
A GPU-based track reconstruction

in the core of high pT jets in

CMSSW
S. Donato, B. Hegner, V. Innocente, A. Meyer, F. Pantaleo, A. Pfeiffer,

A. Rizzi, A. Schmidt

felice@cern.ch

Outline

• Physics motivation

• Software and Hardware Threading on GPUs

• Cluster splitting on GPU

• Scheduling

• Conclusion

2

Physics Motivation

3

CMS Tracking system

4

B-tagging

• Full reconstruction of 3rd

generation-quarks decaying in

high-pT jets

– Searches of NP at the Energy

Frontier

– More important @ 13 TeV

– Tracks become more collimated

5

Tracking vs pT

• At the moment, the same generic tracking

algorithm runs for both low-pT and high-pT jets

– Tracks from B-decays get more and more collimated

as pT increases (perf degradation ~30% at high pT)

– Fake rate increases

6By A. Rizzi et al.

Cluster splitting
• Tracks leave clusters in the hitted subdetectors

• Collimated tracks in the core of high-pT jet

generate very close clusters that could be

accidentally treated one single cluster

• Need to split the cluster in subclusters

– only hits compatible with the h-f region selected

by the core of the jet

– tracks with high pT

7

Software and Hardware

Threading on GPUs

8

Hardware vs Software

• From a programmer’s perspective:

– Blocks

– Kernel

– Threads

– Grid

• Hardware implementation:

– Streaming multiprocessors (SMX)

– Warps

9

Thread Assignment

• Threads assigned to execution resources on a block-by-
block basis.

• CUDA runtime automatically reduces number of blocks
assigned to each SMX until resource usage is under limit.

• Runtime system:

– maintains a list of blocks that need to execute

– assigns new blocks to SM as they compute previously
assigned blocks

Example of SMX resources:

– threads/block or threads/SMX or blocks/SMX

– number of threads that can be simultaneously tracked and
scheduled

– shared memory

10

Context switching

11

• Registers and shared memory are allocated for a block
as long as that block is active
– Once a block is active it will stay active until all threads in

that block have completed

• Context switching is very fast because registers and
shared memory do not need to be saved and restored

• Goal: Have enough transactions in flight to saturate
the memory bus
– Latency can be hidden by having more transactions in

flight

– Increase active threads or Instruction Level Parallelism
(ILP)

Cluster splitting on GPU

12

Some considerations

1. Amount of charge in the cluster ~linear wrt
#subclusters

– Expected number of subclusters

2. Each of the firing pixels could be the center of a
subcluster

3. The probability that a specific position (pixel) is
the core of a track depends on the fraction of
charge left in that position

– Useful to order pixels by charge

4. The number of possible combinations of k
subclusters in n positions is given by:

13

Some considerations (ctd.)

5. Linear mapping (indexing) of

ordered combinations not

possible

6. Overcommitting memory and

execution is not an option:

CR(64,6) ~ 120 x106

PR(64,6) = 646 ~ 69 x109

No pointers arithmetic allowed.

14

Simplified Algorithm Flow

For numClusters in [avgClusters – 1, avgClusters + 1]:

For I in Combinations:

For pixel in hittedPixels:

Compute(chi2);

Minimize(chi2);

Minimize(chi2);

15

LUTs and constant data

• Constant information about the jet stored in
constant memory

• A couple of big LUTs (a few MBs) need to be
loaded onto the GPU

– way too big to be loaded in constant or shared memory

Kepler architecture allows read-only data caching by
using const __restrict__ qualifiers:

16

Global memory (12GB) loaded through

the same cache used by the texture

pipeline

• no need to bind a texture beforehand

• no sizing limitations of standard

textures

Dealing with exponential trend

The lack of pointer arithmetic, the need to

parallelize to benefit from the GPU architecture

and the impossibility to overcommit memory

naturally leads to the choice of:

• exploiting fast context switching by

overcommitting CUDA blocks

• warp synchronous programming

• atomics

17

Overcommit CUDA blocks

Overcommitting CUDA Blocks does not introduce

much latency

• When a block finishes its execution another

block is scheduled on the fly to run on the SMX

• Running on a grid, e.g.:

dim3 grid(numPositions,numPositions,1);

And then selecting the active blocks does not affect

latency

if(blockIdx.x < numPositions && blockIdx.y <=
blockIdx.x && threadIdx.x <= blockIdx.y)

18

Warp synchronous techniques

• Each thread in a specific block computes the c2

for a specific combination

• Threads in a warp are executed in a SIMD

fashion

• Shared memory is shared among the threads of

a block

19

Warp synchronous techniques (ctd.)

Inside each block, the c2 minimization can be
achieved by means of a warp synchronous reduction
O(logN):

https://stikked.web.cern.ch/stikked/view/b9312f7b

• This technique allows to avoid barriers hence
increasing kernel performance

• Each block has now a single Chi2Comb object that
contains the minimum c2 and the combination
information.

20

https://stikked.web.cern.ch/stikked/view/b9312f7b

Atomics

On Kepler architecture, atomics can be performed as
quickly as memory loads

– 64-bits maximum size

– has to contain all the combination information needed
struct __attribute__((__packed__)) Chi2Comb {

int16_t chi2;
int8_t comb[6];

};

• Atomics run faster on global memory than shared memory.

• As soon as each block has computed its own minimum c2 it
is compared atomically with a global one.

https://stikked.web.cern.ch/stikked/view/a63373da

• CUDA blocks are not synchronized: atomic serialization is
not a problem

21

https://stikked.web.cern.ch/stikked/view/a63373da

CUDA Dynamic parallelism

• Enables a CUDA kernel to create and

synchronize new nested work.

• A child CUDA kernel can be called from

within a parent CUDA kernel

– optionally synchronize on the completion of that

child CUDA Kernel

22

Could be employed to

compute the chi2 inside each

combination

• Actually useless because the

parallel-intensive loop is the

outer one

Tests

23

HW setup

• CPU: Intel Haswell i7 4771
– 4 physical cores

– 3.5GHz

• GPU: NVIDIA K40

– 12GB GDDR5 ECC

– 875 MHz

– 2880 CUDA GPU cores

– CUDA compute capability 3.5

• Communication Bus: PCI Express 3

24

Some numbers

25

4 clusters

of positions sequential GPU (ms)

32 278.55 11.93

36 879.45 21.17

48 4980 72.14

5 clusters 6 clusters

of positions sequential GPU (ms) sequential GPU (ms)

32 28692.35 357.67 61837.64 1759.17

48 85384.9 1620.04 301399.75 8348.24

64 149908.5 4238.4 1165312.37 41258.91

Factor 35ish between the GPU version

an optimized sequential version

Job Scheduling

26

Scheduling

27

Take advantage of a centralized scheduler:

• Make constant memory thread-safe

• Hide latency through ILP

• Shared data between streams

• Load balancing

• Use otherwise idle CPU

• Use multiple GPUs

Scheduling (ctd.)

28

• tbb::concurrent_bounded_queue of JobDescriptors

• JobDescriptor contains info about input, output, device

• Pthreads pop from queue and start processing data as in

JobDescriptor, asynchronously, concurrently

• Each pthread associated to one technology (e.g. TBB,

CUDA, FPGA, OpenMP).

• Results returned by std::futures and std::promises

Conclusion

29

Conclusion

• CUDA fully integrated within CMSSW and

working out-of-the-box

– Target hybrid software design

• Some Combinatorial problems can be though to

be parallelized

• Speedup of a factor ~35x wrt optimized

sequential version

• GPU programming is a lot fun…

30

