
Designing and Optimizing LQCD code
using OpenACC

E Calore, S F Schifano, R Tripiccione

Enrico Calore

University of Ferrara and INFN-Ferrara, Italy

GPU Computing in High Energy Physics

Pisa, Sep. 10th, 2014

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 1 / 27

Outline

1 Introduction
Hardware trends
Software needs
OpenACC at a glance

2 Towards an OpenACC LQCD implementation
Data layout importance
CUDA implementation
OpenACC implementation

3 Preliminary results

4 Towards multi-GPU computations

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 2 / 27

Outline

1 Introduction
Hardware trends
Software needs
OpenACC at a glance

2 Towards an OpenACC LQCD implementation
Data layout importance
CUDA implementation
OpenACC implementation

3 Preliminary results

4 Towards multi-GPU computations

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 3 / 27

GPUs and MICs performances are growing

Courtesy of Dr. Karl Rupp, Technische Universität Wien

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 4 / 27

GPUs and MICs use in HPC is growing

Accelerator architectures in the Top500 Supercomputers

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 5 / 27

Outline

1 Introduction
Hardware trends
Software needs
OpenACC at a glance

2 Towards an OpenACC LQCD implementation
Data layout importance
CUDA implementation
OpenACC implementation

3 Preliminary results

4 Towards multi-GPU computations

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 6 / 27

How to get our code ready for future HPC systems?

Given that:
available parallelism in CPUs is increasing

accelerator architectures are quickly evolving

CPUs and Accelerators are getting closer

is hard to predict if one architecture will prevail and, if it is
the case, which one will

Code has to:
be able to exploit hardware parallelism at different levels

be portable across different architectures

not be subject to (excessive) performance degradation
due to its portability

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 7 / 27

OpenCL (Open Computing Language):

The same code can be run on CPUs, GPUs, MICs, etc.

Functions to be offloaded on the accelerator have to be explicitly
programmed (as in CUDA)

Data movements between host and accelerator has to be explicitly
programmed (as in CUDA)

NVIDIA do not support it anymore

OpenACC (for Open Accelerators):

The same code (will probably) run on CPUs, GPUs, MICs, etc.

Functions to be offloaded are “annotated” with #pragma directives

Data movements between host and accelerator could be managed
automatically or manually

Support is still limited, but seems to be quickly growing

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 8 / 27

Why it is worth to use OpenACC

Code modifications could be minimal
Thanks to the annotation of pre-existing C code using #pragma directives.

Programming efforts needed mainly to re-organize the data structures and
to efficiently design data movements.

If it will be superseded, programming efforts would not be lost

OpenMP community is working towards the native support for accelerators
in the language (maybe in several years).

Switching between directive based languages should be just a matter of
changing the #pragma clauses.

Also other directive based languages would benefit from data
re-organization and efficiently designed data movements.

NVIDIA is pushing for its adoption and is strongly committed to develop PGI

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 9 / 27

Outline

1 Introduction
Hardware trends
Software needs
OpenACC at a glance

2 Towards an OpenACC LQCD implementation
Data layout importance
CUDA implementation
OpenACC implementation

3 Preliminary results

4 Towards multi-GPU computations

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 10 / 27

OpenACC example: the Saxpy function

{
my_saxpy (x , y) ;

}

void my_saxpy (float ∗ x , float ∗ y) {

#pragma acc kernels loop
for (int i = 0; i < N ; ++i)
y [i] = a∗x [i] + y [i] ;

}

OpenACC code computing a saxpy function on vectors x and y . #pragma
clause identify the region to run on the accelerator.

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 11 / 27

OpenACC example: the Saxpy function
#pragma acc copyin (x) , copy (y)
{

my_saxpy (x , y) ;

acc_async_wait (1) ;
}

void my_saxpy (float ∗ x , float ∗ y) {

#pragma acc kernels present (x) present (y) async (1)
#pragma acc loop gang vector (256)
for (int i = 0; i < N ; ++i)
y [i] = a∗x [i] + y [i] ;

}

OpenACC code computing a saxpy function on vectors x and y . #pragma
clauses identifies the region to run on the accelerator and how to manage
data transfers.

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 12 / 27

Outline

1 Introduction
Hardware trends
Software needs
OpenACC at a glance

2 Towards an OpenACC LQCD implementation
Data layout importance
CUDA implementation
OpenACC implementation

3 Preliminary results

4 Towards multi-GPU computations

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 13 / 27

AoS vs SoA in a 3D Lattice Boltzmann Application

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 14 / 27

Memory layout for LQCD : AoS vs SoA
/ / fermions stored as AoS :
typedef struct {

double complex c1 ; / / component 1
double complex c2 ; / / component 2
double complex c3 ; / / component 3

} vec3_aos_t ;

vec3_aos_t fermions [sizeh] ;

AoS: corresponding components of different sites are interleaved, causing
strided memory-access and leading to coalescing issues.

/ / fermions stored as SoA :
typedef struct {

double complex c0 [sizeh] ; / / components 1
double complex c1 [sizeh] ; / / components 2
double complex c2 [sizeh] ; / / components 3

} vec3_soa_t ;

vec3_soa_t fermions ;

SoA: corresponding populations of different sites are allocated at contiguous
memory addresses, enabling coalescing of accesses, and making use of full
memory bandwidth.

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 15 / 27

Fermions vectors data structure

typedef struct {

double complex c0 [sizeh] ;
double complex c1 [sizeh] ;
double complex c2 [sizeh] ;

} vec3_soa_t ;

Since C99 float/double
standard complex data type:

Real Part Img Part
∗ −−−−−−−−−− ∗ −−−−−−−−−− ∗
| Double | Double |
| (8 bytes) | (8 bytes) |
∗ −−−−−−−−−− ∗ −−−−−−−−−− ∗

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 16 / 27

Gauge field matrices data structure

typedef struct {

vec3_soa r0 ;
vec3_soa r1 ;
vec3_soa r2 ;

} su3_soa_t ;

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 17 / 27

Outline

1 Introduction
Hardware trends
Software needs
OpenACC at a glance

2 Towards an OpenACC LQCD implementation
Data layout importance
CUDA implementation
OpenACC implementation

3 Preliminary results

4 Towards multi-GPU computations

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 18 / 27

CUDA example for the Deo function

__global__ void Deo (const __restrict su3_soa_d ∗ const u ,
__restrict vec3_soa_d ∗ const out ,

const __restrict vec3_soa_d ∗ const in) {

int x , y , z , t , xm , ym , zm , tm , xp , yp , zp , tp , idxh , eta ;

vec3 aux_tmp ;
vec3 aux ;

idxh = ((blockIdx .z ∗ blockDim .z + threadIdx .z) ∗ nxh ∗ ny)
+ ((blockIdx .y ∗ blockDim .y + threadIdx .y) ∗ nxh)
+ (blockIdx .x ∗ blockDim .x + threadIdx .x) ;

t = (blockIdx .z ∗ blockDim .z + threadIdx .z) / nz ;
z = (blockIdx .z ∗ blockDim .z + threadIdx .z) % nz ;
y = (blockIdx .y ∗ blockDim .y + threadIdx .y) ;
x = 2∗(blockIdx .x ∗ blockDim .x + threadIdx .x) + ((y+z+t) & 0x1) ;

. . .

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 19 / 27

Outline

1 Introduction
Hardware trends
Software needs
OpenACC at a glance

2 Towards an OpenACC LQCD implementation
Data layout importance
CUDA implementation
OpenACC implementation

3 Preliminary results

4 Towards multi-GPU computations

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 20 / 27

OpenACC example for the Deo function

void Deo (const __restrict su3_soa ∗ const u ,
__restrict vec3_soa ∗ const out ,
const __restrict vec3_soa ∗ const in) {

int hx , y , z , t ;

#pragma acc kernels present (u) present (out) present (in)
#pragma acc loop independent gang (nt)
for (t=0; t<nt ; t++) {

#pragma acc loop independent gang (nz /DIM_BLK_Z) vector (DIM_BLK_Z)
for (z=0; z<nz ; z++) {

#pragma acc loop independent gang (ny /DIM_BLK_Y) vector (DIM_BLK_Y)
for (y=0; y<ny ; y++) {

#pragma acc loop independent vector (DIM_BLK_X)
for (hx=0; hx < nxh ; hx++) {

. . .

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 21 / 27

Outline

1 Introduction
Hardware trends
Software needs
OpenACC at a glance

2 Towards an OpenACC LQCD implementation
Data layout importance
CUDA implementation
OpenACC implementation

3 Preliminary results

4 Towards multi-GPU computations

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 22 / 27

Execution times for a 324 lattice

Deo + Doe

Block-size CUDA OpenACC

8,8,8 7.58 9.29
16,1,1 8.43 16.16
16,2,1 7.68 9.92
16,4,1 7.76 9.96
16,8,1 7.75 10.11
16,16,1 7.64 10.46

Time in [ns per site], run on an NVIDIA K20m GPU using double precision;

OpenACC code compiled using PGI 14.6

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 23 / 27

Execution times summary

Lattice size Thread Block size CUDA OpenACC

164 8x8x8 7.27 9.86
324 8x8x8 7.58 9.23
484 8x8x8 7.86 9.11

64x32x32x16 16x8x4 7.59 9.16
" 32x8x2 7.62 9.12
" 32x4x4 7.54 9.06
" 32x4x2 7.61 10.56
" 32x2x2 7.71 10.18

32x16x16x16 16x8x4 7.45 9.78

Time in [ns per site], run on an NVIDIA K20m GPU using double precision;

OpenACC code compiled using PGI 14.6

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 24 / 27

Outline

1 Introduction
Hardware trends
Software needs
OpenACC at a glance

2 Towards an OpenACC LQCD implementation
Data layout importance
CUDA implementation
OpenACC implementation

3 Preliminary results

4 Towards multi-GPU computations

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 25 / 27

Prospective multi-GPU Lattice: 48× 48× 48× 96

Local Lat No. of Block Mem Data Trans. Tc Td
lx , ly , lz , lt GPUs Size [MB] [48B] [ms] [ms]

48× 48× 48× 6 16 8× 8× 8 415 2× (48× 48× 48) 6.16 ' 1.6

48× 48× 24× 12 16 8× 8× 8 415 2× (48× 48× 24) 6.21 ' 1.8
+2× (48× 48× 12)

48× 48× 24× 6 32 8× 8× 8 208 2× (48× 48× 24) 3.30 ' 1.4
+2× (48× 48× 6)

48× 24× 24× 48 8 8× 8× 8 830 4× (48× 24× 48) 12.26 ' 2.5
+2× (48× 24× 24)

24× 24× 24× 96 8 8× 8× 8 830 6× (24× 24× 96) 17.24 ' 3.0

16× 16× 16× 96 27 8× 8× 8 369 6× (16× 16× 96) 5.38 ' 1.8

Data transfers expressed in number of fermions (i.e. 48 bytes).

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 26 / 27

Thanks for Your attention

E. Calore (INFN of Ferrara) LQCD using OpenACC Pisa, Sep 10th, 2014 27 / 27

	Introduction
	Hardware trends
	Software needs
	OpenACC at a glance

	Towards an OpenACC LQCD implementation
	Data layout importance
	CUDA implementation
	OpenACC implementation

	Preliminary results
	Towards multi-GPU computations

