registers and shared memory are allocated for a block 
as long as that block is active
– Once a block is active it will stay active until all threads in 

that block have completed

• Context switching is very fast because registers and 
shared memory do not need to be saved and restored

• Goal: Have enough transactions in flight to saturate 
the memory bus
– Latency can be hidden by having more transactions in 

flight

– Increase active threads or Instruction Level Parallelism 
(ILP)



Cluster splitting on GPU
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Some considerations

1. Amount of  charge in the cluster ~linear wrt
#subclusters

– Expected number of  subclusters

2. Each of  the firing pixels could be the center of  a 
subcluster

3. The probability that a specific position (pixel) is 
the core of  a track depends on the fraction of  
charge left in that position

– Useful to order pixels by charge

4. The number of  possible combinations of  k
subclusters in n positions is given by:
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Some considerations (ctd.)

5. Linear mapping (indexing) of  

ordered combinations not 

possible

6. Overcommitting memory and 

execution is not an option:

CR(64,6) ~ 120 x106

PR(64,6) = 646 ~ 69 x109

No pointers arithmetic allowed.
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Simplified Algorithm Flow

For numClusters in [avgClusters – 1, avgClusters + 1]:

For I in Combinations:

For pixel in hittedPixels:

Compute(chi2);

Minimize(chi2);

Minimize(chi2);
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LUTs and constant data

• Constant information about the jet stored in 
constant memory

• A couple of  big LUTs (a few MBs) need to be 
loaded onto the GPU

– way too big to be loaded in constant or shared memory 

Kepler architecture allows read-only data caching by 
using const __restrict__ qualifiers:
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Global memory (12GB) loaded through 

the same cache used by the texture 

pipeline

• no need to bind a texture beforehand

• no sizing limitations of  standard 

textures



Dealing with exponential trend

The lack of  pointer arithmetic, the need to 

parallelize to benefit from the GPU architecture 

and the impossibility to overcommit memory 

naturally leads to the choice of: 

• exploiting fast context switching by 

overcommitting CUDA blocks

• warp synchronous programming

• atomics
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Overcommit CUDA blocks

Overcommitting CUDA Blocks does not introduce 

much latency

• When a block finishes its execution another 

block is scheduled on the fly to run on the SMX

• Running on a grid, e.g.:

dim3 grid(numPositions,numPositions,1);

And then selecting the active blocks does not affect 

latency

if(blockIdx.x < numPositions && blockIdx.y <= 
blockIdx.x && threadIdx.x <= blockIdx.y)
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Warp synchronous techniques

• Each thread in a specific block computes the c2

for a specific combination

• Threads in a warp are executed in a SIMD 

fashion

• Shared memory is shared among the threads of  

a block
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Warp synchronous techniques (ctd.)

Inside each block, the c2 minimization can be 
achieved by means of  a warp synchronous reduction 
O(logN):

https://stikked.web.cern.ch/stikked/view/b9312f7b

• This technique allows to avoid barriers hence 
increasing kernel performance

• Each block has now a single Chi2Comb object that 
contains the minimum c2 and the combination 
information.
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Atomics

On Kepler architecture, atomics can be performed as 
quickly as memory loads

– 64-bits maximum size

– has to contain all the combination information needed
struct __attribute__((__packed__)) Chi2Comb {

int16_t chi2;
int8_t comb[6];

};

• Atomics run faster on global memory than shared memory.

• As soon as each block has computed its own minimum c2 it 
is compared atomically with a global one.

https://stikked.web.cern.ch/stikked/view/a63373da

• CUDA blocks are not synchronized: atomic serialization is 
not a problem
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CUDA Dynamic parallelism

• Enables a CUDA kernel to create and 

synchronize new nested work. 

• A child CUDA kernel can be called from 

within a parent CUDA kernel 

– optionally synchronize on the completion of  that 

child CUDA Kernel
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Could be employed to 

compute the chi2 inside each 

combination

• Actually useless because the 

parallel-intensive loop is the 

outer one



Tests
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HW setup

• CPU: Intel Haswell i7 4771
– 4 physical cores

– 3.5GHz

• GPU: NVIDIA K40

– 12GB GDDR5 ECC

– 875 MHz

– 2880 CUDA GPU cores

– CUDA compute capability 3.5

• Communication Bus: PCI Express 3
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Some numbers
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4 clusters

#  of  positions sequential GPU (ms)

32 278.55 11.93

36 879.45 21.17

48 4980 72.14

5 clusters 6 clusters

# of   positions sequential GPU (ms) sequential GPU (ms)

32 28692.35 357.67 61837.64 1759.17

48 85384.9 1620.04 301399.75 8348.24

64 149908.5 4238.4 1165312.37 41258.91

Factor 35ish between the GPU version 

an optimized sequential version



Job Scheduling
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Scheduling
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Take advantage of  a centralized scheduler:

• Make constant memory thread-safe

• Hide latency through ILP 

• Shared data between streams

• Load balancing

• Use otherwise idle CPU

• Use multiple GPUs



Scheduling (ctd.)
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• tbb::concurrent_bounded_queue of  JobDescriptors

• JobDescriptor contains info about input, output, device

• Pthreads pop from queue and start processing data as in 

JobDescriptor, asynchronously, concurrently

• Each pthread associated to one technology (e.g. TBB, 

CUDA, FPGA, OpenMP).

• Results returned by std::futures and std::promises



Conclusion 
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Conclusion

• CUDA fully integrated within CMSSW and 

working out-of-the-box

– Target hybrid software design

• Some Combinatorial problems can be though to 

be parallelized 

• Speedup of  a factor ~35x wrt optimized 

sequential version

• GPU programming is a lot fun…

30


