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Introduction
Quantum ChormoDynamics (QCD)is the best undestood piece of
the Standard Model, from the point of view of the fundamental
degrees of freedom:

• It is SU(3) Yang-Mills theorywith six quark flavors in the
fundamental representation, weakly coupled at high energies.

• At low energies it becomes non-pertrubative: confinement,
chiral symmetry breaking, a rich phase diagram...
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Introduction
Quantum ChormoDynamics (QCD)is the best undestood piece of
the Standard Model, from the point of view of the fundamental
degrees of freedom:

• It is SU(3) Yang-Mills theorywith six quark flavors in the
fundamental representation, weakly coupled at high energies.

• At low energies it becomes non-pertrubative: confinement,
chiral symmetry breaking, a rich phase diagram...

Many approaches have been tried to describe these phenomena
(perturbation theory, lattice, Dyson-Schwinger, chiral
Lagrangians...).Holography, like all these techniques, has
advantages and limits. It offers a simple and powerful tool to
compute non-perturbative observables and it is especiallyuseful
in out-of-equilibrium situations.

• In this talk I will describe a class of phenomenological
holographic models that provide a good descriptions of many
aspects of the non-perturbative physics The Phenomenological Holographic Approach to QCD – p.2



SU(N) Yang-Mills

SY M =
N

λ

∫

d4x Tr FµνF
µν , λ = g2

Y MN

• Free at high energy:λ(E) ≃ (β0 log E/ΛIR)−1; strongly
coupled at low energy.

• Confining (Wilson Loop given by area law)

• All dimensionful observables are governed by asingle scale Λ
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SU(N) Yang-Mills

SY M =
N

λ

∫

d4x Tr FµνF
µν , λ = g2

Y MN

• Free at high energy:λ(E) ≃ (β0 log E/ΛIR)−1; strongly
coupled at low energy.

• Confining (Wilson Loop given by area law)

• All dimensionful observables are governed by asingle scale Λ

• The spectrum is discrete (glueballs) and organized in towers
associated to gauge-invariant operators, e.g:

TrF 2 ⇔ JPC = 0++, T rF F̃ ⇔ 0−+ T tt
µν ⇔ 2++ . . .
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SU(N) Yang-Mills

SY M =
N

λ

∫

d4x Tr FµνF
µν , λ = g2

Y MN

• Free at high energy:λ(E) ≃ (β0 log E/ΛIR)−1; strongly
coupled at low energy.

• Confining (Wilson Loop given by area law)

• All dimensionful observables are governed by asingle scale Λ

• The spectrum is discrete (glueballs) and organized in towers
associated to gauge-invariant operators, e.g:

TrF 2 ⇔ JPC = 0++, T rF F̃ ⇔ 0−+ T tt
µν ⇔ 2++ . . .

• ’t Hooft: N large,λ fixed⇒ the theory simplifies (e.g.
glueballs become weakly interacting)
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SU(N) Yang-Mills at finite temperature

• it displays afirst orderdeconfinement transition at
Tc ≃ 260MeV with a latent heat∼ Λ4N2
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SU(N) Yang-Mills at finite temperature

• it displays afirst orderdeconfinement transition at
Tc ≃ 260MeV with a latent heat∼ Λ4N2

Equation of state
p(T ) from lattice

Karsch,

hep-lat/0106019
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SU(N) Yang-Mills at finite temperature

• it displays afirst orderdeconfinement transition at
Tc ≃ 260MeV with a latent heat∼ Λ4N2

Equation of state
p(T ) from lattice

Karsch,

hep-lat/0106019

• In the deconfined phase the spectrum is continuous and the
long-wavelenght physics is expected to be described by
(viscous) hydrodynamics.
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AdS/CFT

The AdS/CFT duality: conjecture that certain quantum field theories
are equivalent to theories of gravity in higher dimensions.
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AdS/CFT

The AdS/CFT duality: conjecture that certain quantum field theories
are equivalent to theories of gravity in higher dimensions.

• Equivalentmeans that the two theories contain the same
degrees of freedom, but arranged in differnt ways.

• Depending on the situation, one side or the other may be easier
to handle.
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AdS/CFT

The AdS/CFT duality: conjecture that certain quantum field theories
are equivalent to theories of gravity in higher dimensions.

• N = 4 SYM theory in 4D⇔ IIB String theory onAdS5 × S5

• largeN , largeλ: Gravity side becomes classical and
non-stringy.

• Conformal invariance⇔ AdS spacetimeds2 = r−2(dr2 + dx2
µ),

Scaling isometryr → λr, xµ → λxµ.

• RG scale⇔ radial coordinater; UV ⇔ AdS boundaryr = 0.
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Field/Operator correspondence

• QFT operatorO(x) ⇔ Bulk field Φ(x, r).

• Φ0(x) = Φ(x, 0) is asourcefor O(x) in the QFT:
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Field/Operator correspondence

• QFT operatorO(x) ⇔ Bulk field Φ(x, r).

• Φ0(x) = Φ(x, 0) is asourcefor O(x) in the QFT:

Dimension∆ of O determined
by the mass ofΦ:
m2 = ∆(∆ − d).

The Phenomenological Holographic Approach to QCD – p.9



Field/Operator correspondence

• QFT operatorO(x) ⇔ Bulk field Φ(x, r).

• Φ0(x) = Φ(x, 0) is asourcefor O(x) in the QFT:

Dimension∆ of O determined
by the mass ofΦ:
m2 = ∆(∆ − d).

in the large-N limit:

ZQFT [Φ0(x)] = exp iScl[Φ0(x)]

Scl[Φ0]: classical bulk action evaluated on the solution of the
field equations with fixed boundary conditionΦ0(x).
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Field/Operator correspondence

• QFT operatorO(x) ⇔ Bulk field Φ(x, r).

• Φ0(x) = Φ(x, 0) is asourcefor O(x) in the QFT:

Dimension∆ of O determined
by the mass ofΦ:
m2 = ∆(∆ − d).

in the large-N limit:

ZQFT [Φ0(x)] = exp iScl[Φ0(x)]

Scl[Φ0]: classical bulk action evaluated on the solution of the
field equations with fixed boundary conditionΦ0(x).

〈O(x1) . . . O(xn)〉 =
δ

δΦ0(x1)
. . .

δ

δΦ0(xn)
Scl[Φ0]

The Phenomenological Holographic Approach to QCD – p.9



Phenomenological holography

N=4 SYM is rather far from QCD phenomenology in the vacuum
(conformal invariance, susy, lots of extra operators). To describe
QCD one needs to build other gravity solutions.
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Phenomenological holography

N=4 SYM is rather far from QCD phenomenology in the vacuum
(conformal invariance, susy, lots of extra operators). To describe
QCD one needs to build other gravity solutions.

Two complementary approaches:

Top-downConstruct string theory backgrounds which break
susy/conformal invarariance.

Bottom-up: Construct phenomenological gravity models such that,
using holography rules, we can match the properties of the QFT.
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Phenomenological holography

N=4 SYM is rather far from QCD phenomenology in the vacuum
(conformal invariance, susy, lots of extra operators). To describe
QCD one needs to build other gravity solutions.

Two complementary approaches:

Top-downConstruct string theory backgrounds which break
susy/conformal invarariance.

• allows to control both sides of the correspondence;

• typically the gauge theory is only a relative of QCD;

Bottom-up: Construct phenomenological gravity models such that,
using holography rules, we can match the properties of the QFT.
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Phenomenological holography

N=4 SYM is rather far from QCD phenomenology in the vacuum
(conformal invariance, susy, lots of extra operators). To describe
QCD one needs to build other gravity solutions.

Two complementary approaches:

Top-downConstruct string theory backgrounds which break
susy/conformal invarariance.

• allows to control both sides of the correspondence;

• typically the gauge theory is only a relative of QCD;

Bottom-up: Construct phenomenological gravity models such that,
using holography rules, we can match the properties of the QFT.

• Not a controlled approximation of a more fundamental theory;

• Free parameters can be used to fit data from other techniques
and have a quantitative match.
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Minimal phenomenological setup

• The bulk theory is five-dimensional (xµ + RG coordinater)

• Include only lowest dimension YM operators (∆ = 4)

4D Operator Bulk field Coupling

TrF 2 ⇔ Φ N
∫

e−Φ TrF 2

Tµν ⇔ gµν

∫

gµνT
µν

λ = Ng2
Y M = eΦ (finite in the largeN limit).
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Minimal phenomenological setup

• The bulk theory is five-dimensional (xµ + RG coordinater)

• Include only lowest dimension YM operators (∆ = 4)

4D Operator Bulk field Coupling

TrF 2 ⇔ Φ N
∫

e−Φ TrF 2

Tµν ⇔ gµν

∫

gµνT
µν

λ = Ng2
Y M = eΦ (finite in the largeN limit).

• Breaking of conformal symmetry, mass gap, confinement, and
all non-perturbative dynamics driven by the dilaton dynamics
(aka the Yang-Mills coupling).

• TreatΦ as a 5D string theory dilaton:g(s)
µν = e4/3Φg

(E)
µν (the true

dual, if it exists, should be a non-critical 5d string theory)
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5-D Eistein-Dilaton Theory

Bulk dynamics described by a 2-derivative action:

SE = −M3
p N2

c

∫

d5x
√−g

[

R − 4

3
(∂Φ)2 − V (Φ)

]
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5-D Eistein-Dilaton Theory

Bulk dynamics described by a 2-derivative action:

SE = −M3
p N2

c

∫

d5x
√−g

[

R − 4

3
(∂Φ)2 − V (Φ)

]

• V (Φ) fixed phenomenologically. It should parametrize our
ignorance of the “true” five-dimensional string theory

• Effective Planck scale∼ N2
c is large.
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5-D Eistein-Dilaton Theory

Bulk dynamics described by a 2-derivative action:

SE = −M3
p N2

c

∫

d5x
√−g

[

R − 4

3
(∂Φ)2 − V (Φ)

]

• V (Φ) fixed phenomenologically. It should parametrize our
ignorance of the “true” five-dimensional string theory

• Effective Planck scale∼ N2
c is large.

• Features:asymptotic freedom, confinement, discrete linear
glueball spectrum, correct thermodynamics and phase diagram

• Drawbacks: it is not a controlled approximation of a more
complete theory: unknown size of possible corrections (e.g.
from higher dimension operators)
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Five dimensional setup
The Poincaré-invariant vacuum solution has the general form:

ds2 = e2A(r)(dr2 + dxµdxµ), λ = λ(r), 0 < r < +∞

The Phenomenological Holographic Approach to QCD – p.13



Five dimensional setup
The Poincaré-invariant vacuum solution has the general form:

ds2 = e2A(r)(dr2 + dxµdxµ), λ = λ(r), 0 < r < +∞

• eA(r) ∝ 4D energy scale

• λ(r) ∝ running ’t Hooft coupling

• A(r), λ(r) determined by solving bulk Einstein’s equations.
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Five dimensional setup
The Poincaré-invariant vacuum solution has the general form:

ds2 = e2A(r)(dr2 + dxµdxµ), λ = λ(r), 0 < r < +∞

• eA(r) ∝ 4D energy scale

• λ(r) ∝ running ’t Hooft coupling

• A(r), λ(r) determined by solving bulk Einstein’s equations.

• UV: λ → 0, V (λ) ∼ 12
ℓ2

(

1 + v0λ + v1λ
2 . . .

)

⇒ asymptotically AdS solutions (r → 0) + log-corrections:

eA ≃ ℓ

r
, λ(r) ≃ 1

β0 log rΛ
, β0 =

8

9
v0

• IR: Generically,eA → 0;. Detailed behavior depends onV (λ)

at largeλ. Assume no IR AdS fixed point, eventuallyλ → ∞ at
larger.
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Five dimensional setup
The Poincaré-invariant vacuum solution has the general form:

ds2 = e2A(r)(dr2 + dxµdxµ), λ = λ(r), 0 < r < +∞

• eA(r) ∝ 4D energy scale

• λ(r) ∝ running ’t Hooft coupling
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AdS/CFT and Confinement

Confinement in AdS/CFT is decided via the dual of theWilson loop
test. QFT Wilson Loop operator:

W (γ) = P exp i

∮

γ
A

Confinement⇔ Area Lawfor large size ofγ: W ∼ exp {iσcAreaγ}
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AdS/CFT and Confinement

Confinement in AdS/CFT is decided via the dual of theWilson loop
test. QFT Wilson Loop operator:

W (γ) = P exp i

∮

γ
A

Confinement⇔ Area Lawfor large size ofγ: W ∼ exp {iσcAreaγ}

⇒ linear potentialbetween two quarks at large separation:

W = eiSγ , Sγ = TV (L) ∼ σcTL ⇒ V (L) = σcL
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AdS/CFT and Confinement

The holographic dual of the Wilson Loop is the action of a string
attaching to the contour on the boundary, and closing into the
interior.

Sγ =
1

2πℓ2
s

AreaΣ
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AdS/CFT and Confinement

The holographic dual of the Wilson Loop is the action of a string
attaching to the contour on the boundary, and closing into the
interior.

Sγ =
1

2πℓ2
s

AreaΣ

Σ is chosen as the minimal (i.e. geodesic) surface ending onγ.
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AdS/CFT and Confinement

Area law⇔ The string frame metric has a non-zero minimum at
somerm

ds2
s = b2

s(r)
[

dr2 + dx2
µ

]

non-confining confining
σc = 0 σc = b2(rm)
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Area law⇔ The string frame metric has a non-zero minimum at
somerm

ds2
s = b2

s(r)
[

dr2 + dx2
µ

]

non-confining confining
σc = 0 σc = b2(rm)
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AdS/CFT and Confinement

Area law⇔ The string frame metric has a non-zero minimum at
somerm

ds2
s = b2

s(r)
[

dr2 + dx2
µ

]

b2
s = λ4/3e2A(r)

non-confining confining
V (λ) . O(λ4/3) V (λ) & O(λ4/3)
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Spectrum

Spectrum of states associated toO ⇔ spectrum ofnormalizable
fluctuationsof the corresponding bulk fieldΦ

〈O(k)O(−k)〉 =
∑

n

f2
n

k2 − m2
n
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Spectrum

Spectrum of states associated toO ⇔ spectrum ofnormalizable
fluctuationsof the corresponding bulk fieldΦ

〈O(k)O(−k)〉 =
∑

n

f2
n

k2 − m2
n

Bulk fluctuations:δgµν = e2A(r)hµν(x, r), δΦ(x, r)

⇒ onetensormode (T tt
µν) and onescalarmode (TrF 2).
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Spectrum

Spectrum of states associated toO ⇔ spectrum ofnormalizable
fluctuationsof the corresponding bulk fieldΦ

〈O(k)O(−k)〉 =
∑

n

f2
n

k2 − m2
n

Bulk fluctuations:δgµν = e2A(r)hµν(x, r), δΦ(x, r)

⇒ onetensormode (T tt
µν) and onescalarmode (TrF 2).

Fluctuation equations equivalent to a Scrhödinger problem:

−Ψ̈ + Vs(r)Ψ = −k2Ψ k2 = −m2

Vs(r) determined by the background solution(A(r), λ(r))
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Spectrum

The Schroedinger potentials behave as:

V (λ) . O(λ4/3) V (λ) & O(λ4/3)
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Spectrum

The Schroedinger potentials behave as:

non-confining confining

Area law⇔ Gaped discrete tower of spin 2 and spin 0 states
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Finite Temperature

Equilibrium thermo dynamics atT = 1/β ⇒ euclidean periodic
time τ ∼ τ + β.
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Finite Temperature

Equilibrium thermo dynamics atT = 1/β ⇒ euclidean periodic
time τ ∼ τ + β.
Thepartition functionis given by thegravity action evaluated at its
extremum(solution of the of the gravity-side field equation)

Z(β) = e−Sgrav[g0,Φ0]

• Different equilibrium states⇔ Different gravity solutions
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Finite Temperature

Equilibrium thermo dynamics atT = 1/β ⇒ euclidean periodic
time τ ∼ τ + β.
Thepartition functionis given by thegravity action evaluated at its
extremum(solution of the of the gravity-side field equation)

Z(β) = e−Sgrav[g0,Φ0]

• Different equilibrium states⇔ Different gravity solutions

• Thermal partition function≃ sum over stationary points:

Z(β) ≃ e−βF1 + e−βF2 βFi(T ) = Sgrav

∣

∣

∣

soli
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Finite Temperature

Equilibrium thermo dynamics atT = 1/β ⇒ euclidean periodic
time τ ∼ τ + β.
Thepartition functionis given by thegravity action evaluated at its
extremum(solution of the of the gravity-side field equation)

Z(β) = e−Sgrav[g0,Φ0]

• Different equilibrium states⇔ Different gravity solutions

• Thermal partition function≃ sum over stationary points:

Z(β) ≃ e−βF1 + e−βF2 βFi(T ) = Sgrav

∣

∣

∣

soli

• Phase transitionhappens atTc whereF1(Tc) = F2(Tc)
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Finite Temperature

5-d Einstein-Dilaton theory: two different kinds of solutions with
the same boundary conditions atr = 0:
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Finite Temperature

5-d Einstein-Dilaton theory: two different kinds of solutions with
the same boundary conditions atr = 0:

Thermally excited vacuum:

ds2
TG = e2A(r)

[

dr2 + dτ2 + d~x2
]
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Finite Temperature

5-d Einstein-Dilaton theory: two different kinds of solutions with
the same boundary conditions atr = 0:

Thermally excited vacuum:

ds2
TG = e2A(r)

[

dr2 + dτ2 + d~x2
]

Black hole:

ds2
BH = e2A(r)

[

dr2

f(r)
+ f(r)dτ2 + d~x2

]

, f(rh) = 0, |ḟ(rh)| = 4πT
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Finite Temperature

5-d Einstein-Dilaton theory: two different kinds of solutions with
the same boundary conditions atr = 0:

Thermally excited vacuum:

ds2
TG = e2A(r)

[

dr2 + dτ2 + d~x2
]

Black hole:

ds2
BH = e2A(r)

[

dr2

f(r)
+ f(r)dτ2 + d~x2

]

, f(rh) = 0, |ḟ(rh)| = 4πT

• the black hole always corresponds to adeconfined phase
(gtt = 0 at the horizon, and the string tension vanishes)
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Phase diagram

• N = 4 SYM has no scale⇒ no phase transition
FBH = −cT 4, at any finiteT BH phase dominates.
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Phase diagram

• N = 4 SYM has no scale⇒ no phase transition
FBH = −cT 4, at any finiteT BH phase dominates.

• Einstein-Dilaton theory: behavior depends onV (λ → ∞):
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Phase diagram

• N = 4 SYM has no scale⇒ no phase transition
FBH = −cT 4, at any finiteT BH phase dominates.

• Einstein-Dilaton theory: behavior depends onV (λ → ∞):

V (λ) . O(λ4/3) V (λ) & O(λ4/3)
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Phase diagram
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Phase diagram
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Phase diagram

Confining geometries display a first order transition to a black
hole phase forT > Tc: Exact correlation between Wilson loop
area law, mass gap, and thermal phase transitions.
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Matching Pure YM Thermodynamics

Appropriate dilaton potential (fixed asymptotics plus 2 fit
parameters)⇒ Good agreement with lattice YM thermodynamics.

The Phenomenological Holographic Approach to QCD – p.26



Matching Pure YM Thermodynamics

Appropriate dilaton potential (fixed asymptotics plus 2 fit
parameters)⇒ Good agreement with lattice YM thermodynamics.

s(T )/T 3 lattice data: Panero, hep-lat/0106019
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Matching Pure YM Thermodynamics

Appropriate dilaton potential (fixed asymptotics plus 2 fit
parameters)⇒ Good agreement with lattice YM thermodynamics.

(ǫ − 3p)/T 4 lattice data: Panero, hep-lat/0106019
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Matching Pure YM Thermodynamics

Appropriate dilaton potential (fixed asymptotics plus 2 fit
parameters)⇒ Good agreement with lattice YM thermodynamics.

(ǫ − 3p)/T 4 lattice data: Panero, hep-lat/0106019

AdS black hole may provide a good description of the
deconfined phase at highT , but close toTc non-conformality
becomes important.
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Beyond Equilibrium

Everything discussed so far can be computed on the lattice. Up to
this point, we modeled a holographic setup to reproduce lattice
results.

Where AdS/CFT techniques can really lead to advancement is the

• Real-time dynamics of the deconfined phase.

• Finite baryon density
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Quark-Gluon plasma

The deconfined phase of of QCD is studied in Relativistic Heavy Ion
collision experiments (RHIC and LHC).

After a thermalization phase, the dynamics is indeed well described
by a hadrodynamic limit in terms of a few quantities (transport
coefficients):

• Flow parameters

• Bulk and Shear Viscosity

• Transport related to heavy probes (energy loss, jet quenching)
The Phenomenological Holographic Approach to QCD – p.28



Hydrodynamic Transport

In the long-wavelength limit the dynamics is described by energy
transport with a hydrodynamic stress-tensor:

Tµν = (ǫ + p) uµuν + p gµν

−PµiP νj

[

η

(

∂iuj + ∂jui −
2

3
gij∂ · u

)

+ ζ gij ∂ · u
]
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Hydrodynamic Transport

In the long-wavelength limit the dynamics is described by energy
transport with a hydrodynamic stress-tensor:

Tµν = (ǫ + p) uµuν + p gµν

−PµiP νj

[

η

(

∂iuj + ∂jui −
2

3
gij∂ · u

)

+ ζ gij ∂ · u
]

η : Shear viscosity.

• RHIC data consistent withvery smallη/s, ∼ 0.08 − 0.2

• Closest match: Strong coupling holographic computation in
N = 4 SYM: η/s = (4π)−1 ≈ 0.08

• IHQCD setup: same result as inN = 4 SYM (universal in
2-derivative models)
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Hydrodynamic Transport

In the long-wavelength limit the dynamics is described by energy
transport with a hydrodynamic stress-tensor:

Tµν = (ǫ + p) uµuν + p gµν

−PµiP νj

[

η

(

∂iuj + ∂jui −
2

3
gij∂ · u

)

+ ζ gij ∂ · u
]

ζ : Bulk viscosity

• Vanishes in a conformal fluid (likeN = 4 plasma), but one
expects a non-zero answer away from conformality.

• How signigicant isζ close toTc?
Important for fit to experiment: ifζ too large, linear hydrodinamic models break down
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Bulk Viscosity

The viscosity is computed by Kubo formula

η ∼
∫

dtd3x 〈Tii(x)Tii(0)〉ret

Correlator obtained holographically from the low-frequncy
isotropic scalar mode fluctuations around BH withinfalling
boundary conditions at the horizon.

Matches indication from lattice(Meyer ’08) and result from lattice ther-

modynamics + QCD sum rules (karsch 08) The Phenomenological Holographic Approach to QCD – p.30



Axial sector

In YM We can consider the pseudoscalar operator:
Õ = TrF F̃ ⇔ a(x, r) ∆ = 4 ⇒ m2

a = 0
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Axial sector

In YM We can consider the pseudoscalar operator:
Õ = TrF F̃ ⇔ a(x, r) ∆ = 4 ⇒ m2

a = 0

• Contribution of the topological term to glue dynamics is
suppressed at largeN : Neglect backreaction ofa on the
geometry.

Sbulk = N2Sbkg[gµν , λ] +

∫

d4xdr
√−gZ(λ)

(∂a)2

2
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geometry.
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(∂a)2

2

⇓
Background geometry
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Õ = TrF F̃ ⇔ a(x, r) ∆ = 4 ⇒ m2

a = 0

• Contribution of the topological term to glue dynamics is
suppressed at largeN : Neglect backreaction ofa on the
geometry.

Sbulk = N2Sbkg[gµν , λ] +

∫

d4xdr
√−gZ(λ)
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Background geometry probe pseudoscalara(x, r)
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Axial sector

In YM We can consider the pseudoscalar operator:
Õ = TrF F̃ ⇔ a(x, r) ∆ = 4 ⇒ m2

a = 0

• Contribution of the topological term to glue dynamics is
suppressed at largeN : Neglect backreaction ofa on the
geometry.

Sbulk = N2Sbkg[gµν , λ] +

∫

d4xdr
√−gZ(λ)

(∂a)2

2

⇓ ⇓
Background geometry probe pseudoscalara(x, r)

• Shift symmetry in the large-N limit ⇒ No potential fora.

• Z(λ) to be fixed phenomenologically.
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Chern-Simons diffusion

The low frequency limit of the correlator gives adiffusion constant

ΓCS =∝
∫

d4x〈TrF F̃ (x) TrF F̃ (0)〉R

This quantity plays an important role in the chiral magneticeffect:

• large magnetic fields are generated in the QGP
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The low frequency limit of the correlator gives adiffusion constant

ΓCS =∝
∫

d4x〈TrF F̃ (x) TrF F̃ (0)〉R

This quantity plays an important role in the chiral magneticeffect:

• large magnetic fields are generated in the QGP

• Together with (out-of-equilibrium) chirality violation by
TrF F̃ , B can lead to a net chiral current:
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Chern-Simons diffusion

The low frequency limit of the correlator gives adiffusion constant

ΓCS =∝
∫

d4x〈TrF F̃ (x) TrF F̃ (0)〉R

This quantity plays an important role in the chiral magneticeffect:

• large magnetic fields are generated in the QGP

• Together with (out-of-equilibrium) chirality violation by
TrF F̃ , B can lead to a net chiral current:

J5 = µ5B, µ5 ∝ ΓCS

• Holographic computation in the deconfined phase:

ΓCS =
sT

N2

Z(rh)

2π
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Chern-Simons diffusion constant

Sa =
1

2

∫ √−gZ(λ)(∂a)2

Z(λ) = Z0

(

1 + c1λ + c4λ
4
)
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Chern-Simons diffusion constant

Sa =
1

2

∫ √−gZ(λ)(∂a)2

Z(λ) = Z0

(

1 + c1λ + c4λ
4
)

↓ ↓
Finiteχtop 0−+ glueball asymptotics
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Chern-Simons diffusion constant

Sa =
1

2

∫ √−gZ(λ)(∂a)2

Z(λ) = Z0

(

1 + c1λ + c4λ
4
)

↓ ↓ ↓
Free parameters to fix by matching lattice/experiment
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Chern-Simons diffusion constant

Sa =
1

2

∫ √−gZ(λ)(∂a)2

Z(λ) = Z0

(

1 + c1λ + c4λ
4
)
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Adding Flavor

Nf quark flavors:spacetime-fillingD4 − D̄4 branes. E. Kiritsis and

collaborators

• Worldvolume fields:

T i
j ⇔ q̄iqj

AL
µ , AR

µ ⇔ JR,L
µ
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Adding Flavor

Nf quark flavors:spacetime-fillingD4 − D̄4 branes. E. Kiritsis and

collaborators

• Worldvolume fields:

T i
j ⇔ q̄iqj

AL
µ , AR

µ ⇔ JR,L
µ

S = Sglue[gab, λ] +

M3Nf N

∫

d5x, V0(λ)e−a(λ)T 2
√

−det(gab + h(λ)∂aT∂bT )

• χSB : T → ∞ in the IR.
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’t Hooft vs. Veneziano limit

• ’t Hooft limit: N → ∞, Nf fixed⇒ neglect backreaction of
flavors on colors.

• Confined phase⇒ T → +∞ in the IR

• Deconfined phase (BH)⇒ no regular solutions atrh with
non-trivialT ⇒ chiral symmetry restored
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’t Hooft vs. Veneziano limit

• ’t Hooft limit: N → ∞, Nf fixed⇒ neglect backreaction of
flavors on colors.

• Confined phase⇒ T → +∞ in the IR

• Deconfined phase (BH)⇒ no regular solutions atrh with
non-trivialT ⇒ chiral symmetry restored

• Veneziano limit:N, Nf → ∞, x = Nf/N fixed⇒ backreaction
of T is included

• IR fixed point with unbrokenχs in a conformal window for
xc < x < 5.5, xc ≃ 4.

• x < xc ⇒ the would-be conformal fixed point is not reached
(T tachyonic at the fixed point)⇒ confined phase with
brokenχs
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Phase diagrams

Finite Temperature

Finite Temperature
and Density
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Conclusion

Phenomenological holographic modelsprovide a calculational
framework for quantities that cannot be tackled with other
techniques. In situations where other techniques can be applied
these models give qualitatively correct and even quantitatively
accurate results.

Contrary to top-down string theory models, some approximations
and assumptions not under control. A more precise contact with
string theory would be desired.

The Phenomenological Holographic Approach to QCD – p.40



Parametrizing the axion Lagrangian

Sa =
1

2

∫ √−gZ(λ)(∂a)2

Z(λ) = Z0

(

1 + c1λ + c4λ
4
)

Discrete0−+ spectrum with asymptotics (from WKB method)

m2
n ∼ n, fn ∼ n

The Phenomenological Holographic Approach to QCD – p.41



Parametrizing the axion Lagrangian

Sa =
1

2

∫ √−gZ(λ)(∂a)2

Z(λ) = Z0

(

1 + c1λ + c4λ
4
)

Discrete0−+ spectrum with asymptotics (from WKB method)

m2
n ∼ n, fn ∼ n

For c1 = 0, c4 = 0.26 one finds a good match with Lattice result for
the lowest lying0−+ states.

5d model latticehep-lat/9901004

m0−+/m0++ 1.50 1.50(4)

m0∗−+/m0++ 2.10 2.11(6)
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